1
|
Loizzo SK, Prah MA, Kong MJ, Phung D, Urcuyo JC, Ye J, Attenello FJ, Mendoza J, Zhou Y, Shiroishi MS, Hu LS, Schmainda KM. Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol. AJNR Am J Neuroradiol 2025; 46:529-535. [PMID: 39389776 PMCID: PMC11979803 DOI: 10.3174/ajnr.a8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND PURPOSE A national consensus recommendation for the collection of DSC-MRI perfusion data, used to create maps of relative CBV (rCBV), has been recently established for primary and metastatic brain tumors. The goal was to reduce intersite variability and improve ease of comparison across time and sites, fostering widespread use of this informative measure. To translate this goal into practice, the prospective collection of consensus DSC-MRI data and characterization of derived rCBV maps in brain metastases is needed. The purpose of this multisite study was to determine rCBV in untreated brain metastases in comparison to glioblastoma (GBM) and normal-appearing brain by using the national consensus protocol. MATERIALS AND METHODS Subjects from 3 sites with untreated enhancing brain metastases underwent DSC-MRI according to a recommended option that uses a midrange flip angle, GRE-EPI acquisition, and the administration of both a preload and second DSC-MRI dose of 0.1 mmol/kg gadolinium-based contrast agent. Quantitative maps of standardized relative CBV (srCBV) were generated and enhancing lesion ROIs determined from postcontrast T1-weighted images alone or calibrated difference maps, termed Δ T1 (dT1) maps. Mean srCBV for metastases were compared with normal-appearing white matter (NAWM) and GBM from a previous study. Comparisons were performed by using either the Wilcoxon signed-rank test for paired comparisons or the Mann-Whitney U nonparametric test for unpaired comparisons. RESULTS Forty-nine patients with a primary histology of lung (n = 25), breast (n = 6), squamous cell carcinoma (n = 1), melanoma (n = 5), gastrointestinal (GI) (n = 3), and genitourinary (GU) (n = 9) were included in comparison to GBM (n = 31). The mean srCBV of all metastases (1.83±1.05) were significantly lower (P = .0009) than mean srCBV for GBM (2.67 ± 1.34) with both statistically greater (P < .0001) than NAWM (0.68 ± 0.18). Histologically distinct metastases are each statistically greater than NAWM (P < .0001) with lung (P = .0002) and GU (P = .02) srCBV being significantly different from GBM srCBV. CONCLUSIONS Using the consensus DSC-MRI protocol, mean srCBV values were determined for treatment-naïve brain metastases in comparison to normal-appearing white matter and GBM thus setting the benchmark for all subsequent studies adherent to the national consensus recommendation.
Collapse
Affiliation(s)
- Sarah Kohn Loizzo
- From the Department of Radiation Oncology (S.K.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Min J Kong
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Daniel Phung
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Javier C Urcuyo
- Mathematical Neuro-Oncology Lab (J.C.U.), Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jason Ye
- Department of Radiation Oncology (J.Y.), Keck School of Medicine of USC, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery (F.J.A.), Keck School of Medicine of USC, Los Angeles, California
| | - Jesse Mendoza
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Yuxiang Zhou
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Mark S Shiroishi
- Department of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
- Imaging Genetics Center (M.S.S.), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, California
- Department of Population and Public Health Sciences (M.S.S.), Keck School of Medicine of USC, Los Angeles, California
| | - Leland S Hu
- Department of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Cancer Biology (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
- Department of Neurological Surgery (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Hu LS, Smits M, Kaufmann TJ, Knutsson L, Rapalino O, Galldiks N, Sundgren PC, Cha S. Advanced Imaging in the Diagnosis and Response Assessment of High-Grade Glioma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025; 224:e2330612. [PMID: 38477525 DOI: 10.2214/ajr.23.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This AJR Expert Panel Narrative Review explores the current status of advanced MRI and PET techniques for the posttherapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from posttreatment effects include DWI and diffusion-tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced, and arterial spin labeling MRI; MR spectroscopy (MRS) including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for the Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after high-grade glioma treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The review concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Linda Knutsson
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital, Boston, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Pia C Sundgren
- Institution of Clinical Sciences Lund/Radiology, Lund University, Lund, Sweden
- Lund Bioimaging Center, Lund University, Lund, Sweden
- Department of Medical Imaging and Function, Skane University Hospital, Lund, Sweden
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|
3
|
Anil A, Stokes AM, Karis JP, Bell LC, Eschbacher J, Jennings K, Prah MA, Hu LS, Boxerman JL, Schmainda KM, Quarles CC. Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma. AJNR Am J Neuroradiol 2024; 45:1545-1551. [PMID: 38782593 PMCID: PMC11448978 DOI: 10.3174/ajnr.a8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol. This study aimed to identify the rCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS Fifty-two patients with grade-IV glioblastoma who had prior surgical resection and received chemotherapy and radiation therapy were included in the study. Two sets of DSC-MR imaging data were collected sequentially first by using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and coregistered with the anatomic postcontrast T1-weighted images. The reference MFA-based FTB maps were computed by using previously published sRCBV thresholds (1.0 and 1.56). A receiver operating characteristics (ROC) analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS The mean sRCBV values of tumors across patients exhibited strong agreement (concordance correlation coefficient = 0.99) between the 2 protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSIONS For LFA-based FTB maps, an sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumors. FTB maps aid in surgical planning, guiding pathologic diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MR imaging.
Collapse
Affiliation(s)
- Aliya Anil
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley M Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - John P Karis
- Department of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - Laura C Bell
- Clinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
| | - Jennifer Eschbacher
- Department of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
| | - Kristofer Jennings
- Department of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leland S Hu
- Department of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - C Chad Quarles
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Herings SDA, van der Wijk MW, von Beckerath V, Fasen BACM, Meijer FJA, van der Kolk AG, Henssen DJHA. Fractional tumor burden maps increase the confidence of reading brain MR perfusion. Eur J Radiol 2024; 178:111644. [PMID: 39084028 DOI: 10.1016/j.ejrad.2024.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
RATIONALE AND OBJECTIVES Various methods exist to perform and post-process perfusion weighted MR imaging in the post-treatment imaging of glioma patients to differentiate tumor progression from tumor-related abnormalities. One of these post-processing methods produces 'fractional tumor burden' maps. This multi-reader study investigated the clinical feasibility of fractional tumor burden maps on real world data from radiological follow-up of high-grade astrocytoma patients. METHODS Five readers with background in radiology and varying levels of experience were tasked with assessing 30 astrocytoma and glioblastoma patients during one reader session. First, they were provided with a dataset of conventional MRI sequences, including perfusion MRI with regional cerebral blood volume maps. Then the dataset was expanded with a corresponding fractional tumor burden maps. Diagnostic accuracy, duration of post-processing, duration of the assessment of the fractional tumor burden maps, the diagnostic confidence reported by the readers and their diagnoses were recorded. Final diagnosis was determined by clinical and radiological follow-up and/or histopathological data used as gold standard. RESULTS A mean sensitivity of 83.3 % and mean specificity of 55.1 % was obtained without the use of fractional tumor burden maps, whereas their additional of fractional tumor burden maps resulted in a mean sensitivity and specificity of 79.5 % and 54.2 %, respectively. Diagnostic accuracies with and without fractional tumor burden maps were not significantly different (Z = 0.76, p = 0.450). The median time spent post-processing was 313 s, while the median duration of the assessment of the FTB maps was 19 s. Interestingly, reader confidence increased significantly after adding the fractional tumor burden-maps to the assessment (Z = 454, p < 0.01). CONCLUSIONS While the use of fractional tumor burden maps does not carry additional value in the radiological follow-up of post-operative high-grade astrocytoma and glioblastoma patients, it does give readers more confidence in their diagnosis.
Collapse
Affiliation(s)
- Siem D A Herings
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands.
| | - Marte W van der Wijk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Victoria von Beckerath
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bram A C M Fasen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands; Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Herings SDA, van den Elshout R, de Wit R, Mannil M, Ravesloot C, Scheenen TWJ, Arens A, van der Kolk A, Meijer FJA, Henssen DJHA. How to evaluate perfusion imaging in post-treatment glioma: a comparison of three different analysis methods. Neuroradiology 2024; 66:1279-1289. [PMID: 38714545 PMCID: PMC11246270 DOI: 10.1007/s00234-024-03374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Dynamic susceptibility contrast (DSC) perfusion weighted (PW)-MRI can aid in differentiating treatment related abnormalities (TRA) from tumor progression (TP) in post-treatment glioma patients. Common methods, like the 'hot spot', or visual approach suffer from oversimplification and subjectivity. Using perfusion of the complete lesion potentially offers an objective and accurate alternative. This study aims to compare the diagnostic value and assess the subjectivity of these techniques. METHODS 50 Glioma patients with enhancing lesions post-surgery and chemo-radiotherapy were retrospectively included. Outcome was determined by clinical/radiological follow-up or biopsy. Imaging analysis used the 'hot spot', volume of interest (VOI) and visual approach. Diagnostic accuracy was compared using receiving operator characteristics (ROC) curves for the VOI and 'hot spot' approach, visual assessment was analysed with contingency tables. Inter-operator agreement was determined with Cohens kappa and intra-class coefficient (ICC). RESULTS 29 Patients suffered from TP, 21 had TRA. The visual assessment showed poor to substantial inter-operator agreement (κ = -0.72 - 0.68). Reliability of the 'hot spot' placement was excellent (ICC = 0.89), while reference placement was variable (ICC = 0.54). The area under the ROC (AUROC) of the mean- and maximum relative cerebral blood volume (rCBV) (VOI-analysis) were 0.82 and 0.72, while the rCBV-ratio ('hot spot' analysis) was 0.69. The VOI-analysis had a more balanced sensitivity and specificity compared to visual assessment. CONCLUSIONS VOI analysis of DSC PW-MRI data holds greater diagnostic accuracy in single-moment differentiation of TP and TRA than 'hot spot' or visual analysis. This study underlines the subjectivity of visual placement and assessment.
Collapse
Affiliation(s)
- Siem D A Herings
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands.
| | - Rik van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Rebecca de Wit
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Manoj Mannil
- University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Albert-Schweitzer-Campus 1, E48149, Muenster, Germany
| | - Cécile Ravesloot
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Anne Arens
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Anja van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| | - Dylan J H A Henssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc Center of Expertise Neuro-Oncology, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Yamin G, Tranvinh E, Lanzman BA, Tong E, Hashmi SS, Patel CB, Iv M. Arterial Spin-Labeling and DSC Perfusion Metrics Improve Agreement in Neuroradiologists' Clinical Interpretations of Posttreatment High-Grade Glioma Surveillance MR Imaging-An Institutional Experience. AJNR Am J Neuroradiol 2024; 45:453-460. [PMID: 38453410 PMCID: PMC11288557 DOI: 10.3174/ajnr.a8190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/16/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE MR perfusion has shown value in the evaluation of posttreatment high-grade gliomas, but few studies have shown its impact on the consistency and confidence of neuroradiologists' interpretation in routine clinical practice. We evaluated the impact of adding MR perfusion metrics to conventional contrast-enhanced MR imaging in posttreatment high-grade glioma surveillance imaging. MATERIALS AND METHODS This retrospective study included 45 adults with high-grade gliomas who had posttreatment perfusion MR imaging. Four neuroradiologists assigned Brain Tumor Reporting and Data System scores for each examination on the basis of the interpretation of contrast-enhanced MR imaging and then after the addition of arterial spin-labeling-CBF, DSC-relative CBV, and DSC-fractional tumor burden. Interrater agreement and rater agreement with a multidisciplinary consensus group were assessed with κ statistics. Raters used a 5-point Likert scale to report confidence scores. The frequency of clinically meaningful score changes resulting from the addition of each perfusion metric was determined. RESULTS Interrater agreement was moderate for contrast-enhanced MR imaging alone (κ = 0.63) and higher with perfusion metrics (arterial spin-labeling-CBF, κ = 0.67; DSC-relative CBV, κ = 0.66; DSC-fractional tumor burden, κ = 0.70). Agreement between raters and consensus was highest with DSC-fractional tumor burden (κ = 0.66-0.80). Confidence scores were highest with DSC-fractional tumor burden. Across all raters, the addition of perfusion resulted in clinically meaningful interpretation changes in 2%-20% of patients compared with contrast-enhanced MR imaging alone. CONCLUSIONS Adding perfusion to contrast-enhanced MR imaging improved interrater agreement, rater agreement with consensus, and rater confidence in the interpretation of posttreatment high-grade glioma MR imaging, with the highest agreement and confidence scores seen with DSC-fractional tumor burden. Perfusion MR imaging also resulted in interpretation changes that could change therapeutic management in up to 20% of patients.
Collapse
Affiliation(s)
- Ghiam Yamin
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Eric Tranvinh
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Bryan A Lanzman
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Elizabeth Tong
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Syed S Hashmi
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| | - Chirag B Patel
- Department of Neuro-Oncology (C.B.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Iv
- From the Department of Radiology (G.Y., E. Tranvinh, B.A.L., E. Tong, S.S.H., M.I.), Division of Neuroimaging and Neurointervention, Stanford University Medical Center, Stanford, California
| |
Collapse
|
7
|
Hu LS, D'Angelo F, Weiskittel TM, Caruso FP, Fortin Ensign SP, Blomquist MR, Flick MJ, Wang L, Sereduk CP, Meng-Lin K, De Leon G, Nespodzany A, Urcuyo JC, Gonzales AC, Curtin L, Lewis EM, Singleton KW, Dondlinger T, Anil A, Semmineh NB, Noviello T, Patel RA, Wang P, Wang J, Eschbacher JM, Hawkins-Daarud A, Jackson PR, Grunfeld IS, Elrod C, Mazza GL, McGee SC, Paulson L, Clark-Swanson K, Lassiter-Morris Y, Smith KA, Nakaji P, Bendok BR, Zimmerman RS, Krishna C, Patra DP, Patel NP, Lyons M, Neal M, Donev K, Mrugala MM, Porter AB, Beeman SC, Jensen TR, Schmainda KM, Zhou Y, Baxter LC, Plaisier CL, Li J, Li H, Lasorella A, Quarles CC, Swanson KR, Ceccarelli M, Iavarone A, Tran NL. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 2023; 14:6066. [PMID: 37770427 PMCID: PMC10539500 DOI: 10.1038/s41467-023-41559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Fulvio D'Angelo
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Taylor M Weiskittel
- Mayo Clinic Alix School of Medicine Minnesota, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Francesca P Caruso
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Shannon P Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Matthew J Flick
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher P Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gustavo De Leon
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashley Nespodzany
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Javier C Urcuyo
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashlyn C Gonzales
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Lee Curtin
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kyle W Singleton
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Aliya Anil
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Natenael B Semmineh
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Noviello
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Reyna A Patel
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Panwen Wang
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | | | - Pamela R Jackson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Itamar S Grunfeld
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | - Gina L Mazza
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Sam C McGee
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Lisa Paulson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Richard S Zimmerman
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chandan Krishna
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Naresh P Patel
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark Lyons
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew Neal
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Kathleen M Schmainda
- Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Departments of Psychiatry and Psychology, Mayo Clinic, AZ, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin R Swanson
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michele Ceccarelli
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
8
|
Yearley AG, Goedmakers CMW, Panahi A, Doucette J, Rana A, Ranganathan K, Smith TR. FDA-approved machine learning algorithms in neuroradiology: A systematic review of the current evidence for approval. Artif Intell Med 2023; 143:102607. [PMID: 37673576 DOI: 10.1016/j.artmed.2023.102607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/08/2023]
Abstract
Over the past decade, machine learning (ML) and artificial intelligence (AI) have become increasingly prevalent in the medical field. In the United States, the Food and Drug Administration (FDA) is responsible for regulating AI algorithms as "medical devices" to ensure patient safety. However, recent work has shown that the FDA approval process may be deficient. In this study, we evaluate the evidence supporting FDA-approved neuroalgorithms, the subset of machine learning algorithms with applications in the central nervous system (CNS), through a systematic review of the primary literature. Articles covering the 53 FDA-approved algorithms with applications in the CNS published in PubMed, EMBASE, Google Scholar and Scopus between database inception and January 25, 2022 were queried. Initial searches identified 1505 studies, of which 92 articles met the criteria for extraction and inclusion. Studies were identified for 26 of the 53 neuroalgorithms, of which 10 algorithms had only a single peer-reviewed publication. Performance metrics were available for 15 algorithms, external validation studies were available for 24 algorithms, and studies exploring the use of algorithms in clinical practice were available for 7 algorithms. Papers studying the clinical utility of these algorithms focused on three domains: workflow efficiency, cost savings, and clinical outcomes. Our analysis suggests that there is a meaningful gap between the FDA approval of machine learning algorithms and their clinical utilization. There appears to be room for process improvement by implementation of the following recommendations: the provision of compelling evidence that algorithms perform as intended, mandating minimum sample sizes, reporting of a predefined set of performance metrics for all algorithms and clinical application of algorithms prior to widespread use. This work will serve as a baseline for future research into the ideal regulatory framework for AI applications worldwide.
Collapse
Affiliation(s)
- Alexander G Yearley
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | - Caroline M W Goedmakers
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Armon Panahi
- The George Washington University School of Medicine and Health Sciences, 2300 I St NW, Washington, DC 20052, USA
| | - Joanne Doucette
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Aakanksha Rana
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Kavitha Ranganathan
- Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Timothy R Smith
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
9
|
Hirschler L, Sollmann N, Schmitz‐Abecassis B, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda K, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Emblem KE, Smits M, Petr J, Hangel G. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J Magn Reson Imaging 2023; 57:1655-1675. [PMID: 36866773 PMCID: PMC10946498 DOI: 10.1002/jmri.28662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Delta FoundationDelftThe Netherlands
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityKrems an der DonauAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nazmiye Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaaglanden Medical CenterThe HagueThe Netherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and PsychotherapyInternational Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babes‐Bolyai UniversityCluj‐NapocaRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | - Kathleen Schmainda
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftThe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University Hospital, BrnoBrnoCzech Republic
- Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| | - Marion Smits
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Anil A, Stokes AM, Chao R, Hu LS, Alhilali L, Karis JP, Bell LC, Quarles CC. Identification of single-dose, dual-echo based CBV threshold for fractional tumor burden mapping in recurrent glioblastoma. Front Oncol 2023; 13:1046629. [PMID: 36733305 PMCID: PMC9887158 DOI: 10.3389/fonc.2023.1046629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Background Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol. Methods The study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold. Results The mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%). Conclusions The optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Aliya Anil
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Ashley M. Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Renee Chao
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neuroimaging Institute, Phoenix, AZ, United States
| | - Leland S. Hu
- Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Lea Alhilali
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - John P. Karis
- Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, United States
| | - Laura C. Bell
- Early Clinical Development, Genentech, San Francisco, CA, United States
| | - C. Chad Quarles
- Cancer System Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States,*Correspondence: C. Chad Quarles,
| |
Collapse
|
11
|
Amidon RF, Santos-Pinheiro F, Straza M, Prah MA, Mueller WM, Krucoff MO, Connelly JM, Kleefisch CJ, Coss DJ, Cochran EJ, Bovi JA, Schultz CJ, Schmainda KM. Case report: Fractional brain tumor burden magnetic resonance mapping to assess response to pulsed low-dose-rate radiotherapy in newly-diagnosed glioblastoma. Front Oncol 2022; 12:1066191. [PMID: 36561526 PMCID: PMC9763264 DOI: 10.3389/fonc.2022.1066191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Pulsed low-dose-rate radiotherapy (pLDR) is a commonly used reirradiation technique for recurrent glioma, but its upfront use with temozolomide (TMZ) following primary resection of glioblastoma is currently under investigation. Because standard magnetic resonance imaging (MRI) has limitations in differentiating treatment effect from tumor progression in such applications, perfusion-weighted MRI (PWI) can be used to create fractional tumor burden (FTB) maps to spatially distinguish active tumor from treatment-related effect. Methods We performed PWI prior to re-resection in four patients with glioblastoma who had undergone upfront pLDR concurrent with TMZ who had radiographic suspicion for tumor progression at a median of 3 months (0-5 months or 0-143 days) post-pLDR. The pathologic diagnosis was compared to retrospectively-generated FTB maps. Results The median patient age was 55.5 years (50-60 years). All were male with IDH-wild type (n=4) and O6-methylguanine-DNA methyltransferase (MGMT) hypermethylated (n=1) molecular markers. Pathologic diagnosis revealed treatment effect (n=2), a mixture of viable tumor and treatment effect (n=1), or viable tumor (n=1). In 3 of 4 cases, FTB maps were indicative of lesion volumes being comprised predominantly of treatment effect with enhancing tumor volumes comprised of a median of 6.8% vascular tumor (6.4-16.4%). Conclusion This case series provides insight into the radiographic response to upfront pLDR and TMZ and the role for FTB mapping to distinguish tumor progression from treatment effect prior to redo-surgery and within 20 weeks post-radiation.
Collapse
Affiliation(s)
- Ryan F. Amidon
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Michael Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wade M. Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max O. Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Dylan J. Coss
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth J. Cochran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph A. Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher J. Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Kuo F, Ng NN, Nagpal S, Pollom EL, Soltys S, Hayden-Gephart M, Li G, Born DE, Iv M. DSC Perfusion MRI-Derived Fractional Tumor Burden and Relative CBV Differentiate Tumor Progression and Radiation Necrosis in Brain Metastases Treated with Stereotactic Radiosurgery. AJNR Am J Neuroradiol 2022; 43:689-695. [PMID: 35483909 PMCID: PMC9089266 DOI: 10.3174/ajnr.a7501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Differentiation between tumor and radiation necrosis in patients with brain metastases treated with stereotactic radiosurgery is challenging. We hypothesized that MR perfusion and metabolic metrics can differentiate radiation necrosis from progressive tumor in this setting. MATERIALS AND METHODS We retrospectively evaluated MRIs comprising DSC, dynamic contrast-enhanced, and arterial spin-labeling perfusion imaging in subjects with brain metastases previously treated with stereotactic radiosurgery. For each lesion, we obtained the mean normalized and standardized relative CBV and fractional tumor burden, volume transfer constant, and normalized maximum CBF, as well as the maximum standardized uptake value in a subset of subjects who underwent FDG-PET. Relative CBV thresholds of 1 and 1.75 were used to define low and high fractional tumor burden. RESULTS Thirty subjects with 37 lesions (20 radiation necrosis, 17 tumor) were included. Compared with radiation necrosis, tumor had increased mean normalized and standardized relative CBV (P = .002) and high fractional tumor burden (normalized, P = .005; standardized, P = .003) and decreased low fractional tumor burden (normalized, P = .03; standardized, P = .01). The area under the curve showed that relative CBV (normalized = 0.80; standardized = 0.79) and high fractional tumor burden (normalized = 0.77; standardized = 0.78) performed the best to discriminate tumor and radiation necrosis. For tumor prediction, the normalized relative CBV cutoff of ≥1.75 yielded a sensitivity of 76.5% and specificity of 70.0%, while the standardized cutoff of ≥1.75 yielded a sensitivity of 41.2% and specificity of 95.0%. No significance was found with the volume transfer constant, normalized CBF, and standardized uptake value. CONCLUSIONS Increased relative CBV and high fractional tumor burden (defined by a threshold relative CBV of ≥1.75) best differentiated tumor from radiation necrosis in subjects with brain metastases treated with stereotactic radiosurgery. Performance of normalized and standardized approaches was similar.
Collapse
Affiliation(s)
- F Kuo
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (F.K., N.N.N., M.I.)
| | - N N Ng
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (F.K., N.N.N., M.I.)
| | - S Nagpal
- Departments of Neurology (Neuro-Oncology) (S.N.)
| | | | - S Soltys
- Radiation Oncology (E.L.P., S.S.)
| | | | - G Li
- Neurosurgery (M.H.-G., G.L.)
| | - D E Born
- Pathology (D.E.B.), Stanford University, Stanford, California
| | - M Iv
- From the Department of Radiology, Division of Neuroimaging and Neurointervention (F.K., N.N.N., M.I.)
| |
Collapse
|
15
|
Malik DG, Rath TJ, Urcuyo Acevedo JC, Canoll PD, Swanson KR, Boxerman JL, Quarles CC, Schmainda KM, Burns TC, Hu LS. Advanced MRI Protocols to Discriminate Glioma From Treatment Effects: State of the Art and Future Directions. FRONTIERS IN RADIOLOGY 2022; 2:809373. [PMID: 37492687 PMCID: PMC10365126 DOI: 10.3389/fradi.2022.809373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 07/27/2023]
Abstract
In the follow-up treatment of high-grade gliomas (HGGs), differentiating true tumor progression from treatment-related effects, such as pseudoprogression and radiation necrosis, presents an ongoing clinical challenge. Conventional MRI with and without intravenous contrast serves as the clinical benchmark for the posttreatment surveillance imaging of HGG. However, many advanced imaging techniques have shown promise in helping better delineate the findings in indeterminate scenarios, as posttreatment effects can often mimic true tumor progression on conventional imaging. These challenges are further confounded by the histologic admixture that can commonly occur between tumor growth and treatment-related effects within the posttreatment bed. This review discusses the current practices in the surveillance imaging of HGG and the role of advanced imaging techniques, including perfusion MRI and metabolic MRI.
Collapse
Affiliation(s)
- Dania G. Malik
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Tanya J. Rath
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
| | - Javier C. Urcuyo Acevedo
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Peter D. Canoll
- Departments of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Kristin R. Swanson
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| | - Jerrold L. Boxerman
- Department of Diagnostic Imaging, Brown University, Providence, RI, United States
| | - C. Chad Quarles
- Department of Neuroimaging Research & Barrow Neuroimaging Innovation Center, Barrow Neurologic Institute, Phoenix, AZ, United States
| | - Kathleen M. Schmainda
- Department of Biophysics & Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Terry C. Burns
- Departments of Neurologic Surgery and Neuroscience, Mayo Clinic, Rochester, MN, United States
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, United States
- Mathematical Neurooncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
16
|
Jajodia A, Goel V, Goyal J, Patnaik N, Khoda J, Pasricha S, Gairola M. Combined Diagnostic Accuracy of Diffusion and Perfusion MR Imaging to Differentiate Radiation-Induced Necrosis from Recurrence in Glioblastoma. Diagnostics (Basel) 2022; 12:diagnostics12030718. [PMID: 35328270 PMCID: PMC8947286 DOI: 10.3390/diagnostics12030718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
We aimed to use quantitative values derived from perfusion and diffusion-weighted MR imaging (PWI and DWI) to differentiate radiation-induced necrosis (RIN) from tumor recurrence in Glioblastoma (GBM) and investigate the best parameters for improved diagnostic accuracy and clinical decision-making. Methods: A retrospective analysis of follow-up MRI with new enhancing observations was performed in histopathologically confirmed subjects of post-treated GBM, who underwent re-surgical exploration. Quantitative estimation of rCBV (relative cerebral blood volume) from PWI and three methods of apparent diffusion coefficient (ADC) estimation were performed, namely ADC R1 (whole cross-sectional area of tumor), ADC R2 (only solid enhancing lesion), and ADC R3 (central necrosis). ROC curve and logistic regression analysis was completed. A confusion matrix table created using Excel provided the best combination parameters to ameliorate false-positive and false-negative results. Results: Forty-four subjects with a mean age of 46 years (range, 19−70 years) underwent re-surgical exploration with RIN in 28 (67%) and recurrent tumor in 16 (33%) on histopathology. rCBV threshold of >3.4 had the best diagnostic accuracy (AUC = 0.93, 81% sensitivity and 89% specificity). A multiple logistic regression model showed significant contributions from rCBV (p < 0.001) and ADC R3 (p = 0.001). After analysis of confusion matrix ADC R3 > 2032 × 10−6 mm2 achieved 100% specificity with gain in sensitivity (94% vs. 56%). Conclusions: A combination of parameters had better diagnostic performance, and a stepwise combination of rCBV and ADC R3 obviated unnecessary biopsies in 10% (3/28), leading to improved clinical decision-making.
Collapse
Affiliation(s)
- Ankush Jajodia
- Department of Radiology, McMaster University, Hamilton Health Sciences, Hamilton, ON L8V 5C2, Canada
- Correspondence: (A.J.); (V.G.); Tel.: +91-97-6510-7872 (V.G.)
| | - Varun Goel
- Department of Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
- Correspondence: (A.J.); (V.G.); Tel.: +91-97-6510-7872 (V.G.)
| | - Jitin Goyal
- Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India; (J.G.); (J.K.)
| | - Nivedita Patnaik
- Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, Delhi 110085, India; (N.P.); (S.P.)
| | - Jeevitesh Khoda
- Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India; (J.G.); (J.K.)
| | - Sunil Pasricha
- Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, Delhi 110085, India; (N.P.); (S.P.)
| | - Munish Gairola
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute, Delhi 110085, India;
| |
Collapse
|
17
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Connelly JM, Prah MA, Santos-Pinheiro F, Mueller W, Cochran E, Schmainda KM. Magnetic Resonance Imaging Mapping of Brain Tumor Burden: Clinical Implications for Neurosurgical Management: Case Report. NEUROSURGERY OPEN 2021; 2:okab029. [PMID: 34661110 PMCID: PMC8508085 DOI: 10.1093/neuopn/okab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND IMPORTANCE Distinction of brain tumor progression from treatment effect on postcontrast magnetic resonance imaging (MRI) is an ongoing challenge in the management of brain tumor patients. A newly emerging MRI biomarker called fractional tumor burden (FTB) has demonstrated the ability to spatially distinguish high-grade brain tumor from treatment effect with important implications for surgical management and pathological diagnosis. CLINICAL PRESENTATION A 58-yr-old male with glioblastoma was treated with standard concurrent chemoradiotherapy (CRT) after initial resection. Throughout follow-up imaging, the distinction of tumor progression from treatment effect was of concern. The surgical report from a redo resection indicated recurrent glioblastoma, while the tissue sent for pathological diagnosis revealed no tumor. Presurgical FTB maps confirmed the spatial variation of tumor and treatment effect within the contrast-agent enhancing lesion. Unresected lesion, shown to be an active tumor on FTB, was the site of substantial tumor growth postresection. CONCLUSION This case report introduces the idea that a newly developed MRI biomarker, FTB, can provide information of tremendous benefit for surgical management, pathological diagnosis as well as subsequent treatment management decisions in high-grade glioma.
Collapse
Affiliation(s)
- Jennifer M Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melissa A Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Wade Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elizabeth Cochran
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Bobholz SA, Lowman AK, Barrington A, Brehler M, McGarry S, Cochran EJ, Connelly J, Mueller WM, Agarwal M, O'Neill D, Nencka AS, Banerjee A, LaViolette PS. Radiomic Features of Multiparametric MRI Present Stable Associations With Analogous Histological Features in Patients With Brain Cancer. ACTA ACUST UNITED AC 2021; 6:160-169. [PMID: 32548292 PMCID: PMC7289245 DOI: 10.18383/j.tom.2019.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance (MR)-derived radiomic features have shown substantial predictive utility in modeling different prognostic factors of glioblastoma and other brain cancers. However, the biological relationship underpinning these predictive models has been largely unstudied, and the generalizability of these models had been called into question. Here, we examine the localized relationship between MR-derived radiomic features and histology-derived “histomic” features using a data set of 16 patients with brain cancer. Tile-based radiomic features were collected on T1, post-contrast T1, FLAIR, and diffusion-weighted imaging (DWI)-derived apparent diffusion coefficient (ADC) images acquired before patient death, with analogous histomic features collected for autopsy samples coregistered to the magnetic resonance imaging. Features were collected for each original image, as well as a 3D wavelet decomposition of each image, resulting in 837 features per MR and histology image. Correlative analyses were used to assess the degree of association between radiomic–histomic pairs for each magnetic resonance imaging. The influence of several confounds was also assessed using linear mixed-effect models for the normalized radiomic–histomic distance, testing for main effects of different acquisition field strengths. Results as a whole were largely heterogeneous, but several features showed substantial associations with their histomic analogs, particularly those derived from the FLAIR and postcontrast T1W images. These features with the strongest association typically presented as stable across field strengths as well. These data suggest that a subset of radiomic features can consistently capture texture information on underlying tissue histology.
Collapse
|
20
|
Assessment of tumor hypoxia and perfusion in recurrent glioblastoma following bevacizumab failure using MRI and 18F-FMISO PET. Sci Rep 2021; 11:7632. [PMID: 33828310 PMCID: PMC8027395 DOI: 10.1038/s41598-021-84331-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Tumoral hypoxia correlates with worse outcomes in glioblastoma (GBM). While bevacizumab is routinely used to treat recurrent GBM, it may exacerbate hypoxia. Evofosfamide is a hypoxia-targeting prodrug being tested for recurrent GBM. To characterize resistance to bevacizumab and identify those with recurrent GBM who may benefit from evofosfamide, we ascertained MRI features and hypoxia in patients with GBM progression receiving both agents. Thirty-three patients with recurrent GBM refractory to bevacizumab were enrolled. Patients underwent MR and 18F-FMISO PET imaging at baseline and 28 days. Tumor volumes were determined, MRI and 18F-FMISO PET-derived parameters calculated, and Spearman correlations between parameters assessed. Progression-free survival decreased significantly with hypoxic volume [hazard ratio (HR) = 1.67, 95% confidence interval (CI) 1.14 to 2.46, P = 0.009] and increased significantly with time to the maximum value of the residue (Tmax) (HR = 0.54, 95% CI 0.34 to 0.88, P = 0.01). Overall survival decreased significantly with hypoxic volume (HR = 1.71, 95% CI 1.12 to 12.61, p = 0.01), standardized relative cerebral blood volume (srCBV) (HR = 1.61, 95% CI 1.09 to 2.38, p = 0.02), and increased significantly with Tmax (HR = 0.31, 95% CI 0.15 to 0.62, p < 0.001). Decreases in hypoxic volume correlated with longer overall and progression-free survival, and increases correlated with shorter overall and progression-free survival. Hypoxic volume and volume ratio were positively correlated (rs = 0.77, P < 0.0001), as were hypoxia volume and T1 enhancing tumor volume (rs = 0.75, P < 0.0001). Hypoxia is a key biomarker in patients with bevacizumab-refractory GBM. Hypoxia and srCBV were inversely correlated with patient outcomes. These radiographic features may be useful in evaluating treatment and guiding treatment considerations.
Collapse
|
21
|
Kim M, Park JE, Emblem K, Bjørnerud A, Kim HS. Vessel Type Determined by Vessel Architectural Imaging Improves Differentiation between Early Tumor Progression and Pseudoprogression in Glioblastoma. AJNR Am J Neuroradiol 2021; 42:663-670. [PMID: 33541891 DOI: 10.3174/ajnr.a6984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Currently available perfusion parameters are limited in differentiating early tumor progression and pseudoprogression with no insight about vessel size and type. We aimed to investigate differences in vessel size and type between early tumor progression and pseudoprogression in posttreatment glioblastoma and to demonstrate diagnostic performance using vessel architectural imaging. MATERIALS AND METHODS Fifty-eight patients with enlarging contrast-enhancing masses in posttreatment glioblastomas underwent simultaneous gradient recalled-echo and spin-echo dynamic susceptibility contrast imaging. Relative CBV and vessel architectural imaging parameters, including the relative vessel size index, peak shift between gradient recalled echo and spin-echo bolus signal peaks, and arterial dominance scores using spatial dominance of arterial/venous vessel type, were calculated and compared between the 2 conditions. The area under the curve and cross-validation were performed to compare the diagnostic performance of the relative CBV, vessel architectural imaging parameters, and their combinations. RESULTS There were 41 patients with early tumor progression and 17 patients with pseudoprogression. Relative to pseudoprogression, early tumor progression showed a lower peak shift (-0.02 versus 0.33, P = .02) and a lower arterial dominance score (1.46 versus 2.11, P = .001), indicating venous dominance. Patients with early tumor progression had higher relative CBV (1.88 versus 1.38, P = .02) and a tendency toward a larger relative vessel size index (99.67 versus 83.17, P = .15) than those with pseudoprogression. Combining arterial dominance scores and relative CBV showed significantly higher diagnostic performance (area under the curve = 0.82; 95% CI, 0.70-0.94; P = .02) than relative CBV alone (area under the curve = 0.64; 95% CI, 0.49-0.79) in distinguishing early tumor progression from pseudoprogression. CONCLUSIONS Vessel architectural imaging significantly improved the diagnostic performance of relative CBV by demonstrating venous dominance and a tendency toward larger vessel size in early tumor progression.
Collapse
Affiliation(s)
- M Kim
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - J E Park
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - K Emblem
- Department of Diagnostic Physics, (K.E.)
| | - A Bjørnerud
- Unit for Computational Radiology and Artificial Intelligence (A.B.), Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics (A.B.), University of Oslo, Oslo, Norway
| | - H S Kim
- From the Department of Radiology and Research Institute of Radiology (M.K., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
22
|
Trinh A, Wintermark M, Iv M. Clinical Review of Computed Tomography and MR Perfusion Imaging in Neuro-Oncology. Radiol Clin North Am 2021; 59:323-334. [PMID: 33926680 DOI: 10.1016/j.rcl.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuroimaging plays an essential role in the initial diagnosis and continued surveillance of intracranial neoplasms. The advent of perfusion techniques with computed tomography and MR imaging have proven useful in neuro-oncology, offering enhanced approaches for tumor grading, guiding stereotactic biopsies, and monitoring treatment efficacy. Perfusion imaging can help to identify treatment-related processes, such as radiation necrosis, pseudoprogression, and pseudoregression, and can help to inform treatment-related decision making. Perfusion imaging is useful to differentiate between tumor types and between tumor and nonneoplastic conditions. This article reviews the clinical relevance and implications of perfusion imaging in neuro-oncology and highlights promising perfusion biomarkers.
Collapse
Affiliation(s)
- Austin Trinh
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University, 300 Pasteur Drive, Grant Building, Room S031, Stanford, CA 94305-5105, USA
| | - Max Wintermark
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University, 300 Pasteur Drive, Grant Building, Room S047, Stanford, CA 94305-5105, USA. https://twitter.com/mwNRAD
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University, 300 Pasteur Drive, Grant Building, Room S031E, Stanford, CA 94305-5105, USA.
| |
Collapse
|
23
|
Arzanforoosh F, Croal PL, van Garderen KA, Smits M, Chappell MA, Warnert EAH. Effect of Applying Leakage Correction on rCBV Measurement Derived From DSC-MRI in Enhancing and Nonenhancing Glioma. Front Oncol 2021; 11:648528. [PMID: 33869047 PMCID: PMC8044812 DOI: 10.3389/fonc.2021.648528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose Relative cerebral blood volume (rCBV) is the most widely used parameter derived from DSC perfusion MR imaging for predicting brain tumor aggressiveness. However, accurate rCBV estimation is challenging in enhancing glioma, because of contrast agent extravasation through a disrupted blood-brain barrier (BBB), and even for nonenhancing glioma with an intact BBB, due to an elevated steady-state contrast agent concentration in the vasculature after first passage. In this study a thorough investigation of the effects of two different leakage correction algorithms on rCBV estimation for enhancing and nonenhancing tumors was conducted. Methods Two datasets were used retrospectively in this study: 1. A publicly available TCIA dataset (49 patients with 35 enhancing and 14 nonenhancing glioma); 2. A dataset acquired clinically at Erasmus MC (EMC, Rotterdam, NL) (47 patients with 20 enhancing and 27 nonenhancing glial brain lesions). The leakage correction algorithms investigated in this study were: a unidirectional model-based algorithm with flux of contrast agent from the intra- to the extravascular extracellular space (EES); and a bidirectional model-based algorithm additionally including flow from EES to the intravascular space. Results In enhancing glioma, the estimated average contrast-enhanced tumor rCBV significantly (Bonferroni corrected Wilcoxon Signed Rank Test, p < 0.05) decreased across the patients when applying unidirectional and bidirectional correction: 4.00 ± 2.11 (uncorrected), 3.19 ± 1.65 (unidirectional), and 2.91 ± 1.55 (bidirectional) in TCIA dataset and 2.51 ± 1.3 (uncorrected), 1.72 ± 0.84 (unidirectional), and 1.59 ± 0.9 (bidirectional) in EMC dataset. In nonenhancing glioma, a significant but smaller difference in observed rCBV was found after application of both correction methods used in this study: 1.42 ± 0.60 (uncorrected), 1.28 ± 0.46 (unidirectional), and 1.24 ± 0.37 (bidirectional) in TCIA dataset and 0.91 ± 0.49 (uncorrected), 0.77 ± 0.37 (unidirectional), and 0.67 ± 0.34 (bidirectional) in EMC dataset. Conclusion Both leakage correction algorithms were found to change rCBV estimation with BBB disruption in enhancing glioma, and to a lesser degree in nonenhancing glioma. Stronger effects were found for bidirectional leakage correction than for unidirectional leakage correction.
Collapse
Affiliation(s)
- Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Paula L Croal
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Karin A van Garderen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Michael A Chappell
- Radiological Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
24
|
Carr CM, Benson JC, DeLone DR, Diehn FE, Kim DK, Merrell KW, Nagelschneider AA, Madhavan AA, Johnson DR. Intracranial long-term complications of radiation therapy: an image-based review. Neuroradiology 2021; 63:471-482. [PMID: 33392738 DOI: 10.1007/s00234-020-02621-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Radiation therapy is commonly utilized in the majority of solid cancers and many hematologic malignancies and other disorders. While it has an undeniably major role in improving cancer survival, radiation therapy has long been recognized to have various negative effects, ranging from mild to severe. In this manuscript, we review several intracranial manifestations of therapeutic radiation, with particular attention to those that may be encountered by radiologists. METHODS We conducted an extensive literature review of known complications of intracranial radiation therapy. Based on this review, we selected complications that had salient, recognizable imaging findings. We searched our imaging database for illustrative examples of these complications, focusing only on patients who had a history of intracranial radiation therapy. We then selected cases that best exemplified expected imaging findings in these entities. RESULTS Based on our initial literature search and imaging database review, we selected cases of radiation-induced meningioma, radiation-induced glioma, cavernous malformation, enlarging perivascular spaces, leukoencephalopathy, stroke-like migraine after radiation therapy, Moyamoya syndrome, radiation necrosis, radiation-induced labyrinthitis, optic neuropathy, and retinopathy. Although retinopathy is not typically apparent on imaging, it has been included given its clinical overlap with optic neuropathy. CONCLUSIONS We describe the clinical and imaging features of selected sequelae of intracranial radiation therapy, with a focus on those most relevant to practicing radiologists. Knowledge of these complications and their imaging findings is important, because radiologists play a key role in early detection of these entities.
Collapse
Affiliation(s)
- Carrie M Carr
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - John C Benson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David R DeLone
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Felix E Diehn
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dong Kun Kim
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Alex A Nagelschneider
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ajay A Madhavan
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
25
|
Riva M, Lopci E, Gay LG, Nibali MC, Rossi M, Sciortino T, Castellano A, Bello L. Advancing Imaging to Enhance Surgery: From Image to Information Guidance. Neurosurg Clin N Am 2021; 32:31-46. [PMID: 33223024 DOI: 10.1016/j.nec.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional magnetic resonance imaging (cMRI) has an established role as a crucial disease parameter in the multidisciplinary management of glioblastoma, guiding diagnosis, treatment planning, assessment, and follow-up. Yet, cMRI cannot provide adequate information regarding tissue heterogeneity and the infiltrative extent beyond the contrast enhancement. Advanced magnetic resonance imaging and PET and newer analytical methods are transforming images into data (radiomics) and providing noninvasive biomarkers of molecular features (radiogenomics), conveying enhanced information for improving decision making in surgery. This review analyzes the shift from image guidance to information guidance that is relevant for the surgical treatment of glioblastoma.
Collapse
Affiliation(s)
- Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Festa del Perdono 7, Milan 20122, Italy; IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy.
| | - Egesta Lopci
- Unit of Nuclear Medicine, Humanitas Clinical and Research Center - IRCCS, Via Manzoni 56, Rozzano, Milan 20089, Italy. https://twitter.com/LopciEgesta
| | - Lorenzo G Gay
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Marco Conti Nibali
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy. https://twitter.com/dr_mcn
| | - Marco Rossi
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Tommaso Sciortino
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20123, Italy. https://twitter.com/antocastella
| | - Lorenzo Bello
- IRCCS Istituto Ortopedico Galeazzi, U.O. Neurochirurgia Oncologica, Milan, Italy; Department of Oncology and Hemato-Oncology, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
26
|
Hu LS, Brat DJ, Bloch O, Ramkissoon S, Lesser GJ. The Practical Application of Emerging Technologies Influencing the Diagnosis and Care of Patients With Primary Brain Tumors. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32324425 DOI: 10.1200/edbk_280955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, a variety of new and innovative technologies has led to important advances in the diagnosis and management of patients with primary malignant brain tumors. New approaches to surgical navigation and tumor localization, advanced imaging to define tumor biology and treatment response, and the widespread adoption of a molecularly defined integrated diagnostic paradigm that complements traditional histopathologic diagnosis continue to impact the day-to-day care of these patients. In the neuro-oncology clinic, discussions with patients about the role of tumor treating fields (TTFields) and the incorporation of next-generation sequencing (NGS) data into therapeutic decision-making are now a standard practice. This article summarizes newer applications of technology influencing the pathologic, neuroimaging, neurosurgical, and medical management of patients with malignant primary brain tumors.
Collapse
Affiliation(s)
- Leland S Hu
- Neuroradiology Section, Department of Radiology, Mayo Clinic, Phoenix, AZ
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Orin Bloch
- Department of Neurologic Surgery, UC Davis Comprehensive Cancer Center, Sacramento, CA
| | - Shakti Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC.,Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Glenn J Lesser
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC
| |
Collapse
|
27
|
Boxerman JL, Quarles CC, Hu LS, Erickson BJ, Gerstner ER, Smits M, Kaufmann TJ, Barboriak DP, Huang RH, Wick W, Weller M, Galanis E, Kalpathy-Cramer J, Shankar L, Jacobs P, Chung C, van den Bent MJ, Chang S, Al Yung WK, Cloughesy TF, Wen PY, Gilbert MR, Rosen BR, Ellingson BM, Schmainda KM. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020; 22:1262-1275. [PMID: 32516388 PMCID: PMC7523451 DOI: 10.1093/neuonc/noaa141] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.
Collapse
Affiliation(s)
- Jerrold L Boxerman
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the American Society of Neuroradiology (ASNR)
- Representative of the American Society of Functional Neuroradiology (ASFNR)
| | - Chad C Quarles
- Department of Neuroimaging Research and Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the American Society of Neuroradiology (ASNR)
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC–University Medical Center Rotterdam, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Timothy J Kaufmann
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Daniel P Barboriak
- Department of Radiology, Duke University School of Medicine, Durham, North Carolina, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Raymond H Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Department of Neurooncology, National Center of Tumor Disease, University Clinic Heidelberg, Heidelberg, Germany
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Evanthia Galanis
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Jayashree Kalpathy-Cramer
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Paula Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Representative of the Alliance for Clinical Trials in Oncology
| | - Martin J van den Bent
- Department of Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Representative of the European Organisation for Research and Treatment of Cancer (EORTC)
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - W K Al Yung
- Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute (NCI), Bethesda, Maryland, USA
- Representative of the Radiation Therapy Oncology Group (RTOG)
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Neuro-Oncology Program and UCLA Brain Tumor Imaging Laboratory (BTIL), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Departments of Radiological Sciences, Psychiatry, and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Representative of the Adult Brain Tumor Consortium (ABTC)
- Representative of the Ivy Consortium for Early Phase Clinical Trials
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
- Representative of the RSNA Quantitative Imaging Biomarker Alliance (QIBA)
- Representative of the American Society of Neuroradiology (ASNR)
| | - Kathleen M Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Representative of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network (ECOG-ACRIN) Cancer Research Group
| |
Collapse
|
28
|
Sanders JW, Chen HSM, Johnson JM, Schomer DF, Jimenez JE, Ma J, Liu HL. Synthetic generation of DSC-MRI-derived relative CBV maps from DCE MRI of brain tumors. Magn Reson Med 2020; 85:469-479. [PMID: 32726488 DOI: 10.1002/mrm.28432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. METHODS One hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. RESULTS Pearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47. CONCLUSION Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration.
Collapse
Affiliation(s)
- Jeremiah W Sanders
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Medical Physics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Henry Szu-Meng Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason M Johnson
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donald F Schomer
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge E Jimenez
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Medical Physics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Gates EDH, Lin JS, Weinberg JS, Hamilton J, Prabhu SS, Hazle JD, Fuller GN, Baladandayuthapani V, Fuentes D, Schellingerhout D. Guiding the first biopsy in glioma patients using estimated Ki-67 maps derived from MRI: conventional versus advanced imaging. Neuro Oncol 2020; 21:527-536. [PMID: 30657997 DOI: 10.1093/neuonc/noz004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Undersampling of gliomas at first biopsy is a major clinical problem, as accurate grading determines all subsequent treatment. We submit a technological solution to reduce the problem of undersampling by estimating a marker of tumor proliferation (Ki-67) using MR imaging data as inputs, against a stereotactic histopathology gold standard. METHODS MR imaging was performed with anatomic, diffusion, permeability, and perfusion sequences, in untreated glioma patients in a prospective clinical trial. Stereotactic biopsies were harvested from each patient immediately prior to surgical resection. For each biopsy, an imaging description (23 parameters) was developed, and the Ki-67 index was recorded. Machine learning models were built to estimate Ki-67 from imaging inputs, and cross validation was undertaken to determine the error in estimates. The best model was used to generate graphical maps of Ki-67 estimates across the whole brain. RESULTS Fifty-two image-guided biopsies were collected from 23 evaluable patients. The random forest algorithm best modeled Ki-67 with 4 imaging inputs (T2-weighted, fractional anisotropy, cerebral blood flow, Ktrans). It predicted the Ki-67 expression levels with a root mean square (RMS) error of 3.5% (R2 = 0.75). A less accurate predictive result (RMS error 5.4%, R2 = 0.50) was found using conventional imaging only. CONCLUSION Ki-67 can be predicted to clinically useful accuracies using clinical imaging data. Advanced imaging (diffusion, perfusion, and permeability) improves predictive accuracy over conventional imaging alone. Ki-67 predictions, displayed as graphical maps, could be used to guide biopsy, resection, and/or radiation in the care of glioma patients.
Collapse
Affiliation(s)
- Evan D H Gates
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center (UT MDACC), Houston, Texas.,UT MDACC UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jonathan S Lin
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center (UT MDACC), Houston, Texas.,Baylor College of Medicine, Houston, Texas.,Department of Bioengineering, Rice University, Houston, Texas
| | | | - Jackson Hamilton
- Department of Diagnostic Radiology, UT MDACC, Houston, Texas.,Radiology Partners, Houston, Texas
| | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center (UT MDACC), Houston, Texas
| | | | | | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center (UT MDACC), Houston, Texas
| | - Dawid Schellingerhout
- Department of Diagnostic Radiology, UT MDACC, Houston, Texas.,Department of Cancer Systems Imaging, UT MDACC, Houston, Texas
| |
Collapse
|
30
|
Hoxworth JM, Eschbacher JM, Gonzales AC, Singleton KW, Leon GD, Smith KA, Stokes AM, Zhou Y, Mazza GL, Porter AB, Mrugala MM, Zimmerman RS, Bendok BR, Patra DP, Krishna C, Boxerman JL, Baxter LC, Swanson KR, Quarles CC, Schmainda KM, Hu LS. Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR Am J Neuroradiol 2020; 41:408-415. [PMID: 32165359 DOI: 10.3174/ajnr.a6486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Perfusion MR imaging measures of relative CBV can distinguish recurrent tumor from posttreatment radiation effects in high-grade gliomas. Currently, relative CBV measurement requires normalization based on user-defined reference tissues. A recently proposed method of relative CBV standardization eliminates the need for user input. This study compares the predictive performance of relative CBV standardization against relative CBV normalization for quantifying recurrent tumor burden in high-grade gliomas relative to posttreatment radiation effects. MATERIALS AND METHODS We recruited 38 previously treated patients with high-grade gliomas (World Health Organization grades III or IV) undergoing surgical re-resection for new contrast-enhancing lesions concerning for recurrent tumor versus posttreatment radiation effects. We recovered 112 image-localized biopsies and quantified the percentage of histologic tumor content versus posttreatment radiation effects for each sample. We measured spatially matched normalized and standardized relative CBV metrics (mean, median) and fractional tumor burden for each biopsy. We compared relative CBV performance to predict tumor content, including the Pearson correlation (r), against histologic tumor content (0%-100%) and the receiver operating characteristic area under the curve for predicting high-versus-low tumor content using binary histologic cutoffs (≥50%; ≥80% tumor). RESULTS Across relative CBV metrics, fractional tumor burden showed the highest correlations with tumor content (0%-100%) for normalized (r = 0.63, P < .001) and standardized (r = 0.66, P < .001) values. With binary cutoffs (ie, ≥50%; ≥80% tumor), predictive accuracies were similar for both standardized and normalized metrics and across relative CBV metrics. Median relative CBV achieved the highest area under the curve (normalized = 0.87, standardized = 0.86) for predicting ≥50% tumor, while fractional tumor burden achieved the highest area under the curve (normalized = 0.77, standardized = 0.80) for predicting ≥80% tumor. CONCLUSIONS Standardization of relative CBV achieves similar performance compared with normalized relative CBV and offers an important step toward workflow optimization and consensus methodology.
Collapse
Affiliation(s)
- J M Hoxworth
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | | | | | - K W Singleton
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - G D Leon
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - K A Smith
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - A M Stokes
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - Y Zhou
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | - G L Mazza
- Department of Health Sciences Research (G.L.M.), Division of Biomedical Statistics and Informatics, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | | | | | - B R Bendok
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - D P Patra
- Departments of Neurosurgery (D.P.P.)
| | | | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - L C Baxter
- Neuropsychology (L.C.B.), Mayo Clinic Hospital, Phoenix, Arizona
| | - K R Swanson
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | | | - K M Schmainda
- Department of Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L S Hu
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| |
Collapse
|
31
|
Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 2020; 477:97-106. [PMID: 32112907 DOI: 10.1016/j.canlet.2020.02.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral heterogeneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of physiologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have shown how integrating these advanced techniques can help better define histologically distinct targets for surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and response assessment following standard adjuvant therapy. Application of texture analysis and machine learning (ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| |
Collapse
|
32
|
Gates EDH, Lin JS, Weinberg JS, Prabhu SS, Hamilton J, Hazle JD, Fuller GN, Baladandayuthapani V, Fuentes DT, Schellingerhout D. Imaging-Based Algorithm for the Local Grading of Glioma. AJNR Am J Neuroradiol 2020; 41:400-407. [PMID: 32029466 DOI: 10.3174/ajnr.a6405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Gliomas are highly heterogeneous tumors, and optimal treatment depends on identifying and locating the highest grade disease present. Imaging techniques for doing so are generally not validated against the histopathologic criterion standard. The purpose of this work was to estimate the local glioma grade using a machine learning model trained on preoperative image data and spatially specific tumor samples. The value of imaging in patients with brain tumor can be enhanced if pathologic data can be estimated from imaging input using predictive models. MATERIALS AND METHODS Patients with gliomas were enrolled in a prospective clinical imaging trial between 2013 and 2016. MR imaging was performed with anatomic, diffusion, permeability, and perfusion sequences, followed by image-guided stereotactic biopsy before resection. An imaging description was developed for each biopsy, and multiclass machine learning models were built to predict the World Health Organization grade. Models were assessed on classification accuracy, Cohen κ, precision, and recall. RESULTS Twenty-three patients (with 7/9/7 grade II/III/IV gliomas) had analyzable imaging-pathologic pairs, yielding 52 biopsy sites. The random forest method was the best algorithm tested. Tumor grade was predicted at 96% accuracy (κ = 0.93) using 4 inputs (T2, ADC, CBV, and transfer constant from dynamic contrast-enhanced imaging). By means of the conventional imaging only, the overall accuracy decreased (89% overall, κ = 0.79) and 43% of high-grade samples were misclassified as lower-grade disease. CONCLUSIONS We found that local pathologic grade can be predicted with a high accuracy using clinical imaging data. Advanced imaging data improved this accuracy, adding value to conventional imaging. Confirmatory imaging trials are justified.
Collapse
Affiliation(s)
- E D H Gates
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (E.D.H.G.), Houston, Texas
| | - J S Lin
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas.,Baylor College of Medicine (J.S.L.), Houston, Texas.,Department of Bioengineering (J.S.L.), Rice University, Houston, Texas
| | - J S Weinberg
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - S S Prabhu
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Hamilton
- Radiology Partners (J.H.), Houston, Texas
| | - J D Hazle
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G N Fuller
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - V Baladandayuthapani
- Department of Computational Medicine and Bioinformatics (V.B.), University of Michigan School of Public Health, Ann Arbor, Michigan
| | - D T Fuentes
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| | - D Schellingerhout
- From the Departments of Imaging Physics (E.D.H.G., J.S.L., J.D.H., D.T.F.), Neurosurgery (J.S.W., S.S.P.), Pathology (G.N.F.), Neuroradiology (D.S.), and Cancer Systems Imaging (D.S.), University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Iv M, Liu X, Lavezo J, Gentles AJ, Ghanem R, Lummus S, Born DE, Soltys SG, Nagpal S, Thomas R, Recht L, Fischbein N. Perfusion MRI-Based Fractional Tumor Burden Differentiates between Tumor and Treatment Effect in Recurrent Glioblastomas and Informs Clinical Decision-Making. AJNR Am J Neuroradiol 2019; 40:1649-1657. [PMID: 31515215 DOI: 10.3174/ajnr.a6211] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Fractional tumor burden better correlates with histologic tumor volume fraction in treated glioblastoma than other perfusion metrics such as relative CBV. We defined fractional tumor burden classes with low and high blood volume to distinguish tumor from treatment effect and to determine whether fractional tumor burden can inform treatment-related decision-making. MATERIALS AND METHODS Forty-seven patients with high-grade gliomas (primarily glioblastoma) with recurrent contrast-enhancing lesions on DSC-MR imaging were retrospectively evaluated after surgical sampling. Histopathologic examination defined treatment effect versus tumor. Normalized relative CBV thresholds of 1.0 and 1.75 were used to define low, intermediate, and high fractional tumor burden classes in each histopathologically defined group. Performance was assessed with an area under the receiver operating characteristic curve. Consensus agreement among physician raters reporting hypothetic changes in treatment-related decisions based on fractional tumor burden was compared with actual real-time treatment decisions. RESULTS Mean lower fractional tumor burden, high fractional tumor burden, and relative CBV of the contrast-enhancing volume were significantly different between treatment effect and tumor (P = .002, P < .001, and P < .001), with tumor having significantly higher fractional tumor burden and relative CBV and lower fractional tumor burden. No significance was found with intermediate fractional tumor burden. Performance of the area under the receiver operating characteristic curve was the following: high fractional tumor burden, 0.85; low fractional tumor burden, 0.7; and relative CBV, 0.81. In comparing treatment decisions, there were disagreements in 7% of tumor and 44% of treatment effect cases; in the latter, all disagreements were in cases with scattered atypical cells. CONCLUSIONS High fractional tumor burden and low fractional tumor burden define fractions of the contrast-enhancing lesion volume with high and low blood volume, respectively, and can differentiate treatment effect from tumor in recurrent glioblastomas. Fractional tumor burden maps can also help to inform clinical decision-making.
Collapse
Affiliation(s)
- M Iv
- From the Departments of Neuroimaging and Neurointervention (M.I., N.F.)
| | - X Liu
- Department of Neurosurgery (X.L.), Shengjing Hospital of China Medical University, Shenyang, China
| | - J Lavezo
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - A J Gentles
- Medicine (Biomedical Informatics Research) (A.J.G.)
| | - R Ghanem
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - S Lummus
- Pathology (J.L., R.G., S.L., D.E.B.)
| | - D E Born
- Pathology (J.L., R.G., S.L., D.E.B.)
| | | | - S Nagpal
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - R Thomas
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - L Recht
- Neurology (Neuro-Oncology) (S.N., R.T., L.R.), Stanford University, Stanford, California
| | - N Fischbein
- From the Departments of Neuroimaging and Neurointervention (M.I., N.F.)
| |
Collapse
|
34
|
Schmainda KM, Prah MA, Hu LS, Quarles CC, Semmineh N, Rand SD, Connelly JM, Anderies B, Zhou Y, Liu Y, Logan B, Stokes A, Baird G, Boxerman JL. Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low-Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors. AJNR Am J Neuroradiol 2019; 40:626-633. [PMID: 30923088 DOI: 10.3174/ajnr.a6015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging using preload, intermediate (60°) flip angle and postprocessing leakage correction has gained traction as a standard methodology. Simulations suggest that DSC-MR imaging with flip angle = 30° and no preload yields relative CBV practically equivalent to the reference standard. This study tested this hypothesis in vivo. MATERIALS AND METHODS Eighty-four patients with brain lesions were enrolled in this 3-institution study. Forty-three patients satisfied the inclusion criteria. DSC-MR imaging (3T, single-dose gadobutrol, gradient recalled-echo-EPI, TE = 20-35 ms, TR = 1.2-1.63 seconds) was performed twice for each patient, with flip angle = 30°-35° and no preload (P-), which provided preload (P+) for the subsequent intermediate flip angle = 60°. Normalized relative CBV and standardized relative CBV maps were generated, including postprocessing with contrast agent leakage correction (C+) and without (C-) contrast agent leakage correction. Contrast-enhancing lesion volume, mean relative CBV, and contrast-to-noise ratio obtained with 30°/P-/C-, 30°/P-/C+, and 60°/P+/C- were compared with 60°/P+/C+ using the Lin concordance correlation coefficient and Bland-Altman analysis. Equivalence between the 30°/P-/C+ and 60°/P+/C+ protocols and the temporal SNR for the 30°/P- and 60°/P+ DSC-MR imaging data was also determined. RESULTS Compared with 60°/P+/C+, 30°/P-/C+ had closest mean standardized relative CBV (P = .61), highest Lin concordance correlation coefficient (0.96), and lowest Bland-Altman bias (μ = 1.89), compared with 30°/P-/C- (P = .02, Lin concordance correlation coefficient = 0.59, μ = 14.6) and 60°/P+/C- (P = .03, Lin concordance correlation coefficient = 0.88, μ = -10.1) with no statistical difference in contrast-to-noise ratios across protocols. The normalized relative CBV and standardized relative CBV were statistically equivalent at the 10% level using either the 30°/P-/C+ or 60°/P+/C+ protocols. Temporal SNR was not significantly different for 30°/P- and 60°/P+ (P = .06). CONCLUSIONS Tumor relative CBV derived from low-flip angle, no-preload DSC-MR imaging with leakage correction is an attractive single-dose alternative to the higher dose reference standard.
Collapse
Affiliation(s)
- K M Schmainda
- From the Departments of Biophysics (K.M.S., M.A.P.) .,Radiology (K.M.S., S.D.R.)
| | - M A Prah
- From the Departments of Biophysics (K.M.S., M.A.P.)
| | - L S Hu
- Departments of Radiology (L.S.H., Y.Z.)
| | - C C Quarles
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - N Semmineh
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - B Anderies
- Neurosurgery (B.A.), Mayo Clinic, Scottsdale, Arizona
| | - Y Zhou
- Departments of Radiology (L.S.H., Y.Z.)
| | - Y Liu
- Division of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B Logan
- Division of Biostatistics, Institute for Health and Society (Y.L., B.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A Stokes
- Division of Imaging Research (C.C.Q., N.S., A.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - G Baird
- Department of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B., G.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
Semmineh NB, Bell LC, Stokes AM, Hu LS, Boxerman JL, Quarles CC. Optimization of Acquisition and Analysis Methods for Clinical Dynamic Susceptibility Contrast MRI Using a Population-Based Digital Reference Object. AJNR Am J Neuroradiol 2018; 39:1981-1988. [PMID: 30309842 PMCID: PMC6239921 DOI: 10.3174/ajnr.a5827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The accuracy of DSC-MR imaging CBV maps in glioblastoma depends on acquisition and analysis protocols. Multisite protocol heterogeneity has challenged standardization initiatives due to the difficulties of in vivo validation. This study sought to compare the accuracy of routinely used protocols using a digital reference object. MATERIALS AND METHODS The digital reference object consisted of approximately 10,000 simulated voxels recapitulating typical signal heterogeneity encountered in vivo. The influence of acquisition and postprocessing methods on CBV reliability was evaluated across 6912 parameter combinations, including contrast agent dosing schemes, pulse sequence parameters, field strengths, and postprocessing methods. Accuracy and precision were assessed using the concordance correlation coefficient and coefficient of variation. RESULTS Across all parameter space, the optimal protocol included full-dose contrast agent preload and bolus, intermediate (60°) flip angle, 30-ms TE, and postprocessing with a leakage-correction algorithm (concordance correlation coefficient = 0.97, coefficient of variation = 6.6%). Protocols with no preload or fractional dose preload and bolus using these acquisition parameters were generally less robust. However, a protocol with no preload, full-dose bolus, and low (30°) flip angle performed very well (concordance correlation coefficient = 0.93, coefficient of variation = 8.7% at 1.5T and concordance correlation coefficient = 0.92, coefficient of variation = 8.2% at 3T). CONCLUSIONS Schemes with full-dose preload and bolus maximize CBV accuracy and reduce variability, which could enable smaller sample sizes and more reliable detection of CBV changes in clinical trials. When a lower total contrast agent dose is desired, use of a low flip angle, no preload, and full-dose bolus protocol may provide an attractive alternative.
Collapse
Affiliation(s)
- N B Semmineh
- From the Department of Imaging Research (N.B.S., L.C.B., A.M.S., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - L C Bell
- From the Department of Imaging Research (N.B.S., L.C.B., A.M.S., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - A M Stokes
- From the Department of Imaging Research (N.B.S., L.C.B., A.M.S., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - L S Hu
- Department of Radiology (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
| | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - C C Quarles
- From the Department of Imaging Research (N.B.S., L.C.B., A.M.S., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
36
|
Schmainda KM, Prah MA, Rand SD, Liu Y, Logan B, Muzi M, Rane SD, Da X, Yen YF, Kalpathy-Cramer J, Chenevert TL, Hoff B, Ross B, Cao Y, Aryal MP, Erickson B, Korfiatis P, Dondlinger T, Bell L, Hu L, Kinahan PE, Quarles CC. Multisite Concordance of DSC-MRI Analysis for Brain Tumors: Results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR Am J Neuroradiol 2018; 39:1008-1016. [PMID: 29794239 DOI: 10.3174/ajnr.a5675] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/07/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Standard assessment criteria for brain tumors that only include anatomic imaging continue to be insufficient. While numerous studies have demonstrated the value of DSC-MR imaging perfusion metrics for this purpose, they have not been incorporated due to a lack of confidence in the consistency of DSC-MR imaging metrics across sites and platforms. This study addresses this limitation with a comparison of multisite/multiplatform analyses of shared DSC-MR imaging datasets of patients with brain tumors. MATERIALS AND METHODS DSC-MR imaging data were collected after a preload and during a bolus injection of gadolinium contrast agent using a gradient recalled-echo-EPI sequence (TE/TR = 30/1200 ms; flip angle = 72°). Forty-nine low-grade (n = 13) and high-grade (n = 36) glioma datasets were uploaded to The Cancer Imaging Archive. Datasets included a predetermined arterial input function, enhancing tumor ROIs, and ROIs necessary to create normalized relative CBV and CBF maps. Seven sites computed 20 different perfusion metrics. Pair-wise agreement among sites was assessed with the Lin concordance correlation coefficient. Distinction of low- from high-grade tumors was evaluated with the Wilcoxon rank sum test followed by receiver operating characteristic analysis to identify the optimal thresholds based on sensitivity and specificity. RESULTS For normalized relative CBV and normalized CBF, 93% and 94% of entries showed good or excellent cross-site agreement (0.8 ≤ Lin concordance correlation coefficient ≤ 1.0). All metrics could distinguish low- from high-grade tumors. Optimum thresholds were determined for pooled data (normalized relative CBV = 1.4, sensitivity/specificity = 90%:77%; normalized CBF = 1.58, sensitivity/specificity = 86%:77%). CONCLUSIONS By means of DSC-MR imaging data obtained after a preload of contrast agent, substantial consistency resulted across sites for brain tumor perfusion metrics with a common threshold discoverable for distinguishing low- from high-grade tumors.
Collapse
Affiliation(s)
- K M Schmainda
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - M A Prah
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - S D Rand
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.).,Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - Y Liu
- Division of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B Logan
- Division of Biostatistics (Y.L., B.L.), Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M Muzi
- Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - S D Rane
- From the Department of Radiology (K.M.S., M.A.P., S.D.R.)
| | - X Da
- Department of Radiology (X.D.), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Y-F Yen
- Athinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
| | - J Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging (Y.-F.Y., J.K.-C.), Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, Massachusetts
| | | | - B Hoff
- Department of Radiology (T.L.C., B.H., B.R.)
| | - B Ross
- Department of Radiology (T.L.C., B.H., B.R.)
| | - Y Cao
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
| | - M P Aryal
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering (Y.C., M.P.A.), University of Michigan, Ann Arbor, Michigan
| | - B Erickson
- Department of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
| | - P Korfiatis
- Department of Radiology (B.E., P.K.), Mayo Clinic, Rochester, Minnesota
| | - T Dondlinger
- Imaging Biometrics LLC (T.D.), Elm Grove, Wisconsin
| | - L Bell
- Division of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| | - L Hu
- Department of Radiology (L.H.), Mayo Clinic, Scottsdale, Arizona
| | - P E Kinahan
- Department of Radiology (M.M., S.D.R., P.E.K.), University of Washington, Seattle, Washington
| | - C C Quarles
- Division of Imaging Research (L.B., C.C.Q.), Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
37
|
Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 2017; 60:169-177. [PMID: 29218370 DOI: 10.1007/s00234-017-1955-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this study is to differentiate recurrent/residual gliomas from postradiation changes using arterial spin labeling (ASL) perfusion and diffusion tensor imaging (DTI)-derived metrics. METHODS Prospective study was conducted upon 42 patients with high-grade gliomas after radiotherapy only or prior to other therapies that underwent routine MR imaging, ASL, and DTI. The tumor blood flow (TBF), fractional anisotropy (FA), and mean diffusivity (MD) of the enhanced lesion and related edema were calculated. The lesion was categorized as recurrence/residual or postradiation changes. RESULTS There was significant differences between residual/recurrent gliomas and postradiation changes of TBF (P = 0.001), FA (P = 0.001 and 0.04), and MD (P = 0.001) of enhanced lesion and related edema respectively. The area under the curve (AUC) of TBF of enhanced lesion and related edema used to differentiate residual/recurrent gliomas from postradiation changes were 0.95 and 0.93 and of MD were 0.95 and 0.81 and of FA were 0.81 and 0.695, respectively. Combined ASL and DTI metrics of the enhanced lesion revealed AUC of 0.98, accuracy of 95%, sensitivity of 93.8%, specificity of 95.8%, positive predictive value (PPV) of 93.8%, and negative predictive value (NPV) of 95.8%. Combined metrics of ASL and DTI of related edema revealed AUC of 0.97, accuracy of 92.5%, sensitivity of 93.8%, specificity of 91.7%, PPV of 88.2%, and NPV of 95.7. CONCLUSION Combined ASL and DTI metrics of enhanced lesion and related edema are valuable noninvasive tools in differentiating residual/recurrent gliomas from postradiation changes.
Collapse
Affiliation(s)
| | - Lamiaa El-Serougy
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| | | | - Gada Gaballa
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| | - Mona Talaat
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, 13551, Egypt
| |
Collapse
|