1
|
Ye J, Zhang X, Liu C, Zhang Y, Feng X, Zhang D. An electrochemical biosensing platform initiated simultaneously from multi-directions with programmable enzyme-free strategy for DNA variant detection. Talanta 2025; 290:127809. [PMID: 40010117 DOI: 10.1016/j.talanta.2025.127809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
Single-nucleotide variations (SNVs) represent vital clinical and biological information in the onset and progression of many cancers, but lacking of cost-effective, high-sensitive and reliable SNVs detection method. In this study, we propose a programmable electrochemical biosensing strategy initiated simultaneously from multi-directions by enzyme-free amplifying circuit for high-sensitivity SNVs detection. Through elaborate design, we utilized the power of conventional enzyme-free catalytic reaction to activate a multidirectional initiation self-assembly process, enabling multiple amplification. This innovative cascade strategy significantly improved the amplification performance and detection sensitivity. Subsequently, KRAS gene of cancer cells was used as proof-of concept model for SNVs recognition to demonstrate the capability. With the help of cascade design, the single-base differences between SNV sequence and wild-type sequence (WT) could be differentiated and amplified effectively. Consequently, abundant Y-shaped DNA structure efficiently was induced by DNA variant to generate on the electrode surface, facilitating the incorporation of methylene blue (MB) redox indicator. Therefore, a "signal-on" electrochemical biosensing platform was constructed. Our enzyme-free biosensor achieved a low detection limit of 36 aM and a broader linear range spanning from 100 aM to 1 nM under optimal experimental conditions. The capability of proposed cascaded DNA network to detect DNA variants in complex cancer cells and serum samples indicated the potential applicability in real sample analysis.
Collapse
Affiliation(s)
- Jing Ye
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiaoyu Zhang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Chunyan Liu
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Yunshan Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Diming Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Marti-Macia C, Navarro L, San-Miguel T, Megias J, Carbonell-Zamorano J, Sanchez-Pardo M, Roselló-Sastre E. Next generation sequencing unravels a gliosarcoma mimicking cerebral osteosarcoma. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2025; 58:100825. [PMID: 40349619 DOI: 10.1016/j.patol.2025.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 05/14/2025]
Abstract
This study presents a case of a woman with recurrent headaches and nausea. Following initial surgery, the pathological diagnosis suggested primary cerebral osteosarcoma. However, despite osteosarcoma-directed chemotherapy, the patient experienced recurrence. A comprehensive diagnostic revision, including next generation sequencing, revealed mutations typical of glioblastoma. These findings highlight the challenges in the differential diagnosis of gliosarcoma, especially when the typical alternating biphasic pattern is not clearly present. The recurrent tumour displayed extensive chondroblastic osteosarcoma-like areas surrounded by glial tissue with vascular proliferation and atypical glial cells leading to a diagnosis of gliosarcoma. Our findings highlight the benefits of using NGS to assist pathologists in accurately diagnosing brain tumours, particularly in challenging cases. This approach is consistent with the progressive updates introduced by the WHO.
Collapse
Affiliation(s)
- Clara Marti-Macia
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Lara Navarro
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Teresa San-Miguel
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia/INCLIVA, Valencia, Spain.
| | - Javier Megias
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia/INCLIVA, Valencia, Spain
| | | | - Moisés Sanchez-Pardo
- Department of Neurosurgery, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Esther Roselló-Sastre
- Department of Pathology, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| |
Collapse
|
3
|
Chen L, Rizk E, Sherief M, Chang M, Lucas CH, Bettegowda C, Croog V, Mukherjee D, Rincon-Torroella J, Kamson DO, Huang P, Holdhoff M, Schreck K. Molecular characterization of gliosarcoma reveals prognostic biomarkers and clinical parallels with glioblastoma. J Neurooncol 2025; 171:403-411. [PMID: 39476147 PMCID: PMC11695672 DOI: 10.1007/s11060-024-04859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Gliosarcoma is a rare histopathological variant of glioblastoma, but it is unclear whether distinct clinical or molecular features distinguish it from other glioblastomas. The purpose of this study was to characterize common genomic alterations of gliosarcoma, compare them to that of glioblastoma, and correlate them with prognosis. METHODS This was a single-institution, retrospective cohort study of patients seen between 11/1/2017 to 1/28/2024. Clinical and genomic data were obtained from the medical record. Results were validated using data from AACR Project GENIE (v15.1-public). RESULTS We identified 87 gliosarcoma patients in the institutional cohort. Compared to a contemporary cohort of 492 glioblastoma, there was no difference in overall survival, though progression free survival was inferior for patients with gliosarcoma (p = 0.01). Several of the most-commonly altered genes in gliosarcoma were more frequently altered than in glioblastoma (NF1, PTEN, TP53), while others were less frequently altered than in glioblastoma (EGFR). CDKN2A/CDKN2B/MTAP alterations were associated with inferior survival on univariate Cox (HR = 5.4, p = 0.023). When pooled with 93 patients from the GENIE cohort, CDKN2A/B (HR = 1.75, p = 0.039), RB1 (HR = 0.51, p = 0.016), LRP1B (p = 0.050, HR = 2.0), and TSC2 (HR = 0.31, p = 0.048) alterations or loss were significantly associated with survival. These effects remained when controlled for age, sex, and cohort of origin with multivariate Cox. CONCLUSION Gliosarcoma has a similar overall survival but worse response to treatment and different mutational profile than glioblastoma. CDKN2A/B loss and LRP1B alterations were associated with inferior prognosis, while RB1 or TSC2 alterations were associated with improved outcomes. These findings may have implications for clinical management and therapeutic selection in this patient population.
Collapse
Affiliation(s)
- Lucy Chen
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Emanuelle Rizk
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Mohamed Sherief
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Michael Chang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Calixto-Hope Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria Croog
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David Olayinka Kamson
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Viragh Rm, 9179, Baltimore, MD, 21287, USA
| | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Karisa Schreck
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Viragh Rm, 9179, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
La Torre D, Della Torre A, Lo Turco E, Longo P, Pugliese D, Lacroce P, Raudino G, Romano A, Lavano A, Tomasello F. Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics. J Clin Med 2023; 13:83. [PMID: 38202090 PMCID: PMC10779593 DOI: 10.3390/jcm13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Gliosarcomas (GS) are sporadic malignant tumors classified as a Glioblastoma (GBM) variant with IDH-wild type phenotype. It appears as a well-circumscribed lesion with a biphasic, glial, and metaplastic mesenchymal component. The current knowledge about GS comes from the limited literature. Furthermore, recent studies describe peculiar characteristics of GS, such as hypothesizing that it could be a clinical-pathological entity different from GBM. Here, we review radiological, biomolecular, and clinical data to describe the peculiar characteristics of PGS, treatment options, and outcomes in light of the most recent literature. A comprehensive literature review of PubMed and Web of Science databases was conducted for articles written in English focused on gliosarcoma until 2023. We include relevant data from a few case series and only a single meta-analysis. Recent evidence describes peculiar characteristics of PGS, suggesting that it might be a specific clinical-pathological entity different from GBM. This review facilitates our understanding of this rare malignant brain tumor. However, in the future we recommend multi-center studies and large-scale metanalyses to clarify the biomolecular pathways of PGS to develop new specific therapeutic protocols, different from conventional GBM therapy in light of the new therapeutic opportunities.
Collapse
Affiliation(s)
- Domenico La Torre
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Attilio Della Torre
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Erica Lo Turco
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Prospero Longo
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Dorotea Pugliese
- Humanitas, Istituto Clinico Catanese, 95045 Catania, Italy; (D.P.); (G.R.); (A.R.); (F.T.)
| | - Paola Lacroce
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Giuseppe Raudino
- Humanitas, Istituto Clinico Catanese, 95045 Catania, Italy; (D.P.); (G.R.); (A.R.); (F.T.)
| | - Alberto Romano
- Humanitas, Istituto Clinico Catanese, 95045 Catania, Italy; (D.P.); (G.R.); (A.R.); (F.T.)
| | - Angelo Lavano
- Department of Medical and Surgery Sciences, School of Medicine, AOU “Renato Dulbecco”, University of Catanzaro, 88100 Catanzaro, Italy; (A.D.T.); (P.L.); (P.L.); (A.L.)
| | - Francesco Tomasello
- Humanitas, Istituto Clinico Catanese, 95045 Catania, Italy; (D.P.); (G.R.); (A.R.); (F.T.)
| |
Collapse
|
5
|
Chen J, He D, Guo G, Zhang K, Sheng W, Zhang Z. Pediatric gliosarcoma, a rare central nervous system tumor in children: Case report and literature review. Heliyon 2023; 9:e21204. [PMID: 37954329 PMCID: PMC10637930 DOI: 10.1016/j.heliyon.2023.e21204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gliosarcoma is a rare and highly malignant central nervous system tumor that accounts for 1%-8% of glioblastomas; it usually occurs in middle-aged and older adults between 40 and 60 years of age and is rare in children. We report an 11-year-old boy with right frontal lobe gliosarcoma who underwent aggressive gross total resection and postoperative radiotherapy, experienced recurrence and subsequently underwent a second operation. To better understand the disease and explore treatment options, we briefly report this case and review the relevant literature.
Collapse
Affiliation(s)
- Jinyan Chen
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gengyin Guo
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Keke Zhang
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenliang Sheng
- Department of Neurosurgery, Juxian People's Hospital, Rizhao, Shandong, China
| | - Zhen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
7
|
Gliosarcoma: The Distinct Genomic Alterations Identified by Comprehensive Analysis of Copy Number Variations. Anal Cell Pathol (Amst) 2022; 2022:2376288. [PMID: 35757013 PMCID: PMC9226978 DOI: 10.1155/2022/2376288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Gliosarcoma (GSM), a histologic variant of glioblastoma (GBM), carries a poor prognosis with less than one year of median survival. Though GSM is similar with GBM in most clinical and pathological symptoms, GBM has unique molecular and histological features. However, as the rarity of GSM samples, the genetic information of this tumor is still lacking. Here, we take a comprehensive analysis of DNA copy number variations (CNV) in GBM and GSM. Whole genome sequencing was performed on 21 cases of GBM and 15 cases of GSM. CNVKIT is used for CNV calling. Our data showed that chromosomes 7, 8, 9, and 10 were the regions where CNV frequently happened in both GBM and GSM. There was a distinct CNV signal in chromosome 2 especially in GSM. The pathway enrichment of genes with CNV was suggested that the GBM and GSM shared the similar mechanism of tumor development. However, the CNV of some screened genes displayed a disparate form between GBM and GSM, such as AMP, BEND2, HDAC6, FOXP3, ZBTB33, TFE3, and VEGFD. It meant that GSM was a distinct subgroup possessing typical biomarkers. The pathways and copy number alterations detected in this study may represent key drivers in gliosarcoma oncogenesis and may provide a starting point toward targeted oncologic analysis with therapeutic potential.
Collapse
|
8
|
Kavouridis VK, Ligon KL, Wen PY, Iorgulescu JB. Survival outcomes associated with MGMT promoter methylation and temozolomide in gliosarcoma patients. J Neurooncol 2022; 158:111-116. [PMID: 35474499 DOI: 10.1007/s11060-022-04016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Gliosarcoma is an uncommon glioblastoma subtype, for which MGMT promoter methylation's relationship with response to temozolomide chemotherapy is unclear. We therefore examined this question using a national cohort. METHODS The National Cancer Database was queried for patients histopathologically diagnosed with gliosarcoma between 2010 and 2019. The associations between MGMT promoter methylation, first-line single-agent chemotherapy-presumed to be temozolomide herein-and overall survival (OS) were examined using log-rank tests and Cox regression, with correction for multiple testing (p < 0.01 was significant). RESULTS 580 newly-diagnosed gliosarcoma patients with MGMT status were available, among whom 33.6% were MGMT promoter methylated. Median OS for gliosarcoma patients that received standard-of-care temozolomide and radiotherapy was 12.1 months (99% confidence interval [CI] 10.8-15.1) for MGMT promoter unmethylated and 21.4 months (99% CI 15.4-26.2) for MGMT promoter methylated gliosarcomas (p = 0.003). In multivariable analysis of gliosarcoma patients-which included the potential confounders of age, sex, maximal tumor size, extent of resection, and radiotherapy-receipt of temozolomide was associated with improved OS in both MGMT promoter methylated (hazard ratio [HR] 0.23 vs. no temozolomide, 99% CI 0.11-0.47, p < 0.001) and unmethylated (HR 0.50 vs. no temozolomide, 99% CI 0.29-0.89, p = 0.002) gliosarcomas. MGMT promoter methylation was associated with improved OS among temozolomide-treated gliosarcoma patients (p < 0.001), but not in patients who did not receive chemotherapy (p = 0.35). CONCLUSION In a national analysis of gliosarcoma patients, temozolomide was associated with prolonged OS irrespective of MGMT status. These results provide support for the current practice of trimodal therapy for gliosarcoma.
Collapse
Affiliation(s)
- Vasileios K Kavouridis
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - J Bryan Iorgulescu
- Department of Neurosurgery, Computational Neuroscience Outcomes Center, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Kim H, Lim KY, Park JW, Kang J, Won JK, Lee K, Shim Y, Park CK, Kim SK, Choi SH, Kim TM, Yun H, Park SH. Sporadic and Lynch syndrome-associated mismatch repair-deficient brain tumors. J Transl Med 2022; 102:160-171. [PMID: 34848827 PMCID: PMC8784316 DOI: 10.1038/s41374-021-00694-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Mismatch repair-deficient (MMRD) brain tumors are rare among primary brain tumors and can be induced by germline or sporadic mutations. Here, we report 13 MMRD-associated (9 sporadic and 4 Lynch syndrome) primary brain tumors to determine clinicopathological and molecular characteristics and biological behavior. Our 13 MMRD brain tumors included glioblastoma (GBM) IDH-wildtype (n = 9) including 1 gliosarcoma, astrocytoma IDH-mutant WHO grade 4 (n = 2), diffuse midline glioma (DMG) H3 K27M-mutant (n = 1), and pleomorphic xanthoastrocytoma (PXA) (n = 1). Next-generation sequencing using a brain tumor-targeted gene panel, microsatellite instability (MSI) testing, Sanger sequencing for germline MMR gene mutation, immunohistochemistry of MMR proteins, and clinicopathological and survival analysis were performed. There were many accompanying mutations, suggesting a high tumor mutational burden (TMB) in 77%, but TMB was absent in one case of GBM, IDH-wildtype, DMG, and PXA, respectively. MSH2, MLH1, MSH6, and PMS2 mutations were found in 31%, 31%, 31% and 7% of patients, respectively. MSI-high and MSI-low were found in 50% and 8% of these gliomas, respectively and 34% was MSI-stable. All Lynch syndrome-associated GBMs had MSI-high. In addition, 77% (10/13) had histopathologically multinucleated giant cells. The progression-free survival tended to be poorer than the patients with no MMRD gliomas, but the number and follow-up duration of our patients were insufficient to get statistical significance. In the present study, we found that the most common MMRD primary brain tumor was GBM IDH-wildtype. The genetic profile of MMRD GBM was different from that of conventional GBM. MMRD gliomas with TMB and MSI-H may be sensitive to immunotherapy but resistant to temozolomide. Our findings can help develop better treatment options.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ka Young Lim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeongwan Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yumi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Zaki MM, Mashouf LA, Woodward E, Langat P, Gupta S, Dunn IF, Wen PY, Nahed BV, Bi WL. Genomic landscape of gliosarcoma: distinguishing features and targetable alterations. Sci Rep 2021; 11:18009. [PMID: 34504233 PMCID: PMC8429571 DOI: 10.1038/s41598-021-97454-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Gliosarcoma is an aggressive brain tumor with histologic features of glioblastoma (GBM) and soft tissue sarcoma. Despite its poor prognosis, its rarity has precluded analysis of its underlying biology. We used a multi-center database to characterize the genomic landscape of gliosarcoma. Sequencing data was obtained from 35 gliosarcoma patients from Genomics Evidence Neoplasia Information Exchange (GENIE) 5.0, a database curated by the American Association of Cancer Research (AACR). We analyzed genomic alterations in gliosarcomas and compared them to GBM (n = 1,449) and soft tissue sarcoma (n = 1,042). 30 samples were included (37% female, median age 59 [IQR: 49–64]). Nineteen common genes were identified in gliosarcoma, defined as those altered in > 5% of samples, including TERT Promoter (92%), PTEN (66%), and TP53 (60%). Of the 19 common genes in gliosarcoma, 6 were also common in both GBM and soft tissue sarcoma, 4 in GBM alone, 0 in soft tissue sarcoma alone, and 9 were more distinct to gliosarcoma. Of these, BRAF harbored an OncoKB level 1 designation, indicating its status as a predictive biomarker of response to an FDA-approved drug in certain cancers. EGFR, CDKN2A, NF1, and PTEN harbored level 4 designations in solid tumors, indicating biological evidence of these biomarkers predicting a drug-response. Gliosarcoma contains molecular features that overlap GBM and soft tissue sarcoma, as well as its own distinct genomic signatures. This may play a role in disease classification and inclusion criteria for clinical trials. Gliosarcoma mutations with potential therapeutic indications include BRAF, EGFR, CDKN2A, NF1, and PTEN.
Collapse
Affiliation(s)
- Mark M Zaki
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.,Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Leila A Mashouf
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Eleanor Woodward
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Pinky Langat
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Patrick Y Wen
- Center for NeuroOncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brian V Nahed
- Center for NeuroOncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Qian Z, Zhang L, Hu J, Chen S, Chen H, Shen H, Zheng F, Zang Y, Chen X. Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma. Front Oncol 2021; 11:699789. [PMID: 34490097 PMCID: PMC8417735 DOI: 10.3389/fonc.2021.699789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Objective To identify optimal machine-learning methods for the radiomics-based differentiation of gliosarcoma (GSM) from glioblastoma (GBM). Materials and Methods This retrospective study analyzed cerebral magnetic resonance imaging (MRI) data of 83 patients with pathologically diagnosed GSM (58 men, 25 women; mean age, 50.5 ± 12.9 years; range, 16-77 years) and 100 patients with GBM (58 men, 42 women; mean age, 53.4 ± 14.1 years; range, 12-77 years) and divided them into a training and validation set randomly. Radiomics features were extracted from the tumor mass and peritumoral edema. Three feature selection and classification methods were evaluated in terms of their performance in distinguishing GSM and GBM: the least absolute shrinkage and selection operator (LASSO), Relief, and Random Forest (RF); and adaboost classifier (Ada), support vector machine (SVM), and RF; respectively. The area under the receiver operating characteristic curve (AUC) and accuracy (ACC) of each method were analyzed. Results Based on tumor mass features, the selection method LASSO + classifier SVM was found to feature the highest AUC (0.85) and ACC (0.77) in the validation set, followed by Relief + RF (AUC = 0.84, ACC = 0.72) and LASSO + RF (AUC = 0.82, ACC = 0.75). Based on peritumoral edema features, Relief + SVM was found to have the highest AUC (0.78) and ACC (0.73) in the validation set. Regardless of the method, tumor mass features significantly outperformed peritumoral edema features in the differentiation of GSM from GBM (P < 0.05). Furthermore, the sensitivity, specificity, and accuracy of the best radiomics model were superior to those obtained by the neuroradiologists. Conclusion Our radiomics study identified the selection method LASSO combined with the classifier SVM as the optimal method for differentiating GSM from GBM based on tumor mass features.
Collapse
Affiliation(s)
- Zenghui Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingling Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuguang Chen
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huicong Shen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuying Zang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Bian Z, Ji W, Xu B, Huo Z, Huang H, Huang J, Jiao J, Shao J, Zhang X. Noncoding RNAs involved in the STAT3 pathway in glioma. Cancer Cell Int 2021; 21:445. [PMID: 34425834 PMCID: PMC8381529 DOI: 10.1186/s12935-021-02144-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most common malignant primary brain tumour in adults. Despite improvements in neurosurgery and radiotherapy, the prognosis of glioma patients remains poor. One of the main limitations is that there are no proper clinical therapeutic targets for glioma. Therefore, it is crucial to find one or more effective targets. Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family of genes. Abnormal expression of STAT3 is involved in the process of cell proliferation, migration, invasion, immunosuppression, angiogenesis, dryness maintenance, and resistance to radiotherapy and chemotherapy in glioma. Therefore, STAT3 has been considered an ideal therapeutic target in glioma. Noncoding RNAs (ncRNAs) are a group of genes with limited or no protein-coding capacity that can regulate gene expression at the epigenetic, transcriptional and posttranscriptional level. In this review, we summarized the ncRNAs that are correlated with the ectopic expression of STAT3 in glioma.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| | - Xiaolu Zhang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, People's Republic of China.
| |
Collapse
|
13
|
Dardis C, Donner D, Sanai N, Xiu J, Mittal S, Michelhaugh SK, Pandey M, Kesari S, Heimberger AB, Gatalica Z, Korn MW, Sumrall AL, Phuphanich S. Gliosarcoma vs. glioblastoma: a retrospective case series using molecular profiling. BMC Neurol 2021; 21:231. [PMID: 34162346 PMCID: PMC8220715 DOI: 10.1186/s12883-021-02233-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Gliosarcoma (GS) refers to the presence of mesenchymal differentiation (as seen using light microscopy) in the setting of glioblastoma (GB, an astrocytoma, WHO Grade 4). Although the same approach to treatment is typically adopted for GS and GB, there remains some debate as to whether GS should be considered a discrete pathological entity. Differences between these tumors have not been clearly established at the molecular level. Methods Patients with GS (n=48) or GB (n=1229) underwent molecular profiling (MP) with a pan-cancer panel of tests as part of their clinical care. The methods employed included next-generation sequencing (NGS) of DNA and RNA, copy number variation (CNV) of DNA and immunohistochemistry (IHC). The MP comprised 1153 tests in total, although results for each test were not available for every tumor profiled. We analyzed this data retrospectively in order to determine if our results were in keeping with what is known about the pathogenesis of GS by contrast with GB. We also sought novel associations between the MP and GS vs. GB which might improve our understanding of pathogenesis of GS. Results Potentially meaningful associations (p<0.1, Fisher’s exact test (FET)) were found for 14 of these tests in GS vs. GB. A novel finding was higher levels of proteins mediating immuno-evasion (PD-1, PD-L1) in GS. All of the differences we observed have been associated with epithelial-to-mesenchymal transition (EMT) in other tumor types. Many of the changes we saw in GS are novel in the setting of glial tumors, including copy number amplification in LYL1 and mutations in PTPN11. Conclusions GS shows certain characteristics of EMT, by contrast with GB. Treatments targeting immuno-evasion may be of greater therapeutic value in GS relative to GB. Supplementary Information The online version contains supplementary material available at (10.1186/s12883-021-02233-5).
Collapse
Affiliation(s)
- Christopher Dardis
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| | - David Donner
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Nader Sanai
- Barrow Brain Tumor Research Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Joanne Xiu
- Precision Oncology Alliance, Caris Life Sciences, Phoenix, AZ, USA
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Sharon K Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Manjari Pandey
- Department of Medical Oncology, West Cancer Center, University of Tennessee Health Science Center, Germantown, TN, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute and Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Amy B Heimberger
- Simpson Querry Biomedical Research Center, Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W Korn
- Precision Oncology Alliance, Caris Life Sciences, Phoenix, AZ, USA
| | - Ashley L Sumrall
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Surasak Phuphanich
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
TERT Promoter Alterations in Glioblastoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051147. [PMID: 33800183 PMCID: PMC7962450 DOI: 10.3390/cancers13051147] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Glioblastoma is the most common malignant primary brain tumor in adults. Glioblastoma accounts for 2 to 3 cases per 100,000 persons in North America and Europe. Glioblastoma classification is now based on histopathological and molecular features including isocitrate dehydrogenase (IDH) mutations. At the end of the 2000s, genome-wide sequencing of glioblastoma identified recurrent somatic genetic alterations involved in oncogenesis. Among them, the alterations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are highly recurrent and occur in 70% to 80% of all glioblastomas, including glioblastoma IDH wild type and glioblastoma IDH mutated. This review focuses on recent advances related to physiopathological mechanisms, diagnosis, and clinical implications. Abstract Glioblastoma, the most frequent and aggressive primary malignant tumor, often presents with alterations in the telomerase reverse transcriptase promoter. Telomerase is responsible for the maintenance of telomere length to avoid cell death. Telomere lengthening is required for cancer cell survival and has led to the investigation of telomerase activity as a potential mechanism that enables cancer growth. The aim of this systematic review is to provide an overview of the available data concerning TERT alterations and glioblastoma in terms of incidence, physiopathological understanding, and potential therapeutic implications.
Collapse
|
15
|
Din NU, Ishtiaq H, Rahim S, Abdul-Ghafar J, Ahmad Z. Gliosarcoma in patients under 20 years of age. A clinicopathologic study of 11 cases and detailed review of the literature. BMC Pediatr 2021; 21:101. [PMID: 33637068 PMCID: PMC7908689 DOI: 10.1186/s12887-021-02556-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gliosarcoma is a rare variant of IDH- wild type glioblastoma with both glial and mesenchymal differentiation. It accounts for approximately 2% of glioblastomas and has a poor prognosis similar to that of classic glioblastoma. It is seen mostly between 40 and 60 years of age with a mean age over 50 years. Pediatric gliosarcoma is even rarer than gliosarcoma in adults. We describe the clinicopathological features of gliosarcoma in patients under 20 years of age and determine whether there are significant differences from gliosarcoma in adults. We also present detailed review of published literature on pediatric gliosarcoma. METHODS Slides of gliosarcomas in patients under 20 years of age were reviewed. Clinicopathological features were noted in detail and follow up was obtained. RESULTS Eleven cases of gliosarcoma were reported in patients under 20 years of age. Ages ranged from three to 19 years (mean age 13 years). Frontal, parietal and temporal lobes were the commonest locations. Mean and median tumor size was six and five cm respectively. All 11 cases demonstrated the classic biphasic pattern. In 10 cases, glial component was astrocytic and was highlighted on GFAP. Sarcomatous component in most cases resembled fibrosarcoma and was high grade in 72.7%. Glial areas were reticulin poor while sarcomatous areas were reticulin rich. In over 45% cases, bizarre tumor giant cells were seen in the sarcomatous areas. In 1 case, sarcomatous areas showed extensive bone and cartilage formation. Other histologic features included hyalinized blood vessels, hemorrhage, infarction, gemistocytic cells, rhabdoid cells etc. Follow up was available in nine patients, five received chemoradiation post resection while three received radiotherapy only. Prognosis was dismal and eight patients died within one to 14 months following resection. CONCLUSIONS Gliosarcomas in patients under 20 comprised 13% of all gliosarcomas reported during the study period. Frequency and mean age were higher compared to other published reports. Pathological features were similar to those described in literature. Clinicopathological features and prognosis of pediatric gliosarcomas were similar to adult gliosarcomas.
Collapse
Affiliation(s)
- Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Section of Histopathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Hira Ishtiaq
- Department of Pathology and Laboratory Medicine, Section of Histopathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Shabina Rahim
- Department of Pathology and Laboratory Medicine, Section of Histopathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan.
| | - Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Section of Histopathology, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
16
|
Xu B, Mei J, Ji W, Huo Z, Bian Z, Jiao J, Li X, Sun J, Shao J. MicroRNAs involved in the EGFR pathway in glioblastoma. Biomed Pharmacother 2020; 134:111115. [PMID: 33341046 DOI: 10.1016/j.biopha.2020.111115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor in adults, and its morbidity and mortality are very high. Although progress has been achieved in the treatment of GBM, such as surgery, chemotherapy and radiotherapy, in recent years, the prognosis of patients with GBM has not improved significantly. MicroRNAs (miRNAs) are endogenous noncoding single-stranded RNAs consisting of approximately 20-22 nucleotides that regulate gene expression at the posttranscriptional level by binding to target protein-encoding mRNAs. Notably, miRNAs regulate various carcinogenic pathways, one of which is the epidermal growth factor receptor (EGFR) signaling pathway, which controls cell proliferation, invasion, migration, angiogenesis and apoptosis. In this review, we summarize the novel discoveries of roles for miRNAs targeting the factors in the EGFR signaling pathway in the occurrence and development of GBM. In addition, we describe their potential roles as biomarkers for the diagnosis and prognosis of GBM and for determining the treatment resistance of GBM and the efficacy of therapeutic drugs.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Xiaoqing Li
- Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, PR China.
| |
Collapse
|
17
|
de Macedo Filho LJM, Barreto EG, Martins PLB, Filho ENS, Gerson G, de Albuquerque LAF. IDH1-mutant primary intraventricular gliosarcoma: Case report and systematic review of a rare location and molecular profile. Surg Neurol Int 2020; 11:372. [PMID: 33408906 PMCID: PMC7771479 DOI: 10.25259/sni_586_2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Gliosarcoma (GS) is classified as an IDH-wild-type variant of glioblastoma (GBM). While GS is already an unusual presentation of GBM, IDH1-mutant cases are especially rare. We present an IDH1-mutant primary intraventricular GS case report and a systematic review of the molecular profile in GS correlating to the prognostic and pathogenesis of IDH1/2 mutations. Case Description: A 44-years-old man presented with ongoing fatigue symptoms and a new-onset intense occipital headache. The patient complained of memory loss, dyscalculia, and concentration difficulties. An MRI revealed a bihemispheric intraventricular mass crossing the midline through the corpus callosum and infiltrating the trigone of the lateral ventricles, hypointense, and hyperintense on the T1- and T2-weighted image. We performed a microsurgical resection with a transparietal transsulcal approach; however, the contralateral mass was attached to vascular structures and we decided to reoperate the patient in another moment. The histopathological study showed a Grade IV tumor and the immunohistochemistry confirmed the diagnosis of GS. The patient presented progressive neurologic decline and died 45 days after the surgical approach. Conclusion: We did two systematic reviews studies from PubMed, EMBASE, MEDLINE, Cochrane, and SCOPUS databases, and included molecular and intraventricular studies of GS. We performed further meta-analysis using OpenMetaAnalyst™ software. We conducted a forest plot with the molecular profile of GS. When correlated IDH1 mutation versus tp53 mutation, we found an odds ratio (OR) of 0.018 (0.005–0.064) and P < 0.001. Moreover, we compared IDH1 mutation versus MGMT methylation (P = 0.006; OR = 0.138 [0.034–0.562]). The studies evaluating the molecular profile in GS prognostics are often extended from all GBMs despite specifics GBM variants (i.e., GS). We found a correlation between IDH1 mutation expression with tp53 and MGMT expression in GS, and future studies exploring this molecular profile in GS are strongly encouraged.
Collapse
Affiliation(s)
| | | | | | | | - Gunter Gerson
- Department of Neurosurgery, General Hospital of Fortaleza, Fortaleza, Ceara, Brazil
| | | |
Collapse
|
18
|
Zhang P, Xia Q, Liu L, Li S, Dong L. Current Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front Mol Biosci 2020; 7:562798. [PMID: 33102518 PMCID: PMC7506064 DOI: 10.3389/fmolb.2020.562798] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is highly invasive and the deadliest brain tumor in adults. It is characterized by inter-tumor and intra-tumor heterogeneity, short patient survival, and lack of effective treatment. Prognosis and therapy selection is driven by molecular data from gene transcription, genetic alterations and DNA methylation. The four GBM molecular subtypes are proneural, neural, classical, and mesenchymal. More effective personalized therapy heavily depends on higher resolution molecular subtype signatures, combined with gene therapy, immunotherapy and organoid technology. In this review, we summarize the principal GBM molecular classifications that guide diagnosis, prognosis, and therapeutic recommendations.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Jin MC, Liu EK, Shi S, Gibbs IC, Thomas R, Recht L, Soltys SG, Pollom EL, Chang SD, Hayden Gephart M, Nagpal S, Li G. Evaluating Surgical Resection Extent and Adjuvant Therapy in the Management of Gliosarcoma. Front Oncol 2020; 10:337. [PMID: 32219069 PMCID: PMC7078164 DOI: 10.3389/fonc.2020.00337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/26/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Gliosarcomas are clinically aggressive tumors, histologically distinct from glioblastoma. Data regarding the impact of extent of resection and post-operative adjuvant therapy on gliosarcoma outcomes are limited. Methods: Patients with histologically confirmed gliosarcoma diagnosed between 1999 and 2019 were identified. Clinical, molecular, and radiographic data were assembled based on historical records. Comparisons of categorical variables used Pearson's Chi-square and Fisher's exact test while continuous values were compared using the Wilcoxon signed-rank test. Survival comparisons were assessed using Kaplan-Meier statistics and Cox regressions. Results: Seventy-one gliosarcoma patients were identified. Secondary gliosarcoma was not associated with worse survival when compared to recurrent primary gliosarcoma (median survival 9.8 [3.8 to 21.0] months vs. 7.6 [1.0 to 35.7], p = 0.7493). On multivariable analysis, receipt of temozolomide (HR = 0.02, 95% CI 0.001–0.21) and achievement of gross total resection (GTR; HR = 0.13, 95% CI 0.02–0.77) were independently prognostic for improved progression-free survival (PFS) while only receipt of temozolomide was independently associated with extended overall survival (OS) (HR = 0.03, 95% CI 0.001–0.89). In patients receiving surgical resection followed by radiotherapy and concomitant temozolomide, achievement of GTR was significantly associated with improved PFS (median 32.97 [7.1–79.6] months vs. 5.45 [1.8–26.3], p = 0.0092) and OS (median 56.73 months [7.8–104.5] vs. 14.83 [3.8 to 29.1], p = 0.0252). Conclusion: Multimodal therapy is associated with improved survival in gliosarcoma. Even in patients receiving aggressive post-operative multimodal management, total surgical removal of macroscopic disease remains important for optimal outcomes.
Collapse
Affiliation(s)
- Michael C Jin
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Elisa K Liu
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Siyu Shi
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, United States
| | - Iris C Gibbs
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Reena Thomas
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Lawrence Recht
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Scott G Soltys
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Erqi L Pollom
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Steven D Chang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, United States
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Seema Nagpal
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Gordon Li
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
20
|
Frandsen S, Broholm H, Larsen VA, Grunnet K, Møller S, Poulsen HS, Michaelsen SR. Clinical Characteristics of Gliosarcoma and Outcomes From Standardized Treatment Relative to Conventional Glioblastoma. Front Oncol 2019; 9:1425. [PMID: 31921679 PMCID: PMC6928109 DOI: 10.3389/fonc.2019.01425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Gliosarcoma (GS) is a rare histopathologic variant of glioblastoma (GBM) characterized by a biphasic growth pattern consisting of both glial and sarcomatous components. Reports regarding its relative prognosis compared to conventional GBM are conflicting and although GS is treated as conventional GBM, supporting evidence is lacking. The aim of this study was to characterize demographic trends, clinical outcomes and prognostic variables of GS patients receiving standardized therapy and compare these to conventional GBM. Methods: Six hundred and eighty GBM patients, treated with maximal safe resection followed by radiotherapy with concomitant and adjuvant temozolomide at a single institution, were retrospectively reevaluated by reviewing histopathological records and tumor tissue for identification of GS patients. Clinico-pathological- and tumor growth characteristics were obtained via assessment of medical records and imaging analysis. Kaplan-Meier survival estimates were compared with log-rank testing, while Cox-regression modeling was tested for prognostic factors in GS patients. Results: The cohort included 26 primary gliosarcoma (PGS) patients (3.8%) and 7 secondary gliosarcoma (SGS) patients (1.0%). Compared to conventional GBM tumors, PGS tumors were significantly more often MGMT-unmethylated (73.9%) and located in the temporal lobe (57.7%). GS tumors often presented dural contact, while extracranial metastasis was only found in 1 patient. No significant differences were found between PGS and conventional GBM in progression-free-survival (6.8 and 7.6 months, respectively, p = 0.105) and in overall survival (13.4 and 15.7 months, respectively, p = 0.201). Survival following recurrence was not significantly different between PGS, SGS, and GBM. Temporal tumor location and MGMT status were found associated with PGS survival (p = 0.036 and p = 0.022, respectively). Conclusion: Despite histopathological and location difference between GS and GBM tumors, the patients present similar survival outcome from standardized treatment. These findings support continued practice of radiation and temozolomide for GS patients.
Collapse
Affiliation(s)
- Simone Frandsen
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Kirsten Grunnet
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark
| | - Søren Møller
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Signe Regner Michaelsen
- Department of Radiation Biology, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Zhang S, Gao M, Yu L. GATAD1 gene amplification promotes glioma malignancy by directly regulating CCND1 transcription. Cancer Med 2019; 8:5242-5253. [PMID: 31286678 PMCID: PMC6718743 DOI: 10.1002/cam4.2405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/08/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background The GATAD1 gene overexpression induced by GATAD1 amplification upregulation is detected in different human tumors. To date, the relationship between GATAD1 amplification and glioma oncogenesis and malignancy is still unknown. Methods GATAD1 gene amplification and expression were analyzed in 187 gliomas using qPCR and immunostaining. The relation of GATAD1 to patients’ prognoses was assessed via the Kaplan–Meier method. The MTT and orthotopic tumor transplantation assays were used to identify the function of GATAD1 in glioma proliferation. cDNA microarray, ChIP qPCR, EMSA and 3C were used to screen the downstream mechanism of GATAD1 regulating glioma proliferation. Results Our results indicated that GATAD1 gene amplification and GATAD1 gene expression are novel independent diagnosis biomarkers to indicate poor outcome of glioma patients. GATAD1 knockdown can remarkably suppress GBM cell proliferation both in vitro and in vivo. GATAD1 could promote CCND1 gene transcription by inducing long range chromatin architectural interaction on the CCND1 promoter. Then GATAD1 sequentially accelerates GBM cell cycle transition and proliferation via regulating CCND1. Conclusions We identify GATAD1 as a novel potential diagnosis biomarker and promising prognosis predictor in glioma patients. Functionally, we confirm GATAD1 as an epigenetic chromatin topological regulator that promotes glioma proliferation by targeting CCND1.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin, China
| |
Collapse
|