1
|
Yuno T, Nakade Y, Nakada M, Kinoshita M, Nakata M, Nakagawa S, Oe H, Mori M, Wada T, Kanamori H. Predicting Postoperative Motor Function After Brain Tumor Resection With Motor Evoked Potential Monitoring Using Decision Tree Analysis. Cureus 2024; 16:e74155. [PMID: 39712700 PMCID: PMC11662959 DOI: 10.7759/cureus.74155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Background Motor evoked potential (MEP) monitoring is a commonly employed method in neurosurgery to prevent postoperative motor dysfunction. However, it has low prediction accuracy for postoperative paralysis. This study aimed to develop a decision tree (DT) model for predicting postoperative motor function using MEP monitoring data. Methodology In this retrospective cohort study, we used datasets, comprising 14 variables including MEP amplitudes, obtained from 125 patients who underwent brain tumor resection with intraoperative MEP monitoring at our hospital. Prediction models were developed using DT and receiver operating characteristic (ROC) curve analyses. Model performance was assessed for accuracy, sensitivity, specificity, kappa (κ) coefficient, and area under the ROC curve (AUC) for internal and external validation. For the external validation of the classification model, we retrospectively collected data from an additional 28 patients who underwent brain tumor surgery with MEP monitoring. Results The amplitude of the last measured MEP and amplitude ratio were independent predictors of outcomes. The DT model achieved an accuracy of 0.921, sensitivity of 0.917, specificity of 0.923, and AUC of 0.931 using the internal test. In comparison, the ROC curve based on the amplitude of the last measured MEP achieved a sensitivity of 0.875, specificity of 0.906, and AUC of 0.941. External validation was performed and the DT model was superior to prediction by cutoff values from ROC curves in terms of accuracy, sensitivity, specificity, and κ coefficient. Conclusions Our study suggested the usefulness of DT modeling for predicting postoperative paralysis. However, this study has several limitations, such as the retrospective design and small sample size of the validation dataset. Nonetheless, the DT modeling presented in this study might be applicable to surgeries using MEP monitoring and is expected to contribute to devising treatment strategies by predicting postoperative motor function in various patients.
Collapse
Affiliation(s)
- Takeo Yuno
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Yusuke Nakade
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | | | | | - Masako Nakata
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Shiori Nakagawa
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Hiroyasu Oe
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Mika Mori
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Takashi Wada
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| | - Hajime Kanamori
- Department of Clinical Laboratory, Kanazawa University Hospital, Kanazawa, JPN
| |
Collapse
|
2
|
Patel V, Chavda V. Intraoperative glioblastoma surgery-current challenges and clinical trials: An update. CANCER PATHOGENESIS AND THERAPY 2024; 2:256-267. [PMID: 39371095 PMCID: PMC11447313 DOI: 10.1016/j.cpt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 10/08/2024]
Abstract
Surgical excision is an important part of the multimodal therapy strategy for patients with glioblastoma, a very aggressive and invasive brain tumor. While major advances in surgical methods and technology have been accomplished, numerous hurdles remain in the field of glioblastoma surgery. The purpose of this literature review is to offer a thorough overview of the current challenges in glioblastoma surgery. We reviewed the difficulties associated with tumor identification and visualization, resection extent, neurological function preservation, tumor margin evaluation, and inclusion of sophisticated imaging and navigation technology. Understanding and resolving these challenges is critical in order to improve surgical results and, ultimately, patient survival.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat 388001, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Medicine, Multispecialty, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, Gujarat 382350, India
| |
Collapse
|
3
|
Liu Y, Zhao S, Huang J, Zhang P, Wang Q, Chen Z, Zhu L, Ji W, Cheng C. Application value of intraoperative electrophysiological monitoring in cerebral eloquent area glioma surgery: a retrospective cohort study. Discov Oncol 2024; 15:118. [PMID: 38613736 PMCID: PMC11016029 DOI: 10.1007/s12672-024-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION Surgery for gliomas involving eloquent areas is a very challenging microsurgical procedure. Maximizing both the extent of resection (EOR) and preservation of neurological function have always been the focus of attention. Intraoperative neurophysiological monitoring (IONM) is widely used in this kind of surgery. The purpose of this study was to evaluate the efficacy of IONM in eloquent area glioma surgery. METHODS Sixty-eight glioma patients who underwent surgical treatment from 2014 to 2019 were included in this retrospective cohort study, which focused on eloquent areas. Clinical indicators and IONM data were analysed preoperatively, two weeks after surgery, and at the final follow-up. Logistic regression, Cox regression, and Kaplan‒Meier analyses were performed, and nomograms were then established for predicting prognosis. The diagnostic value of the IONM indicator was evaluated by the receiver operating characteristic (ROC) curve. RESULTS IONM had no effect on the postoperative outcomes, including EOR, intraoperative bleeding volume, duration of surgery, length of hospital stay, and neurological function status. However, at the three-month follow-up, the percentage of patients who had deteriorated function in the monitored group was significantly lower than that in the unmonitored group (23.3% vs. 52.6%; P < 0.05). Logistic regression analysis showed that IONM was a significant factor in long-term neurological function (OR = 0.23, 95% CI (0.07-0.70). In the survival analysis, long-term neurological deterioration indicated worsened overall survival (OS) and progression-free survival (PFS). A prognostic nomogram was established through Cox regression model analysis, which could predict the probability 3-year survival rate. The concordance index was 0.761 (95% CI 0.734-0.788). The sensitivity and specificity of IONM evoked potential (SSEP and TCeMEP) were 0.875 and 0.909, respectively. In the ROC curve analysis, the area under the curve (AUC) for the SSEP and TCeMEP curves was 0.892 (P < 0.05). CONCLUSIONS The application of IONM could improve long-term neurological function, which is closely related to prognosis and can be used as an independent prognostic factor. IONM is practical and widely available for predicting postoperative functional deficits in patients with eloquent area glioma.
Collapse
Affiliation(s)
- Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jin Huang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhuwen Chen
- Department of Functional Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lingjie Zhu
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
4
|
Staub-Bartelt F, Suresh Babu MP, Szelényi A, Rapp M, Sabel M. Establishment of Different Intraoperative Monitoring and Mapping Techniques and Their Impact on Survival, Extent of Resection, and Clinical Outcome in Patients with High-Grade Gliomas-A Series of 631 Patients in 14 Years. Cancers (Basel) 2024; 16:926. [PMID: 38473288 DOI: 10.3390/cancers16050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The resection of brain tumors can be critical concerning localization, but is a key point in treating gliomas. Intraoperative neuromonitoring (IONM), awake craniotomy, and mapping procedures have been incorporated over the years. Using these intraoperative techniques, the resection of eloquent-area tumors without increasing postoperative morbidity became possible. This study aims to analyze short-term and particularly long-term outcomes in patients diagnosed with high-grade glioma, who underwent surgical resection under various technical intraoperative settings over 14 years. METHODS A total of 1010 patients with high-grade glioma that underwent resection between 2004 and 2018 under different monitoring or mapping procedures were screened; 631 were considered eligible for further analyses. We analyzed the type of surgery (resection vs. biopsy) and type of IONM or mapping procedures that were performed. Furthermore, the impact on short-term (The National Institute of Health Stroke Scale, NIHSS; Karnofsky Performance Scale, KPS) and long-term (progression-free survival, PFS; overall survival, OS) outcomes was analyzed. Additionally, the localization, extent of resection (EOR), residual tumor volume (RTV), IDH status, and adjuvant therapy were approached. RESULTS In 481 patients, surgery, and in 150, biopsies were performed. The number of biopsies decreased significantly with the incorporation of awake surgeries with bipolar stimulation, IONM, and/or monopolar mapping (p < 0.001). PFS and OS were not significantly influenced by any intraoperative technical setting. EOR and RTV achieved under different operative techniques showed no statistical significance (p = 0.404 EOR, p = 0.186 RTV). CONCLUSION Based on the present analysis using data from 14 years and more than 600 patients, we observed that through the implementation of various monitoring and mapping techniques, a significant decrease in biopsies and an increase in the resection of eloquent tumors was achieved. With that, the operability of eloquent tumors without a negative influence on neurological outcomes is suggested by our data. However, a statistical effect of monitoring and mapping procedures on long-term outcomes such as PFS and OS could not be shown.
Collapse
Affiliation(s)
- Franziska Staub-Bartelt
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Andrea Szelényi
- Department of Neurosurgery, LMU University Hospital, LMU Munich, 80539 München, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Silverstein JW, Shah HA, Unadkat P, Vilaysom S, Boockvar JA, Langer DJ, Ellis JA, D'Amico RS. Short and long-term prognostic value of intraoperative motor evoked potentials in brain tumor patients: a case series of 121 brain tumor patients. J Neurooncol 2023; 161:127-133. [PMID: 36629962 DOI: 10.1007/s11060-022-04229-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Iatrogenic neurologic deficits adversely affect patient outcomes following brain tumor resection. Motor evoked potential (MEP) monitoring allows surgeons to assess the integrity of motor-eloquent areas in real-time during tumor resection to lessen the risk of iatrogenic insult. We retrospectively associate intraoperative transcranial and direct cortical MEPs (TC-MEPs, DC-MEPs) to early and late post-operative motor function to prognosticate short- and long-term motor recovery in brain tumor patients undergoing surgical resection in peri-eloquent regions. METHODS We reviewed 121 brain tumor patients undergoing craniotomies with DC-MEP and/or TC-MEP monitoring. Motor function scores were recorded at multiple time-points up to 1 year postoperatively. Sensitivity, specificity, and positive and negative predictive values (PPV, NPV) were calculated at each time point. RESULTS The sensitivity, specificity, PPV, and NPV of TC-MEP in the immediate postoperative period was 17.5%, 100%, 100%, and 69.4%, respectively. For DC-MEP monitoring, the respective values were 25.0%, 100%, 100%, and 68.8%. By discharge, sensitivity had increased for both TC-MEP and DC MEPs to 43.8%, and 50.0% respectively. Subset analysis on patients without tumor recurrence/progression at long term follow-up (n = 62 pts, 51.2%) found that all patients with stable monitoring maintained or improved from preoperative status. One patient with transient intraoperative TC-MEP loss and permanent DC-MEP loss suffered a permanent deficit. CONCLUSION Brain tumor patients who undergo surgery with intact MEP monitoring and experience new postoperative deficits likely suffer transient deficits that will improve over the postoperative course in the absence of disease progression.
Collapse
Affiliation(s)
- Justin W Silverstein
- Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Harshal A Shah
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, New York, NY, 11549, USA.
| | - Prashin Unadkat
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/ Northwell Health & The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Sabena Vilaysom
- Department of Clinical Neurophysiology, Neuro Protective Solutions, New York, NY, USA
| | - John A Boockvar
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New York, NY, USA
| | - David J Langer
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New York, NY, USA
| | - Jason A Ellis
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New York, NY, USA
| |
Collapse
|
6
|
Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1838. [PMID: 35959642 DOI: 10.1002/wnan.1838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most common and fatal form of primary invasive brain tumors as it affects a great number of patients each year and has a median overall survival of approximately 14.6 months after diagnosis. Despite intensive treatment, almost all patients with GBM experience recurrence, and their 5-year survival rate is approximately 5%. At present, the main clinical treatment strategy includes surgical resection, radiotherapy, and chemotherapy. However, tumor heterogeneity, blood-brain barrier, glioma stem cells, and DNA damage repair mechanisms hinder efficient GBM treatment. The emergence of nanometer-scale diagnostic and therapeutic approaches in cancer medicine due to the establishment of nanotechnology provides novel and promising tools that will allow us to overcome these difficulties. This review summarizes the application and recent progress in nanotechnology-based monotherapies (e.g., chemotherapy) and combination cancer treatment strategies (chemotherapy-based combined cancer therapy) for GBM and describes the synergistic enhancement between these combination therapies as well as the current standard therapy for brain cancer and its deficiencies. These combination therapies that can reduce individual drug-related toxicities and significantly enhance therapeutic efficiency have recently undergone rapid development. The mechanisms underlying these different nanotechnology-based therapies as well as the application of nanotechnology in GBM (e.g., in photodynamic therapy and chemodynamic therapy) have been systematically summarized here in an attempt to review recent developments and to identify promising directions for future research. This review provides novel and clinically significant insights and directions for the treatment of GBM, which is of great clinical importance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Guo QL, Dai XL, Yin MY, Cheng HW, Qian HS, Wang H, Zhu DM, Wang XW. Nanosensitizers for sonodynamic therapy for glioblastoma multiforme: current progress and future perspectives. Mil Med Res 2022; 9:26. [PMID: 35676737 PMCID: PMC9178901 DOI: 10.1186/s40779-022-00386-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, and it is associated with poor prognosis. Its characteristics of being highly invasive and undergoing heterogeneous genetic mutation, as well as the presence of the blood-brain barrier (BBB), have reduced the efficacy of GBM treatment. The emergence of a novel therapeutic method, namely, sonodynamic therapy (SDT), provides a promising strategy for eradicating tumors via activated sonosensitizers coupled with low-intensity ultrasound. SDT can provide tumor killing effects for deep-seated tumors, such as brain tumors. However, conventional sonosensitizers cannot effectively reach the tumor region and kill additional tumor cells, especially brain tumor cells. Efforts should be made to develop a method to help therapeutic agents pass through the BBB and accumulate in brain tumors. With the development of novel multifunctional nanosensitizers and newly emerging combination strategies, the killing ability and selectivity of SDT have greatly improved and are accompanied with fewer side effects. In this review, we systematically summarize the findings of previous studies on SDT for GBM, with a focus on recent developments and promising directions for future research.
Collapse
Affiliation(s)
- Qing-Long Guo
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.,Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xing-Liang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng-Yuan Yin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.,Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Hai-Sheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dao-Ming Zhu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xian-Wen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Yu S, Guo J, Li Y, Zhang K, Li J, Liu P, Ming H, Guo Y. Advanced modalities and surgical theories in glioma resection: A narrative review. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_14_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
You H, Qiao H. Intraoperative Neuromonitoring During Resection of Gliomas Involving Eloquent Areas. Front Neurol 2021; 12:658680. [PMID: 34248818 PMCID: PMC8260928 DOI: 10.3389/fneur.2021.658680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
In the case of resection of gliomas involving eloquent areas, equal consideration should be given to maintain maximal extent of resection (EOR) and neurological protection, for which the intraoperative neuromonitoring (IONM) proves an effective and admirable approach. IONM techniques applied in clinical practice currently consist of somatosensory evoked potential (SSEP), direct electrical stimulation (DES), motor evoked potential (MEP), electromyography (EMG), and electrocorticography (ECoG). The combined use of DES and ECoG has been adopted widely. With the development of technology, more effective IONM tactics and programs would be proposed. The ultimate goal would be strengthening the localization of eloquent areas and epilepsy foci, reducing the incidence of postoperative dysfunction and epilepsy improving the life quality of patients.
Collapse
Affiliation(s)
- Hao You
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hui Qiao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Schupper AJ, Yong RL, Hadjipanayis CG. The Neurosurgeon's Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J Clin Med 2021; 10:jcm10020236. [PMID: 33440712 PMCID: PMC7826675 DOI: 10.3390/jcm10020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Maximal safe resection is the standard of care in the neurosurgical treatment of high-grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies centered around improving intraoperative visualization of tumor tissue have been developed. In this review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery, intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery has permitted. We describe the various advances, the current state of the literature that have tested the utility of the different adjuvants in clinical practice, and future directions for improving intraoperative technologies.
Collapse
|