1
|
Rousseau J, Lapointe S, Roberge D. Tumor-Treating Fields and Related Treatments in the Management of Pediatric Brain Tumors. Curr Oncol 2025; 32:185. [PMID: 40277742 DOI: 10.3390/curroncol32040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Pediatric primary brain tumors pose significant therapeutic challenges due to their aggressive nature and the critical environment of the developing brain. Traditional modalities like surgery, chemotherapy, and radiotherapy often achieve limited success in high-grade gliomas and embryonal tumors. Tumor-treating fields (TTfields), a non-invasive therapy delivering alternating electric fields, has emerged as a promising approach to disrupt tumor cell division through mechanisms such as mitotic disruption, DNA damage, and tumor microenvironment modulation. TTfields are thought to selectively target dividing tumor cells while sparing healthy, non-dividing cells. While TTfields therapy is FDA-approved for the management of glioblastoma and other cancers, its application in pediatric brain tumors remains under investigation. Preclinical studies reveal its potential in medulloblastoma and ependymoma models, while observational data suggest its safety and feasibility in children. Current research focuses on optimizing TTfields' efficacy through advanced technologies, including high-intensity arrays, skull remodeling, and integration with immunotherapies such as immune checkpoint inhibitors. Innovative device-based therapies like magnetic field-based technologies further expand the treatment possibilities. As clinical trials progress, TTfields and related modalities offer hope for addressing unmet needs in pediatric neuro-oncology, especially for tumors in challenging locations. Future directions include biomarker identification, tailored protocols, and novel therapeutic combinations to enhance outcomes in pediatric brain tumor management.
Collapse
Affiliation(s)
- Julien Rousseau
- Centre Hospitalier de l'Université de Montréal, 1051 Sanguinet St., Montreal, QC H2X 3E4, Canada
| | - Sarah Lapointe
- Centre Hospitalier de l'Université de Montréal, 1051 Sanguinet St., Montreal, QC H2X 3E4, Canada
| | - David Roberge
- Centre Hospitalier de l'Université de Montréal, 1051 Sanguinet St., Montreal, QC H2X 3E4, Canada
| |
Collapse
|
2
|
Wen J, Xiong L, Wang S, Qiu X, Cui J, Peng F, Liu X, Lu J, Bian H, Chen D, Chang J, Yao Z, Fan S, Zhou D, Li Z, Liu J, Liu H, Chen X, Chen L. Prediction of intracranial electric field strength and analysis of treatment protocols in tumor electric field therapy targeting gliomas of the brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108490. [PMID: 39520874 DOI: 10.1016/j.cmpb.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Tumor Electric Field Therapy (TEFT) is a new treatment for glioblastoma cells with significant effect and few side effects. However, it is difficult to directly measure the intracranial electric field generated by TEFT, and the inability to control the electric field intensity distribution in the tumor target area also limits the clinical therapeutic effect of TEFT. It is a safe and effective way to construct an efficient and accurate prediction model of intracranial electric field intensity of TEFT by numerical simulation. METHODS Different from the traditional methods, in this study, the brain tissue was segmented based on the MRI data of patients with retained spatial location information, and the spatial position of the brain tissue was given the corresponding electrical parameters after segmentation. Then, a single geometric model of the head profile with the transducer array is constructed, which is assembled with an electrical parameter matrix containing tissue position information. After applying boundary conditions on the transducer, the intracranial electric field intensity could be solved in the frequency domain. The effects of transducer array mode, load voltage and voltage frequency on the intracranial electric field strength were further analyzed. Finally, planning system software was developed for optimizing TEFT treatment regimens for patients. RESULTS Experimental validation and comparison with existing results demonstrate the proposed method has a more efficient and pervasive modeling approach with higher computational accuracy while preserving the details of MRI brain tissue structure completely. In the optimization analysis of treatment protocols, it was found that increasing the load voltage could effectively increase the electric field intensity in the target area, while the effect of voltage frequency on the electric field intensity was very limited. CONCLUSIONS The results showed that adjusting the transducer array mode was the key method for making targeted treatment plans. The proposed method is capable prediction of intracranial electric field strength with high accuracy and provide guidance for the design of the TEFT therapy process. This study provides a valuable reference for the application of TEFT in clinical practice.
Collapse
Affiliation(s)
- Jun Wen
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lingzhi Xiong
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Shulu Wang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianqiao Cui
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410100, China
| | - Xiang Liu
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Jian Lu
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Haikuo Bian
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Jiusheng Chang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Zhengxi Yao
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Sheng Fan
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dan Zhou
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Chen
- The First Clinical College, China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
3
|
Zheng M, Wang Y, Chen S, Suo Y, Yu J, Zhang X. Enhancing Electric Field Distribution in the Pancreas for Improved TTFields Therapy: A Computational Modeling Investigation. IEEE Trans Biomed Eng 2024; 71:2612-2619. [PMID: 38564342 DOI: 10.1109/tbme.2024.3383818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tumor treating fields (TTFields) therapy has shown effectiveness in glioblastoma treatment and holds potential for other cancers. However, its application in pancreatic cancer and the distribution of electric fields in pancreas remain unexplored. This study aims to investigate the electric field distributions in pancreatic regions using different array configurations for TTFields therapy. METHODS Computational modelling was employed to simulate electric field distributions, and quantitative analysis was conducted. Human body impedance measurements were used to optimize the electric properties of the model. Various array configurations were examined to assess their impact on the electric field distributions. RESULTS The study revealed that well-positioned arrays, specifically the combination of 20-piece transducer arrays in anterior-posterior orientation and 13-piece transducer arrays in left-right orientation, consistently achieved electric fields exceeding the 1V/cm threshold in over 99.4% of the pancreas. Even with a reduced number of transducers (13 pieces for both orientations), sufficient electric field coverage was achieved, exceeding the threshold in over 92.9% of the pancreas. Additionally, different array placements within the same orientation were explored to address clinical challenges such as skin rash and patient anatomical variations. CONCLUSIONS This research lays the groundwork for understanding TTFields distribution within the abdomen, offering insights into optimizing array configurations for improved electric field delivery. These results offer promises of advancing TTFields therapy for pancreatic cancer towards clinical applications, and potentially enhancing treatment efficacy and patient outcomes.
Collapse
|
4
|
秦 丽, 谢 旭, 王 敏, 马 明, 潘 赟, 陈 光, 张 韶. [Simulation model of tumor-treating fields]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:360-367. [PMID: 38686418 PMCID: PMC11058494 DOI: 10.7507/1001-5515.202306074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/04/2024] [Indexed: 05/02/2024]
Abstract
Tumor-treating fields (TTFields) is a novel treatment modality for malignant solid tumors, often employing electric field simulations to analyze the distribution of electric fields on the tumor under different parameters of TTFields. Due to the present difficulties and high costs associated with reproducing or implementing the simulation model construction techniques, this study used readily available open-source software tools to construct a highly accurate, easily implementable finite element simulation model for TTFields. The accuracy of the model is at a level of 1 mm 3. Using this simulation model, the study carried out analyses of different factors, such as tissue electrical parameters and electrode configurations. The results show that factors influncing the distribution of the internal electric field of the tumor include changes in scalp and skull conductivity (with a maximum variation of 21.0% in the treatment field of the tumor), changes in tumor conductivity (with a maximum variation of 157.8% in the treatment field of the tumor), and different electrode positions and combinations (with a maximum variation of 74.2% in the treatment field of the tumor). In summary, the results of this study validate the feasibility and effectiveness of the proposed modeling method, which can provide an important reference for future simulation analyses of TTFields and clinical applications.
Collapse
Affiliation(s)
- 丽平 秦
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 旭 谢
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
- 浙江大学 求是高等研究院 浙江大学生物医学工程教育部重点实验室(杭州 310027)Qiushi Academy for Advanced Studies, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China
| | - 敏敏 王
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 明伟 马
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 赟 潘
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 光弟 陈
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| | - 韶岷 张
- 浙江省医疗器械检验研究院(杭州 310018)Zhejiang Institute of Medical Device Testing, Hangzhou 310018, P. R. China
| |
Collapse
|
5
|
Yu A, Zeng J, Yu J, Cao S, Li A. Theory and application of TTFields in newly diagnosed glioblastoma. CNS Neurosci Ther 2024; 30:e14563. [PMID: 38481068 PMCID: PMC10938032 DOI: 10.1111/cns.14563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common primary malignant brain tumor in adults. TTFields is a therapy that use intermediate-frequency and low-intensity alternating electric fields to treat tumors. For patients with ndGBM, the addition of TTFields after the concurrent chemoradiotherapy phase of the Stupp regimen can improve prognosis. However, TTFields still has the potential to further prolong the survival of ndGBM patients. AIM By summarizing the mechanism and application status of TTFields in the treatment of ndGBM, the application prospect of TTFields in ndbm treatment is prospected. METHODS We review the recent literature and included 76 articles to summarize the mechanism of TTfields in the treatment of ndGBM. The current clinical application status and potential health benefits of TTFields in the treatment of ndGBM are also discussed. RESULTS TTFields can interfere with tumor cell mitosis, lead to tumor cell apoptosis and increased autophagy, hinder DNA damage repair, induce ICD, activate tumor immune microenvironment, reduce cancer cell metastasis and invasion, and increase BBB permeability. TTFields combines with chemoradiotherapy has made progress, its optimal application time is being explored and the problems that need to be considered when retaining the electrode patches for radiotherapy are further discussed. TTFields shows potential in combination with immunotherapy, antimitotic agents, and PARP inhibitors, as well as in patients with subtentorial gliomas. CONCLUSION This review summarizes mechanisms of TTFields in the treatment of ndGBM, and describes the current clinical application of TTFields in ndGBM. Through the understanding of its principle and application status, we believe that TTFields still has the potential to further prolong the survival of ndGBM patients. Thus,research is still needed to explore new ways to combine TTFields with other therapies and optimize the use of TTFields to realize its full potential in ndGBM patients.
Collapse
Affiliation(s)
- Ao Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Juan Zeng
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Jinhui Yu
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
- School of GraduateChina Medical UniversityShenyangChina
| | - Shuo Cao
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Ailin Li
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyangChina
| |
Collapse
|
6
|
Gi Y, Oh G, Jo Y, Lim H, Ko Y, Hong J, Lee E, Park S, Kwak T, Kim S, Yoon M. Study of multistep Dense U-Net-based automatic segmentation for head MRI scans. Med Phys 2024; 51:2230-2238. [PMID: 37956307 DOI: 10.1002/mp.16824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Despite extensive efforts to obtain accurate segmentation of magnetic resonance imaging (MRI) scans of a head, it remains challenging primarily due to variations in intensity distribution, which depend on the equipment and parameters used. PURPOSE The goal of this study is to evaluate the effectiveness of an automatic segmentation method for head MRI scans using a multistep Dense U-Net (MDU-Net) architecture. METHODS The MDU-Net-based method comprises two steps. The first step is to segment the scalp, skull, and whole brain from head MRI scans using a convolutional neural network (CNN). In the first step, a hybrid network is used to combine 2.5D Dense U-Net and 3D Dense U-Net structure. This hybrid network acquires logits in three orthogonal planes (axial, coronal, and sagittal) using 2.5D Dense U-Nets and fuses them by averaging. The resultant fused probability map with head MRI scans then serves as the input to a 3D Dense U-Net. In this process, different ratios of active contour loss and focal loss are applied. The second step is to segment the cerebrospinal fluid (CSF), white matter, and gray matter from extracted brain MRI scans using CNNs. In the second step, the histogram of the extracted brain MRI scans is standardized and then a 2.5D Dense U-Net is used to further segment the brain's specific tissues using the focal loss. A dataset of 100 head MRI scans from an OASIS-3 dataset was used for training, internal validation, and testing, with ratios of 80%, 10%, and 10%, respectively. Using the proposed approach, we segmented the head MRI scans into five areas (scalp, skull, CSF, white matter, and gray matter) and evaluated the segmentation results using the Dice similarity coefficient (DSC) score, Hausdorff distance (HD), and the average symmetric surface distance (ASSD) as evaluation metrics. We compared these results with those obtained using the Res-U-Net, Dense U-Net, U-Net++, Swin-Unet, and H-Dense U-Net models. RESULTS The MDU-Net model showed DSC values of 0.933, 0.830, 0.833, 0.953, and 0.917 in the scalp, skull, CSF, white matter, and gray matter, respectively. The corresponding HD values were 2.37, 2.89, 2.13, 1.52, and 1.53 mm, respectively. The ASSD values were 0.50, 1.63, 1.28, 0.26, and 0.27 mm, respectively. Comparing these results with other models revealed that the MDU-Net model demonstrated the best performance in terms of the DSC values for the scalp, CSF, white matter, and gray matter. When compared with the H-Dense U-Net model, which showed the highest performance among the other models, the MDU-Net model showed substantial improvements in the HD view, particularly in the gray matter region, with a difference of approximately 9%. In addition, in terms of the ASSD, the MDU-Net model outperformed the H-Dense U-Net model, showing an approximately 7% improvements in the white matter and approximately 9% improvements in the gray matter. CONCLUSION Compared with existing models in terms of DSC, HD, and ASSD, the proposed MDU-Net model demonstrated the best performance on average and showed its potential to enhance the accuracy of automatic segmentation for head MRI scans.
Collapse
Affiliation(s)
- Yongha Gi
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Geon Oh
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Yunhui Jo
- Institute of Global Health Technology (IGHT), Korea University, Seoul, Republic of Korea
| | - Hyeongjin Lim
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Yousun Ko
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Jinyoung Hong
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Eunjun Lee
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
| | - Sangmin Park
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
- Field Cure Ltd., Seoul, Republic of Korea
| | - Taemin Kwak
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
- Field Cure Ltd., Seoul, Republic of Korea
| | - Sangcheol Kim
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
- Field Cure Ltd., Seoul, Republic of Korea
| | - Myonggeun Yoon
- Department of Bio-medical Engineering, Korea University, Seoul, Republic of Korea
- Field Cure Ltd., Seoul, Republic of Korea
| |
Collapse
|
7
|
Mikic N, Gentilal N, Cao F, Lok E, Wong ET, Ballo M, Glas M, Miranda PC, Thielscher A, Korshoej AR. Tumor-treating fields dosimetry in glioblastoma: Insights into treatment planning, optimization, and dose-response relationships. Neurooncol Adv 2024; 6:vdae032. [PMID: 38560348 PMCID: PMC10981464 DOI: 10.1093/noajnl/vdae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Tumor-treating fields (TTFields) are currently a Category 1A treatment recommendation by the US National Comprehensive Cancer Center for patients with newly diagnosed glioblastoma. Although the mechanism of action of TTFields has been partly elucidated, tangible and standardized metrics are lacking to assess antitumor dose and effects of the treatment. This paper outlines and evaluates the current standards and methodologies in the estimation of the TTFields distribution and dose measurement in the brain and highlights the most important principles governing TTFields dosimetry. The focus is on clinical utility to facilitate a practical understanding of these principles and how they can be used to guide treatment. The current evidence for a correlation between TTFields dose, tumor growth, and clinical outcome will be presented and discussed. Furthermore, we will provide perspectives and updated insights into the planning and optimization of TTFields therapy for glioblastoma by reviewing how the dose and thermal effects of TTFields are affected by factors such as tumor location and morphology, peritumoral edema, electrode array position, treatment duration (compliance), array "edge effect," electrical duty cycle, and skull-remodeling surgery. Finally, perspectives are provided on how to optimize the efficacy of future TTFields therapy.
Collapse
Affiliation(s)
- Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Edwin Lok
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Eric T Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Matthew Ballo
- Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pedro C Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Dang DD, Gong AD, Dang JV, Mugge LA, Mansinghani S, Ziu M, Cohen AL, Vyas N. Systematic Review of WHO Grade 4 Astrocytoma in the Cerebellopontine Angle: The Impact of Anatomic Corridor on Treatment Options and Outcomes. J Neurol Surg Rep 2023; 84:e129-e139. [PMID: 37854309 PMCID: PMC10580070 DOI: 10.1055/a-2172-7770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
Background Despite advances in multimodal oncologic therapies and molecular genetics, overall survival (OS) in patients with high-grade astrocytomas remains poor. We present an illustrative case and systematic review of rare, predominantly extra-axial World Health Organization (WHO) grade 4 astrocytomas located within the cerebellopontine angle (CPA) and explore the impact of anatomic location on diagnosis, management, and outcomes. Methods A systematic review of adult patients with predominantly extra-axial WHO grade 4 CPA astrocytomas was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines through December 2022. Results Eighteen articles were included comprising 21 astrocytomas: 13 exophytic tumors arising from the cerebellopontine parenchyma and 8 tumors originating from a cranial nerve root entry zone. The median OS was 15 months with one-third of cases demonstrating delayed diagnosis. Gross total resection, molecular genetic profiling, and use of ancillary treatment were low. We report the only patient with an integrated isocitrate dehydrogenase 1 (IDH-1) mutant diagnosis, who, after subtotal resection and chemoradiation, remains alive at 40 months without progression. Conclusion The deep conical-shaped corridor and abundance of eloquent tissue of the CPA significantly limits both surgical resection and utility of device-based therapies in this region. Prompt diagnosis, molecular characterization, and systemic therapeutic advances serve as the predominant means to optimize survival for patients with rare skull base astrocytomas.
Collapse
Affiliation(s)
- Danielle D. Dang
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Andrew D. Gong
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - John V. Dang
- Department of Internal Medicine, Walter Reed Military Medical Center, Bethesda, Maryland, United States
| | - Luke A. Mugge
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Seth Mansinghani
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Mateo Ziu
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| | - Adam L. Cohen
- Department of Neuro-Oncology, Inova Schar Cancer Institute, Inova Health System, Fairfax, Falls Church, Virginia, United States
| | - Nilesh Vyas
- Department of Neurosurgery, Inova Fairfax Hospital, Falls Church, Virginia, United States
| |
Collapse
|
9
|
Current status of the preclinical evaluation of alternating electric fields as a form of cancer therapy. Bioelectrochemistry 2023; 149:108287. [DOI: 10.1016/j.bioelechem.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
10
|
Jin T, Dou Z, Zhao Y, Jiang B, Xu J, Zhang B, Wei B, Dong F, Zhang J, Sun C. Skull defect increases the tumor treating fields strength without detrimental thermogenic effect: A computational simulating research. Cancer Med 2022; 12:1461-1470. [PMID: 35861406 PMCID: PMC9883554 DOI: 10.1002/cam4.5037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor treating fields (TTFields) is an FDA-approved adjuvant therapy for glioblastoma. The distribution of an applied electric field has been shown to be governed by distinct tissue structures and electrical conductivity. Of all the tissues the skull plays a significant role in modifying the distribution of the electric field due to its large impedance. In this study, we studied how remodeling of the skull would affect the therapeutic outcome of TTFields, using a computational approach. METHODS Head models were created from the head template ICBM152 and five realistic head models. The electric field distribution was simulated using the default TTFields array layout. To study the impact of the skull on the electric field, we compared three cases, namely, intact skull, defective skull, and insulating process, wherein a thin electrical insulating layer was added between the transducer and the hydrogel. The electric field strength and heating power were calculated using the FEM (finite element method). RESULTS Removing the skull flap increased the average field strength at the tumor site, without increasing the field strength of "brain". The ATVs of the supratentorial tumors were enhanced significantly. Meanwhile, the heating power of the gels increased, especially those overlapping the skull defect site. Insulation lightly decreased the electric field strength and significantly decreased the heating power in deep tumor models. CONCLUSION Our simulation results showed that a skull defect was beneficial for superficial tumors but had an adverse effect on deep tumors. Skull removal should be considered as an optional approach in future TTFields therapy to enhance its efficacy. An insulation process could be used as a joint option to reduce the thermogenic effect of skull defect. If excessive increase in heating power is observed in certain patients, insulating material could be used to mitigate overheating without sacrificing the therapeutic effect of TTFields.
Collapse
Affiliation(s)
- Taian Jin
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Zhangqi Dou
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yu Zhao
- Jiangsu Hailai Xinchuang Medical Technology Co., Ltd.WuxiJiangsuChina
| | - Biao Jiang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Buyi Zhang
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Boxing Wei
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fei Dong
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
11
|
Cao F, Mikic N, Wong ET, Thielscher A, Korshoej AR. Guidelines for Burr Hole Surgery in Combination With Tumor Treating Fields for Glioblastoma: A Computational Study on Dose Optimization and Array Layout Planning. Front Hum Neurosci 2022; 16:909652. [PMID: 35782043 PMCID: PMC9245346 DOI: 10.3389/fnhum.2022.909652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Tumor treating fields (TTFields) is an anti-cancer technology increasingly used for the treatment of glioblastoma. Recently, cranial burr holes have been used experimentally to enhance the intensity (dose) of TTFields in the underlying tumor region. In the present study, we used computational finite element methods to systematically characterize the impact of the burr hole position and the TTFields transducer array layout on the TTFields distribution calculated in a realistic human head model. We investigated a multitude of burr hole positions and layouts to illustrate the basic principles of optimal treatment planning. The goal of the paper was to provide simple rules of thumb for physicians to use when planning the TTFields in combination with skull remodeling surgery. Our study suggests a number of key findings, namely that (1) burr holes should be placed directly above the region of interest, (2) field enhancement occurs mainly underneath the holes, (3) the ipsilateral array should directly overlap the holes and the contralateral array should be placed directly opposite, (4) arrays in a pair should be placed at far distance and not close to each other to avoid current shunting, and finally (5) rotation arrays around their central normal axis can be done without diminishing the enhancing effect of the burr holes. Minor deviations and adjustments (<3 cm) of arrays reduces the enhancement to some extent although the procedure is still effective in these settings. In conclusion, our study provides simple guiding principles for implementation of dose-enhanced TTFields in combination with burr-holes. Future studies are required to validate our findings in additional models at the patient specific level.
Collapse
Affiliation(s)
- Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eric T. Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, RI, United States
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders Rosendal Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Anders Rosendal Korshoej
| |
Collapse
|
12
|
Januário G. Posterior Fossa Glioblastoma, Case Report, and Reviewed Literature. CLINICAL CANCER INVESTIGATION JOURNAL 2022. [DOI: 10.51847/jmhysnjkhu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Liang C, Gong J, Zhang B, Meng Z, Li M, Guo Y. Multiple subtentorial metastasis in diffuse midline glioma receiving tumor treating fields: a case report and literature review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1604. [PMID: 34790810 PMCID: PMC8576728 DOI: 10.21037/atm-21-4395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023]
Abstract
Diffuse midline glioma (DMG) is one of fatal glioblastoma multiforme (GBM) with no proven medical therapies. Tumor treating fields (TTFields) is a new revolutionary therapy for GBM which prolongs the overall survival time obviously. However, we can observe more tumor growth phenomena (such as distant multiple metastases) than before. This report describes an adult patient who presented headache and dizziness, accompanied by left limb weakness, nausea, and vomiting following car accident trauma, following imaging examinations suggested thalamus GBM. He was treated with subtotal excision. Final pathology was diagnosed as DMG with H3F3A mutation, isocitrate dehydrogenase (IDH) wild type. Following concurrent chemoradiation therapy (CCRT) and adjuvant temozolomide (TMZ) chemotherapy + TTFields therapy were carried out. Supratentorial tumor has been exhibited a partial radiological response for nine months until TTFields was used irregularly or even discontinued in the later stage. Especially, subtentorial and spinal multiple metastasis occurred during this time. Both supratentorial and subtentorial tumors were treated with surgery, radiotherapy, chemotherapy, even targeted drugs, with the only difference being TTFields, but we could see different consequences for tumor growth. One conclusion might be drawn that TTFields can provide a longer survival time (14 vs. 8 months reported before) for DMG patients and improve survival benefits. However, we can observe that patients maybe die from subtentorial metastasis because TTFields could not cover the subtentorial tumors, which is the focal challenge at present. So further research on subtentorial tumors with TTFields is urgently needed.
Collapse
Affiliation(s)
- Chaofeng Liang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jin Gong
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zhan'ao Meng
- Department of Radiology, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Manting Li
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Ying Guo
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
15
|
Makimoto A, Nishikawa R, Terashima K, Kurihara J, Fujisaki H, Ihara S, Morikawa Y, Yuza Y. Tumor-Treating Fields Therapy for Pediatric Brain Tumors. Neurol Int 2021; 13:151-165. [PMID: 33917660 PMCID: PMC8167650 DOI: 10.3390/neurolint13020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
Tumor-treating fields (TTFields) are alternating electric fields applied continuously to the brain by attaching two-pair arrays on the scalp. Although TTFields therapy has demonstrated efficacy against supratentorial glioblastoma (GBM) in adults, its safety and efficacy in children have not been confirmed. Despite differences in the genetic etiology of the adult and pediatric forms of GBM, both have certain clinical behaviors in common, allowing us to test TTFields therapy in pediatric GBM. Recently, several, pediatric case-series using TTFields therapy have been published, and a few, prospective, pediatric studies are ongoing. Because GBMs are extremely rare in pediatric patients, where they comprise a wide variety of genetic subtypes, these pediatric studies are feasibility studies targeting various types of malignant brain tumor. Although they are important for confirming the safety and feasibility of TTFields therapy in the pediatric population, confirming its efficacy against each type of pediatric brain tumor, including the GBM, is difficult. Our clinical research team, therefore, planned an investigator-initiated clinical trial targeting pediatric supratentorial GBMs (as in adults) with the aim of expanding regulatory approval of TTFields therapy for pediatric GBM treatment based on safety and exploratory efficacy data in combination with the accumulated evidence on adult GBMs.
Collapse
Affiliation(s)
- Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo 183-8561, Japan;
- Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo 183-8561, Japan;
- Correspondence: ; Tel.: +81-42-300-5111 (ext. 5177)
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama 350-1298, Japan;
| | - Keita Terashima
- Department of Neuro-Oncology, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan;
| | - Jun Kurihara
- Department of Neurosurgery, Saitama Children’s Medical Center, 1-2, Shin-toshin, Chuo-ku, Saitama 330-8777, Japan;
| | - Hiroyuki Fujisaki
- Department of Pediatric Hematology/Oncology, Osaka City General Hospital, 2-13-22, Miyakojima-hondori, Miyakojima-ku, Osaka 534-0021, Japan;
| | - Satoshi Ihara
- Department of Neurosurgery, Tokyo Metropolitan Children’s Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo 183-8561, Japan;
| | - Yoshihiko Morikawa
- Clinical Research Support Center, Tokyo Metropolitan Children’s Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo 183-8561, Japan;
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29, Musashidai, Fuchu, Tokyo 183-8561, Japan;
| |
Collapse
|
16
|
Zhang M, Li R, Pollom EL, Amini A, Dandapani S, Li G. Treatment patterns and outcomes for cerebellar glioblastoma in the concomitant chemoradiation era: A National Cancer database study. J Clin Neurosci 2020; 82:122-127. [PMID: 33317719 DOI: 10.1016/j.jocn.2020.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Cerebellar glioblastoma (GB) is much rarer than its supratentorial counterpart, and potentially of different molecular origin. Prior database studies are of limited size and reported on patients who preceded the validation of temozolomide. Thus, we provide an updated population-based analysis of the treatment trends and outcomes since the standardization of GB adjuvant chemoradiation. Patients diagnosed with primary cerebellar and supratentorial GB were identified from the National Cancer Database spanning 2005-2015. Patients were characterized by demographics, extent of resection, and adjuvant chemotherapy or radiation status. Cohorts were primarily and secondarily assessed for overall survival by tumor site and treatment history, respectively. A total of 655 patients with cerebellar GB were identified (0.6%). Cerebellar GB patients, compared to supratentorial GB were more likely to undergo a biopsy or subtotal resection (13.4% vs 9.3% and 16.0% vs 13.4%, p-value < 0.001), and less likely to pursue adjuvant therapy (48.4% vs 52.7%, p-value < 0.001). Overall median survivals were 9.3 and 9.4 months, respectively. On multivariable analysis, gross total resection, radiation, and chemotherapy were found to be predictors of improved overall survival (HR 0.77, p = 0.038; HR 0.67, p < 0.001; and HR = 0.77, p = 0.030, respectively). While many management principles are currently shared between cerebellar and supratentorial GB, aggressive regimens appear less frequently prescribed. Survival continues to match supratentorial outcomes and may benefit from future, systemic guidance by distinguishing molecular features.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford Medical Center, Palo Alto 94304, CA, USA
| | - Richard Li
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford Medical Center, Palo Alto 94304, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Savita Dandapani
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Gordon Li
- Department of Neurosurgery, Stanford Medical Center, Palo Alto 94304, CA, USA.
| |
Collapse
|