1
|
Juan YC, Chen X, Tseng JY, Lin HJ, Hung CH, Hsueh PR, Lin JJ, Cho DY, Chen CC. Beyond the blood-brain barrier: feasibility and technical validation of dual-compartment circulating tumor cells detection in high-grade glioma patients. Neurosurg Rev 2025; 48:359. [PMID: 40214852 PMCID: PMC11991960 DOI: 10.1007/s10143-025-03511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
The elusive nature of brain tumor progression, hidden behind the blood-brain barrier, presents significant challenges for treatment monitoring in high-grade gliomas. In this feasibility study, we evaluate a novel approach to tracking glioblastoma through liquid biopsy, assessing whether tumor cells leave detectable molecular footprints in both blood and cerebrospinal fluid (CSF). Using the MiSelect R II System with specialized microfluidic technology, we analyzed paired blood and CSF samples from six glioblastoma patients, revealing a striking presence of circulating tumor cells (CTCs)- with higher abundance in CSF, where detection rates reached 100% compared to 83.3% in blood. Our technical validation demonstrates the system's capability to identify CTCs through multi-marker analysis (EGFR+/GFAP+/CD45-). Preliminary observations revealed higher CTC counts in CSF (median 15.5 cells/mL) compared to blood (median 3.0 cells/mL), with notable differences between compartments suggesting they may reflect distinct aspects of disease biology. In a patient who developed progressive disease, we observed a substantial increase in CSF CTCs from 14 to 116 cells/mL, warranting further investigation in larger cohorts. Additionally, we detected CTC clusters in both compartments, an intriguing finding with potential biological significance. While our interim analysis provides technical proof-of-concept for CTC detection in glioblastoma patients, the limited sample size precludes definitive conclusions regarding clinical utility. These findings establish a methodological foundation for future comprehensive studies exploring the relationship between CTC dynamics and clinical outcomes in high-grade gliomas.
Collapse
Affiliation(s)
- Yu-Chung Juan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | | | - Hui-Ju Lin
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Cheng-Hao Hung
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University and Hospital, Taichung, Taiwan
- Department of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ju Lin
- Sleep Medicine Center, China Medical University Hospital, Taichung, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Bangash AH, Poudel P, Alshuqayfi KM, Ahmed M, Akinduro OO, Essayed WI, Salehi A, De la Garza Ramos R, Yassari R, Singh H, Sheehan JP, Esquenazi Y. Treatment-induced ripple effect: a systematic review exploring the abscopal phenomenon in Glioblastoma multiforme. J Neurooncol 2025; 172:77-87. [PMID: 39699762 DOI: 10.1007/s11060-024-04912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE This systematic review aimed to collate and synthesize the available literature on the abscopal effect in Glioblastoma multiforme (GBM) neoplasms, focusing on the reported biochemical mechanisms driving the abscopal effect. METHODS A systematic search was conducted in PubMed, Cochrane Database of Systematic Reviews, and Epistemonikos from inception to May 1, 2023. Studies exploring the abscopal effect in GBM were included. The Clinical Relevance Assessment of Animal Preclinical research (RAA) tool was used to assess methodological quality of preclinical studies. Data on preclinical models, biochemical mechanisms, and outcomes were extracted and synthesized systrmatically. RESULTS Out of a total of 7 studies, five preclinical studies met the inclusion criteria. The studies utilized various in vivo mouse models, including bilateral tumor models and immunohumanized mice. Key biochemical mechanisms identified included immunogenic cell death, danger-associated molecular pattern release, macrophage activation, and enhanced T cell responses. Combinatorial approaches involving oncolytic virotherapy, nanoparticle-based treatments, radiation therapy, and immune checkpoint inhibitors showed promise in inducing abscopal effects. Significant tumor growth inhibition and improved survival were reported in treated animals. However, the RAA analysis highlighted concerns regarding research transparency and internal validity across studies. CONCLUSIONS This systematic review highlighted the potential of the abscopal effect in GBM, demonstrating its ability to enhance anti-tumor immune responses both locally and systemically. The synergistic effects of combinatorial approaches showed promise for improving outcomes. However, the low methodological quality of existing studies underscored the need for more rigorous preclinical research. Future studies should focus on improving research transparency, exploring the abscopal effect in other primary CNS neoplasms, and translating these findings into clinical trials to assess safety and efficacy in humans.
Collapse
Affiliation(s)
- Ali Haider Bangash
- Hhaider5 Research Group, Rawalpindi, Pakistan
- Spine Research Group, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Prabhat Poudel
- Hhaider5 Research Group, Rawalpindi, Pakistan
- Nepal Medical College, Kathmandu, Nepal
| | - Khalid M Alshuqayfi
- Hhaider5 Research Group, Rawalpindi, Pakistan
- Department of Neurosurgery, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mudassir Ahmed
- Hhaider5 Research Group, Rawalpindi, Pakistan
- Department of Neurosurgery, Shifa International Hospital, Islamabad, Pakistan
| | | | - Walid Ibn Essayed
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rafael De la Garza Ramos
- Spine Research Group, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurosurgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Reza Yassari
- Spine Research Group, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurosurgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harminder Singh
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Division of Neurosurgery, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Jason P Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Yoshua Esquenazi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center, 6400 Fannin Street, Suite # 2800, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Taori S, Habib A, Adida S, Gecici NN, Sharma N, Calcaterra M, Tang A, Pandya S, Mehra A, Deng H, Elidrissy H, Idrissi YA, Amjadzadeh M, Zinn PO. Circulating biomarkers in high-grade gliomas: current insights and future perspectives. J Neurooncol 2025; 172:41-49. [PMID: 39671020 DOI: 10.1007/s11060-024-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE High-grade gliomas (HGG) represent a challenging subset of brain tumors characterized by aggressive nature and poor prognosis. Histopathology remains to be the standard for diagnosis, however, it is invasive, prone to sampling errors, and may not capture the full tumor heterogeneity and evolution over time. In recent years, there has been a growing interest in the potential utility of circulating biomarkers, obtained through minimally-invasive liquid biopsies, providing an opportunity for diagnosis, prognostication, monitoring treatment response and developing targeted therapies. METHODS We have reviewed the literature on circulating biomarkers for HGG, including circulating tumor cells (CTCs), circulating tumor-derived exosomes/extracellular vesicles (ctEVs), circulating tumor-derived DNA (ctDNA), circulating tumor-derived miRNA (ctmiRNA), and circulating tumor-derived proteins. RESULTS CTCs provide real-time information about tumor characteristics for molecular profiling and monitoring treatment response, yet their low numbers in circulation makes detection challenging. ctEVs carry a range of biomolecules and are easily detectable. However, they are not exclusively released from tumor cells and heterogeneity in their content requires standardized isolation and analysis methods. ctDNA is another promising biomarker with its levels correlating with the disease stage. However, its low concentration in blood requires highly sensitive techniques for identification and differentiation from normal cell-free DNA. ctmiRNA and tumor-derived proteins show promise but are limited by their susceptibility to dilution and lack of specificity in current technology. CONCLUSION This review highlights the transformative potential of circulating biomarkers in the management of HGG, with implications for improving patient outcomes, optimizing treatment strategies, and advancing precision oncology in neuro-oncology practice.
Collapse
Affiliation(s)
- Suchet Taori
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Ahmed Habib
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Samuel Adida
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Nikhil Sharma
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | | | - Anthony Tang
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Sumaarg Pandya
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Arnav Mehra
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Hansen Deng
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Hayat Elidrissy
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Yassine Alami Idrissi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Mohammadreza Amjadzadeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA
| | - Pascal O Zinn
- School of Medicine, University of Pittsburgh, Pennsylvania, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pennsylvania, PA, USA.
| |
Collapse
|
4
|
Gumusgoz E, Kasiri S, Youssef I, Verma M, Chopra R, Villarreal Acha D, Wu J, Marriam U, Alao E, Chen X, Guisso DR, Gray SJ, Shah BR, Minassian BA. Focused ultrasound widely broadens AAV-delivered Cas9 distribution and activity. Gene Ther 2025:10.1038/s41434-025-00517-w. [PMID: 39893321 DOI: 10.1038/s41434-025-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Because children have little temporal exposure to environment and aging, most pediatric neurological diseases are inherent, i.e. genetic. Since postnatal neurons and astrocytes are mostly non-replicating, gene therapy and genome editing present enormous promise in child neurology. Unlike in other organs, which are highly permissive to adeno-associated viruses (AAV), the mature blood-brain barrier (BBB) greatly limits circulating AAV distribution to the brain. Intrathecal administration improves distribution but to no more than 20% of brain cells. Focused ultrasound (FUS) opens the BBB transiently and safely. In the present work we opened the hippocampal BBB and delivered a Cas9 gene via AAV9 intrathecally. This allowed brain first-pass, and subsequent vascular circulation and re-entry through the opened BBB. The mouse model used was of Lafora disease, a neuroinflammatory disease due to accumulations of misshapen overlong-branched glycogen. Cas9 was targeted to the gene of the glycogen branch-elongating enzyme glycogen synthase. We show that FUS dramatically (2000-fold) improved hippocampal Cas9 distribution and greatly reduced the pathogenic glycogen accumulations and hippocampal inflammation. FUS is in regular clinical use for other indications. Our work shows that it has the potential to vastly broaden gene delivery or editing along with clearance of corresponding pathologic basis of brain disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ibrahim Youssef
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
- Advanced Imaging Research Center, UTSW Medical Center, Dallas, TX, USA
- Solenic Medical Inc., Addison, TX, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Esther Alao
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bhavya R Shah
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Advanced Neuroscience Imaging Research Lab, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Department of Neurology, UTSW Medical Center, Dallas, TX, USA.
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. A field resource for the glioma cerebrospinal fluid proteome: impacts of resection and location on biomarker discovery. Neuro Oncol 2024:noae277. [PMID: 39786485 DOI: 10.1093/neuonc/noae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown. METHODS Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas. This included pre- versus post-resection intracranial CSF samples obtained at early (1-16 days; n=20 patients) or delayed (86-153 days; n=11 patients) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14 patients). RESULTS Significant differences were identified in the CSF proteome between lumbar, subarachnoid, and ventricular CSF from patients with gliomas. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome, with distinct sets of proteins present at different timepoints since resection. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies, such as bevacizumab and immunotherapies. CONCLUSIONS The intracranial glioma CSF proteome serves as a rich and dynamic reservoir of potential biomarkers that can be used to evaluate the effects of resection and other therapies over time. All data within this study, including detailed individual clinical annotations, are shared as a resource for the neuro-oncology community to collectively address these unanswered questions and further understand glioma biology through CSF proteomics.
Collapse
Affiliation(s)
| | - Christopher J Graser
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health; Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University; Cambridge, MA, USA
| | - Arthur E Warrington
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Matthew D Hoplin
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| | | | - Noor Malik
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| | | | - Lucas P Carlstrom
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
- Department of Neurological Surgery, The Ohio State University; Columbus, OH, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic; Rochester, MN, USA
| | | | - Samar Ikram
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| | - Keyvan Ghadimi
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine; Bronx, NY, USA
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore/Albert Einstein College of Medicine; Bronx, NY, USA
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic; Rochester, MN, USA
| | - Fredric B Meyer
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| | | | | | - Ugur Sener
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health; Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University; Cambridge, MA, USA
- Department of Center for Cancer Evolution, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of The Ludwig Center, Harvard University; Cambridge, MA, USA
- The Eli and Edythe L. Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Jian L Campian
- Department of Medical Oncology, Mayo Clinic; Rochester, MN, USA
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
6
|
Liu C, Cai Y, Mou S. Liquid biopsy in lung cancer: The role of circulating tumor cells in diagnosis, treatment, and prognosis. Biomed Pharmacother 2024; 181:117726. [PMID: 39612860 DOI: 10.1016/j.biopha.2024.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Despite numerous therapeutic advancements, such as immune checkpoint inhibitors, lung cancer continues to be the leading cause of cancer-related mortality. Therefore, the identification of cancer at an early stage is becoming a significant subject in contemporary oncology. Despite significant advancements in early detection tactics in recent decades, they continue to provide challenges because of the inconspicuous symptoms observed during the early stages of the primary tumor. Presently, tumor biomarkers and imaging techniques are extensively employed across different forms of cancer. Nevertheless, every approach has its own set of constraints. In certain instances, the detriments outweigh the advantages. Hence, there is an urgent need to enhance early detection methods. Currently, liquid biopsy is considered more flexible and not intrusive method in comparison to conventional test for early detection. Circulating tumor cells (CTCs) are crucial components of liquid biopsy and have a pivotal function in the spread and formation of secondary tumors. These indicators show great promise in the early identification of cancer. This study presents a comprehensive examination of the methodologies employed for the isolation and enrichment of circulating tumor cells (CTCs) in lung cancer. Additionally, it explores the formation of clusters of CTCs, which have a pivotal function in facilitating the effective dissemination of cancer to distant organs. In addition, we discuss the importance of CTCs in the detection, treatment, and prognosis of lung cancer.
Collapse
Affiliation(s)
- Chibo Liu
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Yanqun Cai
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Sihua Mou
- Department of Clinical Laboratory, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
7
|
Izhar M, Thakur A, Park DJ, Chang SD. Ultrasound mediated blood-brain barrier opening increases brain tumor biomarkers: A review of preclinical and clinical trials. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100277. [PMID: 40027314 PMCID: PMC11863884 DOI: 10.1016/j.jlb.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 03/05/2025]
Abstract
The diagnosis of brain tumors typically relies on magnetic resonance imaging (MRI), computed tomography (CT), and invasive procedures like biopsies or surgical resection for confirmation and genetic profiling. However, these methods have limitations, especially in distinguishing treatment effects like pseudo-progression from actual tumor progression, and repeated biopsies pose risks. Liquid biopsy (LB) offers a non-invasive alternative, detecting tumor-derived biomarkers in blood and cerebrospinal fluid (CSF). Despite its potential, the low concentration of brain tumor biomarkers in blood due to the blood-brain barrier (BBB), limits the clinical utility of LB. MRI-guided focused ultrasound (MRgFUS) combined with microbubbles provides a novel solution by temporarily disrupting the BBB, facilitating the passage of therapeutic agents, and enabling tumor biomarker detection. This technique, termed "sonobiopsy," enables non-invasive biomarker collection for liquid biopsy, potentially improving brain tumor diagnosis and monitoring.
Collapse
Affiliation(s)
- Muhammad Izhar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David J. Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven D. Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Rudà R, Pellerino A, Soffietti R. Blood and cerebrospinal fluid biomarkers in neuro-oncology. Curr Opin Neurol 2024; 37:693-701. [PMID: 39329301 DOI: 10.1097/wco.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the value of blood and CSF biomarkers in primary CNS tumors. RECENT FINDINGS Several analytes can be assessed with liquid biopsy techniques, including circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free RNA, circulating proteins and metabolites, extracellular vesicles and tumor-educated platelets. Among diffuse gliomas of the adult, ctDNA in blood or CSF has represented the most used analyte, with the detection of molecular alterations such as MGMT promoter, PTEN, EGFRVIII, TERT promoter mutation and IDH R132H mutation. In general, CSF is enriched for ctDNA as compared with plasma. The use of MRI-guided focused ultrasounds to disrupt the blood-brain barrier could enhance the level of biomarkers in both blood and CSF. The detection of MYD88 L265P mutation with digital droplet PCR and the detection of ctDNA with next generation sequencing represent the best tools to diagnose and monitoring CNS lymphomas under treatment. In meningiomas, the low concentration of ctDNA is a limiting factor for the detection of driver mutations, such as NF2, AKTs, SMO, KLF4, TRAF7, SMARCB1, SMARCE1, PTEN, and TERT; an alternative approach could be the isolation of ctDNA through circulating extracellular vesicles. Liquid biopsies are being used extensively for diagnosis and surveillance of diffuse midline gliomas, in particular with the detection of the driver mutation H3K27M. Last, specific methylome patterns in CSF may allow the distinction of glioblastomas from CNS lymphomas or meningiomas. SUMMARY This review summarizes the current knowledge and future perspectives of liquid biopsy of blood and CSF for diagnosis and monitoring of primary CNS tumors.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University and City of Health and Science Hospital
| | | |
Collapse
|
9
|
Berzero G, Pieri V, Palazzo L, Finocchiaro G, Filippi M. Liquid biopsy in brain tumors: moving on, slowly. Curr Opin Oncol 2024; 36:521-529. [PMID: 39011725 DOI: 10.1097/cco.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW Due to limited access to the tumor, there is an obvious clinical potential for liquid biopsy in patients with primary brain tumors. Here, we review current approaches, present limitations to be dealt with, and new promising data that may impact the field. RECENT FINDINGS The value of circulating tumor cell-free DNA (ctDNA) in the cerebrospinal fluid (CSF) for the noninvasive diagnosis of primary brain tumors has been confirmed in several reports. The detection of ctDNA in the peripheral blood is desirable for patient follow-up but requires ultrasensitive methods to identify low mutant allelic frequencies. Digital PCR approaches and targeted gene panels have been used to identify recurrent hotspot mutations and copy number variations (CNVs) from CSF or plasma. Tumor classification from circulating methylomes in plasma has been actively pursued, although the need of advanced bioinformatics currently hampers clinical application. The use of focused ultrasounds to open the blood-brain barrier may represent a way to enrich of ctDNA the peripheral blood and enhance plasma-based liquid biopsy. SUMMARY Monitoring CNVs and hotspot mutations by liquid biopsy is a promising tool to detect minimal residual disease and strengthen response assessment in patients with primary brain tumors. Novel methods to increase the relative and/or absolute amount of ctDNA can improve the clinical potential of plasma-based liquid biopsies.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | | | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Suvarnapathaki S, Serrano-Farias A, Dudley JC, Bettegowda C, Rincon-Torroella J. Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma. Life (Basel) 2024; 14:1312. [PMID: 39459612 PMCID: PMC11509808 DOI: 10.3390/life14101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Using microRNAs (miRNAs) as potential circulating biomarkers in diagnosing and treating glioblastoma (GBM) has garnered a lot of scientific and clinical impetus in the past decade. As an aggressive primary brain tumor, GBM poses challenges in early detection and effective treatment with significant current diagnostic constraints and limited therapeutic strategies. MiRNA dysregulation is present in GBM. The intricate involvement of miRNAs in altering cell proliferation, invasion, and immune escape makes them prospective candidates for identifying and monitoring GBM diagnosis and response to treatment. These miRNAs could play a dual role, acting as both potential diagnostic markers and targets for therapy. By modulating the activity of various oncogenic and tumor-suppressive proteins, miRNAs create opportunities for precision medicine and targeted therapies in GBM. This review centers on the critical role and function of circulating miRNA biomarkers in GBM diagnosis and treatment. It highlights their significance in providing insights into disease progression, aiding in early diagnosis, and potential use as targets for novel therapeutic interventions. Ultimately, the study of miRNA would contribute to improving patient outcomes in the challenging landscape of GBM management.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Antolin Serrano-Farias
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jonathan C. Dudley
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (A.S.-F.); (J.C.D.); (C.B.)
| |
Collapse
|
11
|
Boop S, Shimony N, Boop F. How modern treatments have modified the role of surgery in pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3357-3365. [PMID: 38676718 PMCID: PMC11511694 DOI: 10.1007/s00381-024-06412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Low-grade gliomas are the most common brain tumor of childhood, and complete resection offers a high likelihood of cure. However, in many instances, tumors may not be surgically accessible without substantial morbidity, particularly in regard to gliomas arising from the optic or hypothalamic regions, as well as the brainstem. When gross total resection is not feasible, alternative treatment strategies must be considered. While conventional chemotherapy and radiation therapy have long been the backbone of adjuvant therapy for low-grade glioma, emerging techniques and technologies are rapidly changing the landscape of care for patients with this disease. This article seeks to review the current and emerging modalities of treatment for pediatric low-grade glioma.
Collapse
Affiliation(s)
- Scott Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, LeBonheur Children's Hospital, Memphis, TN, USA
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| | - Frederick Boop
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.
- Global Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Yan L, Fu K, Li L, Li Q, Zhou X. Potential of sonobiopsy as a novel diagnosis tool for brain cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200840. [PMID: 39077551 PMCID: PMC11284684 DOI: 10.1016/j.omton.2024.200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Brain tumors have a poor prognosis. Early, accurate diagnosis and treatment are crucial. Although brain surgical biopsy can provide an accurate diagnosis, it is highly invasive and risky and is not suitable for follow-up examination. Blood-based liquid biopsies have a low detection rate of tumor biomarkers and limited evaluation ability due to the existence of the blood-brain barrier (BBB). The BBB is composed of brain capillary endothelial cells through tight junctions, which prevents the release of brain tumor markers to the human peripheral circulation, making it more difficult to diagnose, predict prognosis, and evaluate therapeutic response through brain tumor markers than other tumors. Focused ultrasound (FUS)-enabled liquid biopsy (sonobiopsy) is an emerging technique using FUS to promote the release of tumor markers into the circulatory system and cerebrospinal fluid, thus facilitating tumor detection. The feasibility and safety data from both animal models and clinical trials support sonobiopsy as a great potential in the diagnosis of brain diseases.
Collapse
Affiliation(s)
- Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Kang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qing Li
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| | - Xiaodong Zhou
- Ultrasound Diagnosis and Treatment Center, Xi’an International Medical Center Hospital, Xi’an, China
| |
Collapse
|
13
|
Foffano L, Vida R, Piacentini A, Molteni E, Cucciniello L, Da Ros L, Silvia B, Cereser L, Roncato R, Gerratana L, Puglisi F. Is ctDNA ready to outpace imaging in monitoring early and advanced breast cancer? Expert Rev Anticancer Ther 2024; 24:679-691. [PMID: 38855809 DOI: 10.1080/14737140.2024.2362173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) and radiological imaging are increasingly recognized as crucial elements in breast cancer management. While radiology remains the cornerstone for screening and monitoring, ctDNA holds distinctive advantages in anticipating diagnosis, recurrence, or progression, providing concurrent biological insights complementary to imaging results. AREAS COVERED This review delves into the current evidence on the synergistic relationship between ctDNA and imaging in breast cancer. It presents data on the clinical validity and utility of ctDNA in both early and advanced settings, providing insights into emerging liquid biopsy techniques like epigenetics and fragmentomics. Simultaneously, it explores the present and future landscape of imaging methodologies, particularly focusing on radiomics. EXPERT OPINION Numerous are the current technical, strategic, and economic challenges preventing the clinical integration of ctDNA analysis in the breast cancer monitoring. Understanding these complexities and devising targeted strategies is pivotal to effectively embedding this methodology into personalized patient care.
Collapse
Affiliation(s)
- Lorenzo Foffano
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Vida
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | | | - Elisabetta Molteni
- Department of Medicine, University of Udine, Udine, Italy
- Weill Cornell Medicine, Department of Medicine, Division of Hematology-Oncology, New York, NY, USA
| | - Linda Cucciniello
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Lucia Da Ros
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Buriolla Silvia
- Department of Oncology, Santa Maria della Misericordia University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Lorenzo Cereser
- Department of Medicine, University of Udine, Udine, Italy
- Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), University Hospital S. Maria della Misericordia, Udine, Italy
| | | | - Lorenzo Gerratana
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| |
Collapse
|
14
|
Nayak L, Bettegowda C, Scherer F, Galldiks N, Ahluwalia M, Baraniskin A, von Baumgarten L, Bromberg JEC, Ferreri AJM, Grommes C, Hoang-Xuan K, Kühn J, Rubenstein JL, Rudà R, Weller M, Chang SM, van den Bent MJ, Wen PY, Soffietti R. Liquid biopsy for improving diagnosis and monitoring of CNS lymphomas: A RANO review. Neuro Oncol 2024; 26:993-1011. [PMID: 38598668 PMCID: PMC11145457 DOI: 10.1093/neuonc/noae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.
Collapse
Affiliation(s)
- Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Florian Scherer
- Department of Medicine I, Faculty of Medicine, Medical Center—University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Medical Faculty and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), and Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Manmeet Ahluwalia
- Rose and Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland OH and Miami Cancer Institute, Baptist Health South Florida, International University, Miami, Florida, USA
| | - Alexander Baraniskin
- Department of Hematology, Oncology and Palliative Care, Evangelisches Krankenhaus Hamm, Hamm, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, Ludwig-Maximilians—University of Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Andrés J M Ferreri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Khê Hoang-Xuan
- APHP, Department of Neuro-oncology, Groupe Hospitalier Pitié-Salpêtrière; Sorbonne Université, Paris Brain Institute ICM, Paris, France
| | - Julia Kühn
- Department of Medicine I, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany
| | - James L Rubenstein
- UCSF Hematology/Oncology, Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of California, San Francisco, California, USA
| | | | - Patrick Y Wen
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| |
Collapse
|
15
|
Riviere-Cazaux C, Graser CJ, Warrington AE, Hoplin MD, Andersen KM, Malik N, Palmer EA, Carlstrom LP, Dasari S, Munoz-Casabella A, Ikram S, Ghadimi K, Himes BT, Jusue-Torres I, Sarkaria JN, Meyer FB, Van Gompel JJ, Kizilbash SH, Sener U, Michor F, Campian JL, Parney IF, Burns TC. The dynamic impact of location and resection on the glioma CSF proteome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307463. [PMID: 38798641 PMCID: PMC11118641 DOI: 10.1101/2024.05.15.24307463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples, including anatomical location and post-surgical changes, remains unknown. To that end, pre- versus post-resection intracranial CSF samples were obtained at early (1-16 days; n=20) or delayed (86-153 days; n=11) timepoints for patients with glioma. Paired lumbar-versus-intracranial glioma CSF samples were also obtained (n=14). Using aptamer-based proteomics, we identify significant differences in the CSF proteome between lumbar, subarachnoid, and ventricular CSF. Our analysis of serial intracranial CSF samples suggests the early potential for disease monitoring and evaluation of pharmacodynamic impact of targeted therapies. Importantly, we found that resection had a significant, evolving longitudinal impact on the CSF proteome. Proteomic data are provided with individual clinical annotations as a resource for the field. One Sentence Summary Glioma cerebrospinal fluid (CSF) accessed intra-operatively and longitudinally via devices can reveal impacts of treatment and anatomical location.
Collapse
|
16
|
Otsuji R, Fujioka Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Nakamizo A, Mizoguchi M, Yoshimoto K. Liquid Biopsy for Glioma Using Cell-Free DNA in Cerebrospinal Fluid. Cancers (Basel) 2024; 16:1009. [PMID: 38473369 PMCID: PMC10930790 DOI: 10.3390/cancers16051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glioma is one of the most common primary central nervous system (CNS) tumors, and its molecular diagnosis is crucial. However, surgical resection or biopsy is risky when the tumor is located deep in the brain or brainstem. In such cases, a minimally invasive approach to liquid biopsy is beneficial. Cell-free DNA (cfDNA), which directly reflects tumor-specific genetic changes, has attracted attention as a target for liquid biopsy, and blood-based cfDNA monitoring has been demonstrated for other extra-cranial cancers. However, it is still challenging to fully detect CNS tumors derived from cfDNA in the blood, including gliomas, because of the unique structure of the blood-brain barrier. Alternatively, cerebrospinal fluid (CSF) is an ideal source of cfDNA and is expected to contribute significantly to the liquid biopsy of gliomas. Several successful studies have been conducted to detect tumor-specific genetic alterations in cfDNA from CSF using digital PCR and/or next-generation sequencing. This review summarizes the current status of CSF-based cfDNA-targeted liquid biopsy for gliomas. It highlights how the approaches differ from liquid biopsies of other extra-cranial cancers and discusses the current issues and prospects.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu 879-5593, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka 810-8563, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Betancur MI, Case A, Ilich E, Mehta N, Meehan S, Pogrebivsky S, Keir ST, Stevenson K, Brahma B, Gregory S, Chen W, Ashley DM, Bellamkonda R, Mokarram N. A neural tract-inspired conduit for facile, on-demand biopsy of glioblastoma. Neurooncol Adv 2024; 6:vdae064. [PMID: 38813113 PMCID: PMC11135361 DOI: 10.1093/noajnl/vdae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background A major hurdle to effectively treating glioblastoma (GBM) patients is the lack of longitudinal information about tumor progression, evolution, and treatment response. Methods In this study, we report the use of a neural tract-inspired conduit containing aligned polymeric nanofibers (i.e., an aligned nanofiber device) to enable on-demand access to GBM tumors in 2 rodent models. Depending on the experiment, a humanized U87MG xenograft and/or F98-GFP+ syngeneic rat tumor model was chosen to test the safety and functionality of the device in providing continuous sampling access to the tumor and its microenvironment. Results The aligned nanofiber device was safe and provided a high quantity of quality genomic materials suitable for omics analyses and yielded a sufficient number of live cells for in vitro expansion and screening. Transcriptomic and genomic analyses demonstrated continuity between material extracted from the device and that of the primary, intracortical tumor (in the in vivo model). Conclusions The results establish the potential of this neural tract-inspired, aligned nanofiber device as an on-demand, safe, and minimally invasive access point, thus enabling rapid, high-throughput, longitudinal assessment of tumor and its microenvironment, ultimately leading to more informed clinical treatment strategies.
Collapse
Affiliation(s)
| | - Ayden Case
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nalini Mehta
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sean Meehan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sabrina Pogrebivsky
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Stephen T Keir
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Kevin Stevenson
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Barun Brahma
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | - Simon Gregory
- Molecular Physiology Institute, Duke University, Durham, North Carolina, USA
| | - Wei Chen
- Center for Genomic and Computational Biology, Duke University, Durham, Georgia, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Ravi Bellamkonda
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Nassir Mokarram
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
18
|
Sheehan J, Mantziaris G, Dumont C, Pikis S. Incidental meningiomas: a current and increasingly common challenge. J Neurooncol 2023; 165:569-571. [PMID: 38032427 DOI: 10.1007/s11060-023-04525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Jason Sheehan
- Department of Neurological Surgery, University of Virginia, 22908, Charlottesville, VA, Box 800212, USA.
| | - George Mantziaris
- Department of Neurological Surgery, University of Virginia, 22908, Charlottesville, VA, Box 800212, USA
| | - Chloe Dumont
- Department of Neurological Surgery, Hospices civils de Lyon, Lyon, France
| | - Stylianos Pikis
- Department of Stereotactic Radiosurgery and Radiation Therapy, Mediterraneo Hospital, Athens, Greece
- Neurosurgery, Apostolos Loukas Medical Center, Nicosia, Cyprus
| |
Collapse
|
19
|
Foster JB, Koptyra MP, Bagley SJ. Recent Developments in Blood Biomarkers in Neuro-oncology. Curr Neurol Neurosci Rep 2023; 23:857-867. [PMID: 37943477 DOI: 10.1007/s11910-023-01321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE OF REVIEW Given the invasive and high-risk nature of brain surgery, the need for non-invasive biomarkers obtained from the peripheral blood is greatest in tumors of the central nervous system (CNS). In this comprehensive review, we highlight recent advances in blood biomarker development for adult and pediatric brain tumors. RECENT FINDINGS We summarize recent blood biomarker development for CNS tumors across multiple key analytes, including peripheral blood mononuclear cells, cell-free DNA, cell-free RNA, proteomics, circulating tumor cells, and tumor-educated platelets. We also discuss methods for enhancing blood biomarker detection through transient opening of the blood-brain barrier. Although blood-based biomarkers are not yet used in routine neuro-oncology practice, this field is advancing rapidly and holds great promise for improved and non-invasive management of patients with brain tumors. Prospective and adequately powered studies are needed to confirm the clinical utility of any blood biomarker prior to widespread clinical implementation.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mateusz P Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Bagley
- Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, 10th Floor Perelman Center, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
21
|
Chen YH, Moore D, Lee CC, Su YH. Focused ultrasound for brain metastases: an update on global clinical trials. J Neurooncol 2023; 165:53-62. [PMID: 37910281 DOI: 10.1007/s11060-023-04492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Despite advances in immunotherapy and targeted treatments for malignancies of the central nervous system (CNS), the treatment of brain metastases (BMs) remains a formidable challenge, due largely to difficulties in crossing the blood-brain barrier (BBB), drug resistance, and molecular discrepancies. Focused ultrasound (FUS) is a non-invasive tool for BBB breaching, tumor ablation, enhancing drug delivery, promoting the release of tumor biomarkers for liquid biopsy, or the tumor microenvironment disruption. This paper presents a comprehensive review of the current literature related to FUS and its application in the treatment of brain metastasis. METHODS This review of the current literature via PubMed, Google Scholar, and Clincaltrials.gov focused on clinical trials in which FUS is used in the intracranial treatment of metastatic tumor, glioma, or GBM. RESULTS FUS is safe and effective for treatment of primary or metastatic brain tumors. FUS-augmented drug delivery can open BBB to facilitate the transport of chemotherapeutic agents, immunotherapies, and targeted treatments. The integration of FUS with liquid biopsy has considerable potential for early tumor detection, precise gene profiling, and personalized therapy. Sonodynamic therapy can induce tumor cell apoptosis and could potentially be used to enhance the outcomes of other tumor treatments, such as surgery and chemotherapy. CONCLUSION Further work is required to establish FUS as a standard therapy for BMs. FUS has the potential to transform brain tumor treatment, particularly when combined with immunotherapy and targeted therapy as a non-invasive alternative to surgery and radiation therapy.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - David Moore
- Focused Ultrasound Foundation, 1230 Cedars Court, Suite 206, Charlottesville, VA, 22903, USA
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yan-Hua Su
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurosurgery, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.
| |
Collapse
|
22
|
Wang Q, Liang Q, Wei W, Niu W, Liang C, Wang X, Wang X, Pan H. Concordance analysis of cerebrospinal fluid with the tumor tissue for integrated diagnosis in gliomas based on next-generation sequencing. Pathol Oncol Res 2023; 29:1611391. [PMID: 37822669 PMCID: PMC10562547 DOI: 10.3389/pore.2023.1611391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Purpose: The driver mutations of gliomas have been identified in cerebrospinal fluid (CSF). Here we compared the concordance between CSF and tumor tissue for integrated diagnosis in gliomas using next-generation sequencing (NGS) to evaluate the feasibility of CSF detection in gliomas. Patients and methods: 27 paired CSF/tumor tissues of glioma patients were sequenced by a customized gene panel based on NGS. All CSF samples were collected through lumbar puncture before surgery. Integrated diagnosis was made by analysis of histology and tumor DNA molecular pathology according to the 2021 WHO classification of the central nervous system tumors. Results: A total of 24 patients had detectable circulating tumor DNA (ctDNA) and 22 had at least one somatic mutation or chromosome alteration in CSF. The ctDNA levels varied significantly across different ages, Ki-67 index, magnetic resonance imaging signal and glioma subtypes (p < 0.05). The concordance between integrated ctDNA diagnosis and the final diagnosis came up to 91.6% (Kappa, 0.800). We reclassified the clinical diagnosis of 3 patients based on the results of CSF ctDNA sequencing, and 4 patients were reassessed depending on tumor DNA. Interestingly, a rare IDH1 R132C was identified in CSF ctDNA, but not in the corresponding tumor sample. Conclusion: This study demonstrates a high concordance between integrated ctDNA diagnosis and the final diagnosis of gliomas, highlighting the practicability of NGS based detection of mutations of CSF in assisting integrated diagnosis of gliomas, especially glioblastoma.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Qiujin Liang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Wuting Wei
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chong Liang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Xiaoxuan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| |
Collapse
|
23
|
Schupper AJ, Hadjipanayis CG. Novel approaches to targeting gliomas at the leading/cutting edge. J Neurosurg 2023; 139:760-768. [PMID: 36840741 PMCID: PMC11225597 DOI: 10.3171/2023.1.jns221798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/26/2023]
Abstract
Despite decades of clinical trials and surgical advances, the most common high-grade glioma, glioblastoma (GBM), remains an incurable disease with a dismal prognosis. Because of its infiltrative nature, GBM almost always recurs at the margin, or leading edge, where tumor cells invade the surrounding brain parenchyma. This region of GBMs is unique, or heterogeneous, with its own microenvironment that is different from the tumor bulk or core. The GBM microenvironment at the margin contains immunosuppressive constituents as well as invasive and therapy-resistant tumor cells that are difficult to treat. In addition, the blood-brain barrier remains essentially intact at the infiltrative margin of tumors; further limiting the effectiveness of therapies. The invasive margin creates the greatest challenge for neurosurgeons when managing these tumors. The current paradigm of resection of GBM tumors mainly focuses on resection of the contrast-enhancing component of tumors, while GBMs extend well beyond the contrast enhancement. The infiltrative margin represents a unique challenge and opportunity for solutions that may overcome current limitations in tumor treatments. In this review of the current literature, the authors discuss the current and developing advances focused on the detection and treatment of GBM at the infiltrative margin and how this could impact patient outcomes.
Collapse
Affiliation(s)
- Alexander J. Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
24
|
Lehrer EJ, Ahluwalia MS, Gurewitz J, Bernstein K, Kondziolka D, Niranjan A, Wei Z, Lunsford LD, Fakhoury KR, Rusthoven CG, Mathieu D, Trudel C, Malouff TD, Ruiz-Garcia H, Bonney P, Hwang L, Yu C, Zada G, Patel S, Deibert CP, Picozzi P, Franzini A, Attuati L, Prasad RN, Raval RR, Palmer JD, Lee CC, Yang HC, Jones BM, Green S, Sheehan JP, Trifiletti DM. Imaging-defined necrosis after treatment with single-fraction stereotactic radiosurgery and immune checkpoint inhibitors and its potential association with improved outcomes in patients with brain metastases: an international multicenter study of 697 patients. J Neurosurg 2023; 138:1178-1187. [PMID: 36115055 DOI: 10.3171/2022.7.jns22752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Immune checkpoint inhibitors (ICIs) and stereotactic radiosurgery (SRS) are commonly utilized in the management of brain metastases. Treatment-related imaging changes (TRICs) are a frequently observed clinical manifestation and are commonly classified as imaging-defined radiation necrosis. However, these findings are not well characterized and may predict a response to SRS and ICIs. The objective of this study was to investigate predictors of TRICs and their impact on patient survival. METHODS This retrospective multicenter cohort study was conducted through the International Radiosurgery Research Foundation. Member institutions submitted de-identified clinical and dosimetric data for patients with non-small cell lung cancer (NSCLC), melanoma, and renal cell carcinoma (RCC) brain metastases that had been treated with SRS and ICIs. Data were collected from March 2020 to February 2021. Univariable and multivariable Cox and logistic regression analyses were performed. The Kaplan-Meier method was used to evaluate overall survival (OS). The diagnosis-specific graded prognostic assessment was used to guide variable selection. TRICs were determined on the basis of MRI, PET/CT, or MR spectroscopy, and consensus by local clinical providers was required. RESULTS The analysis included 697 patients with 4536 brain metastases across 11 international institutions in 4 countries. The median follow-up after SRS was 13.6 months. The median age was 66 years (IQR 58-73 years), 54.1% of patients were male, and 57.3%, 36.3%, and 6.4% of tumors were NSCLC, melanoma, and RCC, respectively. All patients had undergone single-fraction radiosurgery to a median margin dose of 20 Gy (IQR 18-20 Gy). TRICs were observed in 9.8% of patients. The median OS for all patients was 24.5 months. On univariable analysis, Karnofsky Performance Status (KPS; HR 0.98, p < 0.001), TRICs (HR 0.67, p = 0.03), female sex (HR 0.67, p < 0.001), and prior resection (HR 0.60, p = 0.03) were associated with improved OS. On multivariable analysis, KPS (HR 0.98, p < 0.001) and TRICs (HR 0.66, p = 0.03) were associated with improved OS. A brain volume receiving ≥ 12 Gy of radiation (V12Gy) ≥ 10 cm3 (OR 2.78, p < 0.001), prior whole-brain radiation therapy (OR 3.46, p = 0.006), and RCC histology (OR 3.10, p = 0.01) were associated with an increased probability of developing TRICs. The median OS rates in patients with and without TRICs were 29.0 and 23.1 months, respectively (p = 0.03, log-rank test). CONCLUSIONS TRICs following ICI and SRS were associated with a median OS benefit of approximately 6 months in this retrospective multicenter study. Further prospective study and additional stratification are needed to validate these findings and further elucidate the role and etiology of this common clinical scenario.
Collapse
Affiliation(s)
- Eric J Lehrer
- 1Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | | - Ajay Niranjan
- 5Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zhishuo Wei
- 5Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - L Dade Lunsford
- 5Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kareem R Fakhoury
- 6Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - Chad G Rusthoven
- 6Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | | | - Claire Trudel
- 8Medicine, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Timothy D Malouff
- 9Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Henry Ruiz-Garcia
- 9Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | | | - Lindsay Hwang
- 11Radiation Oncology, University of Southern California, Los Angeles, California
| | - Cheng Yu
- Departments of10Neurosurgery and
| | | | - Samir Patel
- 12Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Piero Picozzi
- 14Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Franzini
- 14Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Luca Attuati
- 14Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Rahul N Prasad
- 15Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raju R Raval
- 15Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joshua D Palmer
- 15Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cheng-Chia Lee
- 16Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; and
| | - Huai-Che Yang
- 16Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; and
| | - Brianna M Jones
- 1Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sheryl Green
- 1Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason P Sheehan
- 17Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | | |
Collapse
|
25
|
Pilotto Heming C, Niemeyer Filho P, Moura-Neto V, Aran V. Recent advances in the use of liquid biopsy to fight central nervous system tumors. Cancer Treat Res Commun 2023; 35:100709. [PMID: 37088042 DOI: 10.1016/j.ctarc.2023.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Brain tumors are considered one of the deadliest types of cancer, being challenging to treat, especially due to the blood-brain barrier, which has been linked to treatment resistance. The genomic classification of brain tumors has been helping in the diagnostic precision, however tumor heterogeneity in addition to the difficulties to obtain tissue biopsies, represent a challenge. The biopsies are usually obtained either via neurosurgical removal or stereotactic tissue biopsy, which can be risky procedures for the patient. To overcome these challenges, liquid biopsy has become an interesting option by constituting a safer procedure than conventional biopsy, which may offer valuable cellular and molecular information representative of the whole organism. Besides, it is relatively easy to obtain such as in the case of blood (venipuncture) and urine sample collection. In the present comprehensive review, we discuss the newest information regarding liquid biopsy in the brain tumors' field, methods employed, the different sources of bio-fluids and their potential circulating targets.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil.
| |
Collapse
|
26
|
Hersh AM, Lubelski D, Theodore N, Sciubba DM, Jallo G, Shimony N. Approaches to Incidental Intradural Tumors of the Spine in the Pediatric Population. Pediatr Neurosurg 2023; 58:367-378. [PMID: 36948181 DOI: 10.1159/000530286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Incidental intradural tumors of the spine in the pediatric population are rare lesions whose management remains unclear. Surgeons must balance the risks of iatrogenic deficits and complications after surgical resection against the risks from progressive growth of the tumor. Moreover, the natural history of an incidental finding can be difficult to predict. Here, we review the literature on incidental intradural tumors of the spine and present considerations for their management. SUMMARY Growth of the tumor or changes in radiographic features are usually indications for resection. Asymptomatic lesions can be found in patients with genetic syndromes that predispose to tumor formation, such as neurofibromatosis type 1 and 2, schwannomatosis, and Von-Hippel-Lindau syndrome, and careful workup of a genetic cause is warranted in any patient presenting with multiple tumors and/or cutaneous features. Close follow-up is generally favored given the heavy tumor burden; however, some recommend pre-emptive resection to prevent permanent neurological deficits. Incidental intradural tumors can also occur in association with hydrocephalus, significant syringomyelia, and cord compression, and surgical treatment is usually warranted. Tumors may also be discovered as part of the workup for scoliosis, where they are not truly incidental to the scoliosis but rather are contributing to curve deformation. KEY MESSAGES Thorough workup of patients for associated genetic syndromes or comorbidities should be undertaken in pediatric patients with incidental intradural tumors. Further research is needed into the natural history of these incidental lesions. Incidental tumors can often be managed conservatively with close follow-up, with surgical intervention warranted for expanding tumors or new-onset symptoms.
Collapse
Affiliation(s)
- Andrew M Hersh
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA,
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Long Island Jewish Medical Center and North Shore University Hospital, Manhasset, New York, USA
| | - George Jallo
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, Johns Hopkins Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Semmes-Murphey clinic, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Bauman MM, Bouchal SM, Monie DD, Aibaidula A(Z, Singh R, Parney IF. Strategies, considerations, and recent advancements in the development of liquid biopsy for glioblastoma: a step towards individualized medicine in glioblastoma. Neurosurg Focus 2022; 53:E14. [PMID: 36455271 PMCID: PMC9879623 DOI: 10.3171/2022.9.focus22430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is a devasting primary brain tumor with less than a 5% 5-year survival. Treatment response assessment can be challenging because of inflammatory pseudoprogression that mimics true tumor progression clinically and on imaging. Developing additional noninvasive assays is critical. In this article, the authors review various biomarkers that could be used in developing liquid biopsies for GBM, along with strengths, limitations, and future applications. In addition, they present a potential liquid biopsy design based on the use of an extracellular vesicle-based liquid biopsy targeting nonneoplastic extracellular vesicles. METHODS The authors conducted a current literature review of liquid biopsy in GBM by searching the PubMed, Scopus, and Google Scholar databases. Articles were assessed for type of biomarker, isolation methodology, analytical techniques, and clinical relevance. RESULTS Recent work has shown that liquid biopsies of plasma, blood, and/or CSF hold promise as noninvasive clinical tools that can be used to diagnose recurrence, assess treatment response, and predict patient outcomes in GBM. Liquid biopsy in GBM has focused primarily on extracellular vesicles, cell-free tumor nucleic acids, and whole-cell isolates as focal biomarkers. GBM tumor signatures have been generated via analysis of tumor gene mutations, unique RNA expression, and metabolic and proteomic alterations. Liquid biopsies capture tumor heterogeneity, identifying alterations in GBM tumors that may be undetectable via surgical biopsy specimens. Finally, biomarker burden can be used to assess treatment response and recurrence in GBM. CONCLUSIONS Liquid biopsy offers a promising avenue for monitoring treatment response and recurrence in GBM without invasive procedures. Although additional steps must be taken to bring liquid biopsy into the clinic, proof-of-principle studies and isolation methodologies are promising. Ultimately, CSF and/or plasma-based liquid biopsy is likely to be a powerful tool in the neurosurgeon's arsenal in the near future for the treatment and management of GBM patients.
Collapse
Affiliation(s)
- Megan M.J. Bauman
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA,Department of Neurological Surgery, Rochester, Minnesota, USA
| | - Samantha M. Bouchal
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA,Department of Neurological Surgery, Rochester, Minnesota, USA
| | - Dileep D. Monie
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA,Department of Neurological Surgery, Rochester, Minnesota, USA
| | - Abudumijiti (Zack) Aibaidula
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohin Singh
- Mayo Clinic Alix School of Medicine, Phoenix, Arizona, USA
| | - Ian F. Parney
- Department of Neurological Surgery, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Mehkri Y, Woodford S, Pierre K, Dagra A, Hernandez J, Reza Hosseini Siyanaki M, Azab M, Lucke-Wold B. Focused Delivery of Chemotherapy to Augment Surgical Management of Brain Tumors. Curr Oncol 2022; 29:8846-8861. [PMID: 36421349 PMCID: PMC9689062 DOI: 10.3390/curroncol29110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy as an adjuvant therapy that has largely failed to significantly improve outcomes for aggressive brain tumors; some reasons include a weak blood brain barrier penetration and tumor heterogeneity. Recently, there has been interest in designing effective ways to deliver chemotherapy to the tumor. In this review, we discuss the mechanisms of focused chemotherapies that are currently under investigation. Nanoparticle delivery demonstrates both a superior permeability and retention. However, thus far, it has not demonstrated a therapeutic efficacy for brain tumors. Convection-enhanced delivery is an invasive, yet versatile method, which appears to have the greatest potential. Other vehicles, such as angiopep-2 decorated gold nanoparticles, polyamidoamine dendrimers, and lipid nanostructures have demonstrated efficacy through sustained release of focused chemotherapy and have either improved cell death or survival in humans or animal models. Finally, focused ultrasound is a safe and effective way to disrupt the blood brain barrier and augment other delivery methods. Clinical trials are currently underway to study the safety and efficacy of these methods in combination with standard of care.
Collapse
|
29
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
30
|
Uribe-Cardenas R, Giantini-Larsen AM, Garton A, Juthani RG, Schwartz TH. Innovations in the Diagnosis and Surgical Management of Low-Grade Gliomas. World Neurosurg 2022; 166:321-327. [PMID: 36192864 DOI: 10.1016/j.wneu.2022.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Low-grade gliomas are a broad category of tumors that can manifest at different stages of life. As a group, their prognosis has historically been considered to be favorable, and surgery is a mainstay of treatment. Advances in the molecular characterization of individual lesions has led to newer classification systems, a better understanding of the biological behavior of different neoplasms, and the identification of previously unrecognized entities. New prospective genetic and molecular data will help delineate better treatment paradigms and will continue to change the taxonomy of central nervous system tumors in the coming years. Advances in the field of radiomics will help predict the molecular profile of a particular tumor through noninvasive testing. Similarly, more precise methods of intraoperative tumor tissue analysis will aid surgical planning. Improved surgical outcomes propelled by novel surgical techniques and intraoperative adjuncts and emerging forms of medical treatment in the field of immunotherapy have enriched the management of these lesions. We review the contemporary management and innovations in the treatment of low-grade gliomas.
Collapse
Affiliation(s)
- Rafael Uribe-Cardenas
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Andrew Garton
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Rupa Gopalan Juthani
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
31
|
Mungur R, Zheng J, Wang B, Chen X, Zhan R, Tong Y. Low-Intensity Focused Ultrasound Technique in Glioblastoma Multiforme Treatment. Front Oncol 2022; 12:903059. [PMID: 35677164 PMCID: PMC9169875 DOI: 10.3389/fonc.2022.903059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma is one of the central nervous system most aggressive and lethal cancers with poor overall survival rate. Systemic treatment of glioblastoma remains the most challenging aspect due to the low permeability of the blood-brain barrier (BBB) and blood-tumor barrier (BTB), limiting therapeutics extravasation mainly in the core tumor as well as in its surrounding invading areas. It is now possible to overcome these barriers by using low-intensity focused ultrasound (LIFU) together with intravenously administered oscillating microbubbles (MBs). LIFU is a non-invasive technique using converging ultrasound waves which can alter the permeability of BBB/BTB to drug delivery in a specific brain/tumor region. This emerging technique has proven to be both safe and repeatable without causing injury to the brain parenchyma including neurons and other structures. Furthermore, LIFU is also approved by the FDA to treat essential tremors and Parkinson's disease. It is currently under clinical trial in patients suffering from glioblastoma as a drug delivery strategy and liquid biopsy for glioblastoma biomarkers. The use of LIFU+MBs is a step-up in the world of drug delivery, where onco-therapeutics of different molecular sizes and weights can be delivered directly into the brain/tumor parenchyma. Initially, several potent drugs targeting glioblastoma were limited to cross the BBB/BTB; however, using LIFU+MBs, diverse therapeutics showed significantly higher uptake, improved tumor control, and overall survival among different species. Here, we highlight the therapeutic approach of LIFU+MBs mediated drug-delivery in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Rajneesh Mungur
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiesheng Zheng
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ben Wang
- Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Tong
- Department of Neurosurgery of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|