1
|
Robertson FC, Nahed BV, Barkhoudarian G, Veeravagu A, Berg D, Kalkanis S, Olson JJ, Germano IM. American Association of Neurological Surgeons/Congress of the Neurological Surgeons Section on Tumors Guidelines: Assessing Their Impact on Brain Tumor Clinical Practice. Neurosurgery 2025; 96:e43-e51. [PMID: 39028201 DOI: 10.1227/neu.0000000000003125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Clinical guidelines direct healthcare professionals toward evidence-based practices. Evaluating guideline impact can elucidate information penetration, relevance, effectiveness, and alignment with evolving medical knowledge and technological advancements. As the American Association of Neurological Surgeons/Congress of Neurological Surgeons Section on Tumors marks its 40th anniversary in 2024, this article reflects on the tumor guidelines established by the Section over the past decade and explores their impact on other publications, patents, and information dissemination. Six tumor guideline categories were reviewed: low-grade glioma, newly diagnosed glioblastoma, progressive glioblastoma, metastatic brain tumors, vestibular schwannoma, and pituitary adenomas. Citation data were collected from Google Scholar and PubMed. Further online statistics, such as social media reach, and features in policy, news, and patents were sourced from Altmetric. Online engagement was assessed through website and CNS+ mobile application visits. Data were normalized to time since publication. Metastatic Tumor guidelines (2019) had the highest PubMed citation rate at 26.1 per year and webpage visits (29 100 page views 1/1/2019-9/30/2023). Notably, this guideline had two endorsement publications by partner societies, the Society of Neuro-Oncology and American Society of Clinical Oncology, concerning antiepileptic prophylaxis and steroid use, and the greatest reach on X (19.7 mentions/y). Citation rates on Google Scholar were led by Vestibular Schwannoma (2018). Non-Functioning Pituitary Adenoma led Mendeley reads. News, patent, or policy publications were led by low-grade glioma at 1.5/year. Our study shows that the American Association of Neurological Surgeons/Congress of Neurological Surgeons Section on Tumors guidelines go beyond citations in peer-reviewed publications to include patents, online engagement, and information dissemination to the public.
Collapse
Affiliation(s)
- Faith C Robertson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston , Massachusetts , USA
| | - Garni Barkhoudarian
- Neurosurgery Division, Pacific Neuroscience Institute, Santa Monica , California , USA
| | - Anand Veeravagu
- Department of Neurosurgery, Stanford University, Stanford , California , USA
| | - David Berg
- Congress of Neurological Surgeons, Chicago , Illinois , USA
| | - Steven Kalkanis
- Department of Neurosurgery, Henry Ford Medical System, Detroit , Michigan , USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta , Georgia , USA
| | - Isabelle M Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York , New York , USA
| |
Collapse
|
2
|
Zhang JF, Okai B, Iovoli A, Goulenko V, Attwood K, Lim J, Hess RM, Abad AP, Prasad D, Fenstermaker RA. Bevacizumab and gamma knife radiosurgery for first-recurrence glioblastoma. J Neurooncol 2024; 166:89-98. [PMID: 38175460 PMCID: PMC10824796 DOI: 10.1007/s11060-023-04524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common central nervous system malignancy in adults. Despite decades of developments in surgical management, radiation treatment, chemotherapy, and tumor treating field therapy, GBM remains an ultimately fatal disease. There is currently no definitive standard of care for patients with recurrent glioblastoma (rGBM) following failure of initial management. OBJECTIVE In this retrospective cohort study, we set out to examine the relative effects of bevacizumab and Gamma Knife radiosurgery on progression-free survival (PFS) and overall survival (OS) in patients with GBM at first-recurrence. METHODS We conducted a retrospective review of all patients with rGBM who underwent treatment with bevacizumab and/or Gamma Knife radiosurgery at Roswell Park Comprehensive Cancer Center between 2012 and 2022. Mean PFS and OS were determined for each of our three treatment groups: Bevacizumab Only, Bevacizumab Plus Gamma Knife, and Gamma Knife Only. RESULTS Patients in the combined treatment group demonstrated longer post-recurrence median PFS (7.7 months) and median OS (11.5 months) compared to glioblastoma patients previously reported in the literature, and showed improvements in total PFS (p=0.015), total OS (p=0.0050), post-recurrence PFS (p=0.018), and post-recurrence OS (p=0.0082) compared to patients who received either bevacizumab or Gamma Knife as monotherapy. CONCLUSION This study demonstrates that the combined use of bevacizumab with concurrent stereotactic radiosurgery can have improve survival in patients with rGBM.
Collapse
Affiliation(s)
- Jeff F Zhang
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bernard Okai
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Austin Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ryan M Hess
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ajay P Abad
- Department of Neuro-Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dheerendra Prasad
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Nieder C, Willmann J, Andratschke NH. Prospective randomized clinical studies involving reirradiation: update of a systematic review. Strahlenther Onkol 2023; 199:787-797. [PMID: 37500926 PMCID: PMC10449695 DOI: 10.1007/s00066-023-02118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Reirradiation is a potentially useful option for many patients with recurrent cancer, aiming at cure or symptom palliation, depending on disease/recurrence type and stage. The purpose of this follow-up study to a previous review from 2016 was to summarize all recently published randomized trials. Points of interest again included identifcation of methodological strengths and weaknesses, practice-changing results, and open questions. MATERIAL AND METHODS Systematic review of trials published between 2015 and February 2023. RESULTS We reviewed 7 additional trials, most of which addressed reirradiation of head and neck or brain tumours. The median number of patients was 60. Mirroring the previous review, trial design, primary endpoints and statistical hypotheses varied widely. The updated results only impact on decision making for reirradiation of nasopharynx cancer and glioma. Patients with one of these diseases, as well as other head and neck cancers, may benefit from reirradiation-induced local control, e.g. in terms of progression-free survival. For the first time, hyperfractionated radiotherapy emerged as preferred option for recurrent, inoperable nasopharynx cancer. Despite better therapeutic ratio with hyperfractionation, serious toxicity remains a concern after high cumulative total doses. Randomized trials are still lacking for prostate cancer and other sites. CONCLUSION Multicentric randomized trials on reirradiation are feasible and continue to refine the current standard of care for recurrent disease after previous radiotherapy. Ongoing prospective studies such as the European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer (ESTRO-EORTC) observational cohort ReCare (NCT: NCT03818503) will further shape the clinical practice of reirradiation.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital Trust, 8092, Bodø, Norway.
- Department of Clinical Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9038, Tromsø, Norway.
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital Zürich, 8091, Zurich, Switzerland
| | | |
Collapse
|
4
|
Park DJ, Persad AR, Yoo KH, Marianayagam NJ, Yener U, Tayag A, Ustrzynski L, Emrich SC, Chuang C, Pollom E, Soltys SG, Meola A, Chang SD. Stereotactic Radiosurgery for Contrast-Enhancing Satellite Nodules in Recurrent Glioblastoma: A Rare Case Series From a Single Institution. Cureus 2023; 15:e44455. [PMID: 37664337 PMCID: PMC10470661 DOI: 10.7759/cureus.44455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Glioblastoma (GBM) is the most common malignant adult brain tumor and is invariably fatal. The standard treatment for GBM involves resection where possible, followed by chemoradiation per Stupp's protocol. We frequently use stereotactic radiosurgery (SRS) as a single-fraction treatment for small (volume ≤ 1cc) nodular recurrent GBM to the contrast-enhancing target on T1 MRI scan. In this paper, we aimed to evaluate the safety and efficacy of SRS for patients with contrast-enhancing satellite nodules in recurrent GBM. Methods This retrospective study analyzed the clinical and radiological outcomes of five patients who underwent CyberKnife (Accuray Inc., Sunnyvale, California) SRS at the institute between 2013 and 2022. Results From 96 patients receiving SRS for GBM, five (four males, one female; median age 53) had nine distinct new satellite lesions on MRI, separate from their primary tumor beds. Those nine lesions were treated with a median margin dose of 20 Gy in a single fraction. The three-, six, and 12-month local tumor control rates were 77.8%, 66.7%, and 26.7%, respectively. Median progression-free survival (PFS) was seven months, median overall survival following SRS was 10 months, and median overall survival (OS) was 35 months. Interestingly, the only lesion that did not show radiological progression was separate from the T2-fluid attenuated inversion recovery (FLAIR) signal of the main tumor. Conclusion Our SRS treatment outcomes for recurrent GBM satellite lesions are consistent with existing findings. However, in a unique case, a satellite nodule distinct from the primary tumor's T2-FLAIR signal and treated with an enlarged target volume showed promising control until the patient's demise. This observation suggests potential research avenues, given the limited strategies for 'multicentric' GBM lesions.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Kelly H Yoo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Ulas Yener
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sara C Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
5
|
Pan M, Xu W, Sun L, Wang C, Dong S, Guan Y, Yang J, Wang E. Dosimetric quality of HyperArc in boost radiotherapy for single glioblastoma: comparison with CyberKnife and manual VMAT. Radiat Oncol 2023; 18:8. [PMID: 36627633 PMCID: PMC9832781 DOI: 10.1186/s13014-022-02150-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) and hypo-fractionated radiotherapy are feasible treatment options for single glioblastoma multiforme when combined with conventional radiotherapy or delivered alone. HyperArc (HA), a novel linac-based method with 4 noncoplanar arcs, has been introduced into stereotactic radiosurgery (SRS) for single and multiple metastases. In this study, we compared the dosimetric quality of HyperArc with the well-established CyberKnife (CK) and conventional VMAT methods of SRT for a single, large target. METHODS Sixteen patients treated in our center with their clinical CK plans were enrolled, and the linac-based plans were designed in silico. From the aspect of normal tissue protection and treatment efficacy, we compared the conformity index (CI), gradient index (GI), homogeneity index (HI), dose distribution in planning target volume, dose in the normal brain tissue, and mean dose of several organs at risk (OARs). All of the data were evaluated with nonparametric Kruskal‒Wallis tests. We further investigated the relationship of the dose distribution with the tumor volume and its location. RESULTS The results showed that with a higher CI (0.94 ± 0.03) and lower GI (2.57 ± 0.53), the HA plans generated a lower dose to the OARs and the normal tissue. Meanwhile, the CK plans achieved a higher HI (0.35 ± 0.10) and generated a higher dose inside the tumor. Although manual VMAT showed slight improvement in dose quality and less monitoring units (2083 ± 225), HA can save half of the delivery time of CK (37 minutes) on average. CONCLUSION HA plans have higher conformity and spare OARs with lower normal tissue irradiation, while CK plans achieve a higher mean dose in tumors. HA with 4 arcs is sufficient in dosimetric quality for a single tumor with great convenience in planning and treatment processes compared with conventional VMAT. The tumor size and location are factors to be considered when selecting treatment equipment.
Collapse
Affiliation(s)
- Mingyuan Pan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Wenqian Xu
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Lei Sun
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Chaozhuang Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Shengnan Dong
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Yun Guan
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| | - Jun Yang
- Radonc Department, Foshan Chancheng Hospital, 3 Sanyou Road, Foshan, 528000 Guangdong China
| | - Enmin Wang
- CyberKnife Center, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- Neurosurgical Institute, Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Wulumuqi Road (M), Shanghai, 200040 China
| |
Collapse
|
6
|
Frosina G. Most recent update of preclinical and clinical data on radioresistance and radiosensitivity of high-grade gliomas-a radiation oncologist's perspective. Strahlenther Onkol 2023; 199:1-21. [PMID: 36445383 DOI: 10.1007/s00066-022-02020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE This review article discusses the studies concerning advances in radiotherapy of high-grade gliomas published in the second half of 2021. METHODS A literature search was performed in PubMed using the terms ("gliom* and radio*") and time limits 1 July 2021-31 December 2021. The articles were then manually selected for relevance to the analyzed topics. RESULTS Considerable progress has been made in the preclinical field on the mechanisms of radioresistance and radiosensitization of high-grade gliomas (HGG). However, fewer early-phase (I/II) clinical trials have been performed and, of the latter, even fewer have produced results that justify moving to phase III. In the 6‑month period under consideration, no studies were published that would lead to a change in clinical practice and the overall survival (OS) of patients remained similar to that of 2005, the year in which it increased significantly for the last time thanks to introduction of the alkylating agent temozolomide. CONCLUSION After 17 years of stalemate in improving the OS of patients with HGG, an in-depth analysis of the causes should be carried out in order to identify whether the research efforts conducted so far, including in the radiotherapeutic field, have been the most effective or require improvement. In our opinion, in addition to the therapeutic difficulties related to the biology of HGG tumors (e.g., high infiltrating capacity, multiple resistance mechanisms, blood-brain barrier), some public research policy choices may also play a role, especially in consideration of the limited interest of the pharmaceutical industry in the field of rare cancers.
Collapse
Affiliation(s)
- Guido Frosina
- Mutagenesis & Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
7
|
Liang R, Wu C, Liu S, Zhao W. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers. Drug Deliv 2022; 29:1620-1630. [PMID: 35612318 PMCID: PMC9135425 DOI: 10.1080/10717544.2022.2075986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022] Open
Abstract
Despite surgical and therapeutic advances, glioblastoma multiforme (GBM) is among the most fatal primary brain tumor that is aggressive in nature. Patients with GBM have a median lifespan of just 15 months when treated with the current standard of therapy, which includes surgical resection and concomitant chemo-radiotherapy. In recent years, nanotechnology has shown considerable promise in treating a variety of illnesses, and certain nanomaterials have been proven to pass the blood-brain barrier (BBB) and stay in glioblastoma tissues. Recent preclinical research suggests that the diagnosis and treatment of brain tumor is significantly explored through the intervention of nanomaterials that has showed enhanced effect. In order to elicit an antitumor response, it is necessary to retain the therapeutic candidates within glioblastoma tissues and this job is effectively carried out by nanocarrier particularly functionalized nanocarriers. In the arena of neoplastic diseases including GBM have achieved great attention in recent decades. Furthermore, interleukin-13 receptor α chain variant 2 (IL13Rα2) is a highly expressed and studied target in GBM that is lacked by the surrounding environment. The absence of IL13Rα2 in surrounding normal tissues has made it a suitable target in glioblastoma therapy. In this review article, we highlighted the role of IL13Rα2 as a potential target in GBM along with design and fabrication of efficient targeting strategies for IL13Rα2 through surface functionalized nanocarriers.
Collapse
Affiliation(s)
- Ruijia Liang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Cheng Wu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wenyan Zhao
- Department of General Practice Medicine, Center for General Practice Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
8
|
Leone A, Colamaria A, Fochi NP, Sacco M, Landriscina M, Parbonetti G, de Notaris M, Coppola G, De Santis E, Giordano G, Carbone F. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines 2022; 10:1927. [PMID: 36009473 PMCID: PMC9405902 DOI: 10.3390/biomedicines10081927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Current treatment guidelines for the management of recurrent glioblastoma (rGBM) are far from definitive, and the prognosis remains dismal. Despite recent advancements in the pharmacological and surgical fields, numerous doubts persist concerning the optimal strategy that clinicians should adopt for patients who fail the first lines of treatment and present signs of progressive disease. With most recurrences being located within the margins of the previously resected lesion, a comprehensive molecular and genetic profiling of rGBM revealed substantial differences compared with newly diagnosed disease. In the present comprehensive review, we sought to examine the current treatment guidelines and the new perspectives that polarize the field of neuro-oncology, strictly focusing on progressive disease. For this purpose, updated PRISMA guidelines were followed to search for pivotal studies and clinical trials published in the last five years. A total of 125 articles discussing locoregional management, radiotherapy, chemotherapy, and immunotherapy strategies were included in our analysis, and salient findings were critically summarized. In addition, an in-depth description of the molecular profile of rGBM and its distinctive characteristics is provided. Finally, we integrate the above-mentioned evidence with the current guidelines published by international societies, including AANS/CNS, EANO, AIOM, and NCCN.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Nicola Pio Fochi
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, Riuniti Hospital, 71122 Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Matteo de Notaris
- Department of Neurosurgery, “Rummo” Hospital, 82100 Benevento, Italy
| | - Giulia Coppola
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena De Santis
- Department of Anatomical Histological Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Guido Giordano
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Kannan S, Kannan Murugan A, Balasubramaniam S, Kannan Munirajan A, Alzahrani AS. Gliomas: Genetic alterations, mechanisms of metastasis, recurrence, drug resistance, and recent trends in molecular therapeutic options. Biochem Pharmacol 2022; 201:115090. [PMID: 35577014 DOI: 10.1016/j.bcp.2022.115090] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Glioma is the most common intracranial tumor with poor treatment outcomes and has high morbidity and mortality. Various studies on genomic analyses of glioma found a variety of deregulated genes with somatic mutations including TERT, TP53, IDH1, ATRX, TTN, etc. The genetic alterations in the key genes have been demonstrated to play a crucial role in gliomagenesis by modulating important signaling pathways that alter the fundamental intracellular functions such as DNA damage and repair, cell proliferation, metabolism, growth, wound healing, motility, etc. The SPRK1, MMP2, MMP9, AKT, mTOR, etc., genes, and noncoding RNAs (miRNAs, lncRNAs, circRNAs, etc) were shown mostly to be implicated in the metastases of glioma. Despite advances in the current treatment strategies, a low-grade glioma is a uniformly fatal disease with overall median survival of ∼5-7 years while the patients bearing high-grade tumors display poorer median survival of ∼9-10 months mainly due to aggressive metastasis and therapeutic resistance. This review discusses the spectrum of deregulated genes, molecular and cellular mechanisms of metastasis, recurrence, and its management, the plausible causes for the development of therapy resistance, current treatment options, and the recent trends in malignant gliomas. Understanding the pathogenic mechanisms and advances in molecular genetics would aid in the novel diagnosis, prognosis, and translation of pathogenesis-based treatment opportunities which could pave the way for precision medicine in glioma.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE UK
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia.
| | | | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600113 India
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh - 11211 Saudi Arabia
| |
Collapse
|
11
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
12
|
Chen ZP, Lin F, Guo C, Yang Q, Chen Y, Ke C, Sai K, Zhang J, Jiang X, Hu W, Xi S, Zhou J, Li D, Zhou Z, Zhao Q, Cao X. Initial report of a clinical trial evaluating the safety and efficiency of neoadjuvant camrelizumab and apatinib in patients with recurrent high-grade gliomas: A prospective, phase II, single-arm study. GLIOMA 2022. [DOI: 10.4103/glioma.glioma_6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|