1
|
Lewis D, Li KL, Djoukhadar I, Hannan CJ, Pathmanaban ON, Coope DJ, King AT. Emerging strategies for the prediction of behaviour, growth, and treatment response in vestibular schwannoma. Acta Neurochir (Wien) 2025; 167:116. [PMID: 40261443 PMCID: PMC12014738 DOI: 10.1007/s00701-025-06522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Vestibular schwannoma (VS) can present several management challenges for the clinician. Their unpredictable potential for growth creates uncertainty regarding when active treatment should be initiated, and once growth is confirmed which treatment option should be adopted, notably surgery or radiotherapy, and in particular stereotactic radiosurgery (SRS). The obvious benefits of SRS would ideally come with the ability to reliably predict long-term radiosurgery response/failure. Differentiation from temporary post-treatment phenomena such as transient tumour expansion or reactive swelling remains an unmet need. More powerful again would be the pre-treatment identification of which tumours will respond to radiosurgery and which will not. Over the past decade, there has been emerging interest in the development of non-invasive biomarkers, including imaging, for predicting growth and treatment response in VS. Alongside clinical radiographic predictors for VS growth such as extracanalicular tumour location and growth in the first year, studies have shown potential promise for advanced MRI and blood-based biomarkers that capture pathophysiological mechanism behind VS growth. Emerging interest in radiomics-based analyses of routinely acquired MRI, and the use of physiological imaging techniques such as dynamic-contrast enhanced MRI for pre- and post-treatment evaluation of tumour microvasculature and microstructure holds promise for revolutionizing this area. This article explores the current state of identifying VS growth at initial presentation, predicting treatment response to SRS and detecting early treatment failure, and finally the potential for developing more personalized patient selection for drug therapies, including bevacizumab, as well as emerging novel therapeutics for these tumours.
Collapse
Affiliation(s)
- Daniel Lewis
- Division of Cancer Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK.
- Department of Neurosurgery, Salford Royal Hospital, Nothern Care Alliance NHS Foundation Trust, Manchester, M6 8HD, UK.
| | - Ka-Loh Li
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ibrahim Djoukhadar
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - David J Coope
- Division of Cancer Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Alfaifi B, Hinz R, Jackson A, Wadeson A, Pathmanaban ON, Hammerbeck-Ward C, Rutherford SA, King AT, Lewis D, Coope DJ. Evidence for inflammation in normal-appearing brain regions in patients with growing sporadic vestibular schwannoma: A PET study. Neurooncol Adv 2024; 6:vdae094. [PMID: 38962752 PMCID: PMC11221070 DOI: 10.1093/noajnl/vdae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Background Nonauditory symptoms can be a prominent feature in patients with sporadic vestibular schwannoma (VS), but the cause of these symptoms is unknown. Inflammation is hypothesized to play a key role in the growth and symptomatic presentation of sporadic VS, and in this study, we investigated through translocator protein (TSPO) positron emission tomography (PET) whether inflammation occurred within the "normal appearing" brain of such patients and its association with tumor growth. Methods Dynamic PET datasets from 15 patients with sporadic VS (8 static and 7 growing) who had been previously imaged using the TSPO tracer [11C](R)-PK11195 were included. Parametric images of [11C](R)-PK11195 binding potential (BPND) and the distribution volume ratio (DVR) were derived and compared across VS growth groups within both contralateral and ipsilateral gray (GM) and white matter (WM) regions. Voxel-wise cluster analysis was additionally performed to identify anatomical regions of increased [11C](R)-PK11195 binding. Results Compared with static tumors, growing VS demonstrated significantly higher cortical (GM, 1.070 vs. 1.031, P = .03) and whole brain (GM & WM, 1.045 vs. 1.006, P = .03) [11C](R)-PK11195 DVR values. The voxel-wise analysis supported the region-based analysis and revealed clusters of high TSPO binding within the precentral, postcentral, and prefrontal cortex in patients with growing VS. Conclusions We present the first in vivo evidence of increased TSPO expression and inflammation within the brains of patients with growing sporadic VS. These results provide a potential mechanistic insight into the development of nonauditory symptoms in these patients and highlight the need for further studies interrogating the role of neuroinflammation in driving VS symptomatology.
Collapse
Affiliation(s)
- Bandar Alfaifi
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Andrea Wadeson
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Omar N Pathmanaban
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Charlotte Hammerbeck-Ward
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Scott A Rutherford
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Andrew T King
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Daniel Lewis
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - David J Coope
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
4
|
Vychopen M, Arlt F, Güresir E, Wach J. How to position the patient? A meta-analysis of positioning in vestibular schwannoma surgery via the retrosigmoid approach. Front Oncol 2023; 13:1106819. [PMID: 36816965 PMCID: PMC9929142 DOI: 10.3389/fonc.2023.1106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Objective Patient positioning is a matter of ongoing debate in the surgical treatment of vestibular schwannoma (VS). Main endpoints of this discussion are preservation of facial nerve functioning, extent of resection, and complications. In this meta-analysis, we aim to investigate the impact of patient positioning on VS surgery via the retrosigmoid approach. Methods We searched for eligible comparative trials on PubMed, Cochrane library, and Web of Science. Positioning groups were compared regarding facial nerve outcome, extent of resection, postoperative hydrocephalus, postoperative CSF leaks, perioperative venous air embolism, and perioperative mortality. Two groups of positions were defined, and the following positions were allocated to those groups: (1) Semi-sitting and Sitting-position; (2) Lateral position, supine position with extensive head rotation, lateral oblique (=Fukushima/Three-quarter prone), and park-bench position. Results From 374 full-text screenings, 7 studies met the criteria and were included in our meta-analysis comprising 1640 patients. Our results demonstrate a significantly better long-term (≥6 months) outcome of the facial nerve after VS surgery in the semi-sitting positioning (OR: 1.49, 95%CI: 1.03-2.15, p = 0.03). Positioning did not influence the extent of resection, rate of postoperative CSF leaks, and the presence of a postoperative hydrocephalus. Overall incidence of venous air embolisms was significantly associated with VS surgery in sitting positioning (OR: 6.77, 95% CI: 3.66-12.54, p < 0.00001). Perioperative mortality was equal among both positioning groups. Conclusion Semi-sitting positioning seems to be associated with an improved facial nerve outcome after VS surgery via the retrosigmoid approach. Venous air embolisms are significantly more often observed among VS patients who underwent surgery in the sitting position, but the perioperative mortality is equal in both positioning groups. Both positioning groups are a safe procedure. Multicentric prospective randomized trials are needed to evaluate the risk-benefit ratio of each positioning in VS surgery via the retrosigmoid approach.
Collapse
Affiliation(s)
| | | | | | - Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Landry AP, Wang JZ, Suppiah S, Zadeh G. Multiplatform molecular analysis of vestibular schwannoma reveals two robust subgroups with distinct microenvironment. J Neurooncol 2023; 161:491-499. [PMID: 36701029 PMCID: PMC9992225 DOI: 10.1007/s11060-022-04221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Vestibular schwannoma (VS) is the most common tumour of the cerebellopontine angle and poses a significant morbidity for patients. While many exhibit benign behaviour, others have a more aggressive nature and pattern of growth. Predicting who will fall into which category consistently remains uncertain. There is a need for a better understanding of the molecular landscape, and important subgroups therein, of this disease. METHODS We select all vestibular schwannomas from our tumour bank with both methylation and RNA profiling available. Unsupervised clustering methods were used to define two distinct molecular subgroups of VS which were explored using computational techniques including bulk deconvolution analysis, gene pathway enrichment analysis, and drug repurposing analysis. Methylation data from two other cohorts were used to validate our findings, given a paucity of external samples with available multi-omic data. RESULTS A total of 75 tumours were analyzed. Consensus clustering and similarity network fusion defined two subgroups ("immunogenic" and "proliferative") with significant differences in immune, stroma, and tumour cell abundance (p < 0.05). Gene network analysis and computational drug repurposing found critical differences in targets of immune checkpoint inhibition PD-1 and CTLA-4, the MEK pathway, and the epithelial to mesenchymal transition program, suggesting a need for subgroup-specific targeted treatment/trial design in the future. CONCLUSIONS We leverage computational tools with multi-omic molecular data to define two robust subgroups of vestibular schwannoma with differences in microenvironment and therapeutic vulnerabilities.
Collapse
Affiliation(s)
| | - Justin Z Wang
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Lampmann T, Wach J, Schmitz MT, Güresir Á, Vatter H, Güresir E. Predictive Power of MIB-1 vs. Mitotic Count on Progression-Free Survival in Skull-Base Meningioma. Cancers (Basel) 2022; 14:cancers14194597. [PMID: 36230518 PMCID: PMC9561976 DOI: 10.3390/cancers14194597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Meningiomas are mainly benign intracranial tumors. Nevertheless, risk of recurrence exists in long-term follow-up, so new prognostic markers are still need to be identified. MIB-1 is no diagnostic criterion in WHO classification of meningiomas by now. This retrospective study shows that MIB-1 as well as mitotic count are good predictors for progression-free survival in skull-base meningiomas. The implantation of MIB-1 may enable an improved classification of meningiomas regarding progression-free survival. Moreover, this analysis of skull-base meningiomas shows that current cut-offs may have to be adjusted for meningioma location. Abstract Although meningiomas are mainly non-aggressive and slow-growing tumors, there is a remarkable recurrence rate in a long-term follow-up. Proliferative activity and progression-free survival (PFS) differs significantly among the anatomic location of meningiomas. The aim of the present study was to investigate the predictive power of MIB-1 labeling index and mitotic count (MC) regarding the probability of PFS in the subgroup of skull-base meningiomas. A total of 145 patients were included in this retrospective study. Histopathological examinations and follow-up data were collected. Ideal cut-off values for MIB-1 and MC were ≥4.75 and ≥6.5, respectively. MIB-1 as well as MC were good predictors for PFS in skull-base meningiomas. Time-dependent analysis of MIB-1 and MC in prediction of recurrence of skull-base meningioma showed that their prognostic values were comparable, but different cut-offs for MC should be considered regarding the meningioma’s location. As the achievement of a gross total resection can be more challenging in skull-base meningiomas and second surgery implies a higher risk profile, the recurrence risk could be stratified according to these findings and guide decision-making for follow-ups vs. adjuvant therapies.
Collapse
Affiliation(s)
- Tim Lampmann
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-16521
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Marie-Therese Schmitz
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ági Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|