1
|
Dantio CD, Fasoranti DO, Teng C, Li X. Seizures in brain tumors: pathogenesis, risk factors and management (Review). Int J Mol Med 2025; 55:82. [PMID: 40116082 PMCID: PMC11964414 DOI: 10.3892/ijmm.2025.5523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/23/2025] Open
Abstract
Seizures in the context of brain tumors are a relatively common symptom, with higher occurrence rates observed in glioneuronal tumors and gliomas. It is a serious burden that can have a significant impact on the quality of life (QoL) of patients and influence the disease's prognosis. Brain tumor‑related epilepsy (BTRE) is a challenging entity because the pathophysiological mechanisms are not fully understood yet. Nonetheless, neuroinflammation is considered to play a pivotal role. Next to neuroinflammation, findings on the pathogenesis of BTRE have established that certain genetic mutations are involved, of which the most known would be IDH mutations in gliomas. Others discussed more thoroughly in the present review include genes such as PTEN, TP53, IGSF3, and these findings all provide fresh and fascinating insights into the pathogenesis of BTRE. Treatment for BTRE presents unique challenges, mainly related to burdens of polytherapy, debated necessity of anti‑epileptic prophylaxis, and overall impact on the QoL. In fact, there are no established anti‑seizure medications (ASMs) of choice for BTRE, nor is there any protocol to guide the use of these medications at every step of disease progression. Treatment strategies aimed at the tumor, that is surgical procedures, radio‑ and chemotherapy appear to influence seizure control. Conversely, some ASMs have also shown antitumor properties. The present review summarizes and retrospectively analyzes the literature on the pathogenesis and management of BTRE to provide an updated comprehensive understanding. Furthermore, the challenges and opportunities for developing future therapies aimed at BTRE are discussed.
Collapse
Affiliation(s)
- Cyrille D. Dantio
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Deborah Oluwatosin Fasoranti
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan International Scientific and Technological Cooperation, Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
2
|
Khalili BF, Walbert T, Horbinski C, Dixit K, Gururangan K, Thio H, Tate MC, Stupp R, Lukas RV, Templer JW. Levetiracetam and valproic acid in glioma: antiseizure and potential antineoplastic effects. Future Oncol 2025; 21:483-491. [PMID: 39786974 PMCID: PMC11812422 DOI: 10.1080/14796694.2025.2450215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Seizures are a frequent complication in glioma. Incidence of brain tumor-related epilepsy (BTRE) in high-grade glioma (HGG) is an estimated > 25% and in low-grade glioma (LGG) is approximately 72%. Two first-line antiseizure medications (ASMs) for BTRE include levetiracetam (LEV) and valproic acid (VPA). Use of VPA has decreased because of a broader side effect profile, potential interaction with chemotherapeutic drugs, and availability of newer generation agents. In refractory BTRE, LEV and VPA may be prescribed together to enhance seizure control. VPA and LEV have gained attention for their purported antineoplastic effects and synergistic role with temozolomide. VPA is suggested to modulate anticancer activity in vitro through multiple mechanisms. In addition, retrospective studies indicate increased overall survival in patients with epileptogenic HGGs who are managed with LEV or VPA rather than other ASMs. However, these studies have numerous limitations. It is also reported that patients with glioma and a seizure history have a longer survival. This extended survival, if one exists, may be only observed in certain gliomas with corresponding patient characteristics. We provide a brief overview of the management of BTRE, VPA and LEV as anticonvulsants and antineoplastics, and the factors that may be associated with survival in epileptogenic glioma.
Collapse
Affiliation(s)
| | - Tobias Walbert
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kapil Gururangan
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Helen Thio
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Matthew C. Tate
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Section of Hematology & Oncology, Northwestern University, Chicago, IL, USA
| | - Rimas V. Lukas
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Jessica W. Templer
- Lou & Jean Malnati Brain Tumor Institute, Northwestern University, Chicago, IL, USA
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Vychopen M, Güresir A, Basaran AE, Güresir E, Wach J. Impact of levetiracetam use in glioblastoma: an individual patient-level meta-analysis assessing overall survival. Neurosurg Rev 2024; 47:897. [PMID: 39653818 PMCID: PMC11628436 DOI: 10.1007/s10143-024-03137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/15/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Levetiracetam (Lev), an antiepileptic drug (AED), enhances alkylating chemotherapy sensitivity in glioblastoma (GB) by inhibiting MGMT expression. This meta-analysis evaluates Lev's impact on GB treatment by analyzing overall survival of individual patient data (IPD) from published studies. METHODS IPD was reconstructed using the R package IPDfromKM. Pooled IPD Kaplan-Meier charts of survival stratified by Lev therapy were created using the R package Survminer. One- and two-stage meta-analyses of Lev treatment regarding survival was performed. RESULTS Three articles covering 825 patients were included out of 3567 screened records. Lev usage prevalence was 0.36. IPD from 590 IDH wild-type glioblastomas, with a median follow-up of 16.1 months, were utilized. Pooled data revealed median survival times of 19.2 months (95%CI: 16.4-22.0) for Lev users versus 16.5 months (95%CI: 15.2-17.8) for partial/no use (p = 0.006). One-stage meta-analysis indicated a significant association between Lev use and survival in IDH wild-type GB (HR: 1.33, 95%CI: 1.08-1.64, p = 0.007). Two-stage meta-analysis confirmed these results. CONCLUSIONS This meta-analysis highlights that Lev use may prolong survival in IDH wild-type GB patients. Further randomized trials are needed to confirm these findings and identify subgroups benefiting most from Lev treatment.
Collapse
Affiliation(s)
- Martin Vychopen
- Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Agi Güresir
- Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Alim Emre Basaran
- Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany.
| |
Collapse
|
4
|
Tobochnik S, Regan MS, Dorotan MKC, Reich D, Lapinskas E, Hossain MA, Stopka S, Meredith DM, Santagata S, Murphy MM, Arnaout O, Bi WL, Chiocca EA, Golby AJ, Mooney MA, Smith TR, Ligon KL, Wen PY, Agar NYR, Lee JW. Pilot Trial of Perampanel on Peritumoral Hyperexcitability in Newly Diagnosed High-grade Glioma. Clin Cancer Res 2024; 30:5365-5373. [PMID: 39499201 PMCID: PMC11611619 DOI: 10.1158/1078-0432.ccr-24-1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE Glutamatergic neuron-glioma synaptogenesis and peritumoral hyperexcitability promote glioma growth in a positive feedback loop. The objective of this study was to evaluate the feasibility and estimated effect sizes of the targeted AMPA receptor antagonist perampanel on peritumoral hyperexcitability. EXPERIMENTAL DESIGN An open-label trial was performed comparing perampanel with standard of care (SOC) in patients undergoing resection of newly diagnosed radiologic high-grade glioma. Perampanel was administered as a preoperative loading dose followed by maintenance therapy until progressive disease or up to 12 months. SOC treatment involved levetiracetam for 7 days or as clinically indicated. The primary outcome of hyperexcitability was defined by intraoperative electrocorticography high-frequency oscillation (HFO) rates. Seizure freedom and overall survival were estimated by the Kaplan-Meier method. Tissue concentrations of perampanel, levetiracetam, and correlative biomarkers were measured by mass spectrometry. RESULTS HFO rates were similar between patients treated with perampanel and levetiracetam. The trial was terminated early after a planned interim analysis, and outcomes assessed in 11 patients (seven perampanel treated; four treated with SOC). Over a median 281 days of postenrollment follow-up, 27% of patients had seizures, including 14% maintained on perampanel and 50% treated with SOC. Overall survival in perampanel-treated patients was similar to that in a glioblastoma reference cohort. Glutamate concentrations in surface biopsies were positively correlated with HFO rates in adjacent electrode contacts and were not significantly associated with treatment assignment or drug concentrations. CONCLUSIONS Glioma peritumoral glutamate concentrations correlated with high-gamma oscillation rates. Targeting glutamatergic activity with perampanel achieved similar electrocorticographic hyperexcitability levels as in levetiracetam-treated patients.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology, VA Boston Healthcare System, Boston, MA, USA
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | - Emily Lapinskas
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - David M. Meredith
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Melissa M. Murphy
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael A. Mooney
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Y. Wen
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Wang Y, Mufazalova NA, Mufazalova LF, Ilyasova NV, Muradova RR, Kiyomov IE, Davurova LS, Samorodov AV. Prospects for the use of perampanel in the treatment of epilepsy in patients with malignant gliomas of the brain. REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2024; 22:223-236. [DOI: 10.17816/rcf629243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Epilepsy occurs in 35–95% of patients with low-grade malignant cerebral gliomas and in 29–71% of patients with high-grade gliomas. Seizures can be the first manifestation of a malignant cerebral glioma or may develop in the postoperative period and during chemoradiation therapy. This necessitates the use of antiepileptic drugs that can control seizures, ensure seizure prevention, and provide secondary seizure prophylaxis without reducing the effectiveness of anticancer therapy or the patient’s quality of life. The processes of epileptogenesis and oncogenesis are closely interrelated through common developmental mechanisms, with glutamate playing a key role. Increased glutamate secretion is accompanied by elevated expression and activation of its receptors, which raises seizure susceptibility. This is associated with increased levels of brain-derived neurotrophic factor, the number of synapses between peritumoral neurons and glioma cells, and the expression of various growth factors, all of which contribute to tumor progression. In this context, special attention is given to perampanel, a glutamate receptor antagonist and third-generation antiepileptic drug, in the treatment of epilepsy in patients with malignant cerebral gliomas. It has been shown that perampanel not only effectively controls seizures in patients with malignant cerebral gliomas but also suppresses tumor progression. Perampanel can dose-dependently enhance apoptosis and disrupt cell migration in malignant glioma cell lines. A synergistic effect of perampanel in combination with temozolamide has been identified. During chemoradiation therapy, perampanel exerts a protective effect on healthy peritumoral tissues. Adverse drug reactions associated with perampanel use are infrequent and mild. Further research is needed to investigate the anticonvulsant and antitumor efficacy of perampanel for the treatment of epilepsy in patients with malignant brain tumors.
Collapse
|
6
|
Grimi A, Bono BC, Lazzarin SM, Marcheselli S, Pessina F, Riva M. Gliomagenesis, Epileptogenesis, and Remodeling of Neural Circuits: Relevance for Novel Treatment Strategies in Low- and High-Grade Gliomas. Int J Mol Sci 2024; 25:8953. [PMID: 39201639 PMCID: PMC11354416 DOI: 10.3390/ijms25168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas present a complex challenge in neuro-oncology, often accompanied by the debilitating complication of epilepsy. Understanding the biological interaction and common pathways between gliomagenesis and epileptogenesis is crucial for improving the current understanding of tumorigenesis and also for developing effective management strategies. Shared genetic and molecular mechanisms, such as IDH mutations and dysregulated glutamate signaling, contribute to both tumor progression and seizure development. Targeting these pathways, such as through direct inhibition of mutant IDH enzymes or modulation of glutamate receptors, holds promise for improving patient outcomes. Additionally, advancements in surgical techniques, like supratotal resection guided by connectomics, offer opportunities for maximally safe tumor resection and enhanced seizure control. Advanced imaging modalities further aid in identifying epileptogenic foci and tailoring treatment approaches based on the tumor's metabolic characteristics. This review aims to explore the complex interplay between gliomagenesis, epileptogenesis, and neural circuit remodeling, offering insights into shared molecular pathways and innovative treatment strategies to improve outcomes for patients with gliomas and associated epilepsy.
Collapse
Affiliation(s)
- Alessandro Grimi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Beatrice C. Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | | | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
7
|
Tobochnik S, Regan MS, Dorotan MKC, Reich D, Lapinskas E, Hossain MA, Stopka S, Santagata S, Murphy MM, Arnaout O, Bi WL, Antonio Chiocca E, Golby AJ, Mooney MA, Smith TR, Ligon KL, Wen PY, Agar NYR, Lee JW. Pilot trial of perampanel on peritumoral hyperexcitability and clinical outcomes in newly diagnosed high-grade glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305666. [PMID: 38645003 PMCID: PMC11030478 DOI: 10.1101/2024.04.11.24305666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Glutamatergic neuron-glioma synaptogenesis and peritumoral hyperexcitability promote glioma growth in a positive feedback loop. The objective of this study was to evaluate the feasibility and estimated effect sizes of the AMPA-R antagonist, perampanel, on intraoperative electrophysiologic hyperexcitability and clinical outcomes. Methods An open-label trial was performed comparing perampanel to standard of care (SOC) in patients undergoing resection of newly-diagnosed radiologic high-grade glioma. Perampanel was administered as a pre-operative loading dose followed by maintenance therapy until progressive disease or up to 12-months. SOC treatment involved levetiracetam for 7-days or as clinically indicated. The primary outcome of hyperexcitability was defined by intra-operative electrocorticography high frequency oscillation (HFO) rates. Seizure-freedom and overall survival (OS) were estimated by the Kaplan-Meier method. Tissue concentrations of perampanel, levetiracetam, and metabolites were measured by mass spectrometry. Results HFO rates were similar between perampanel-treated and SOC cohorts. The trial was terminated early after interim analysis for futility, and outcomes assessed in 11 patients (7 perampanel-treated, 4 SOC). Over a median 281 days of post-enrollment follow-up, 27% of patients had seizures, including 14% treated with perampanel and 50% treated with SOC. OS in perampanel-treated patients was similar to a glioblastoma reference cohort (p=0.81). Glutamate concentrations in surface biopsies were positively correlated with HFO rates in adjacent electrode contacts and were not significantly associated with treatment assignment or drug concentrations. Conclusions A peri-operative loading regimen of perampanel was safe and well-tolerated, with similar peritumoral hyperexcitability as in levetiracetam-treated patients. Maintenance anti-glutamatergic therapy was not observed to impact survival outcomes.
Collapse
Affiliation(s)
- Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Neurology, VA Boston Healthcare System, Boston, MA, USA
| | - Michael S. Regan
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | - Emily Lapinskas
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sylwia Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Melissa M. Murphy
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael A. Mooney
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Keith L. Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Y. Wen
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Avila EK, Tobochnik S, Inati SK, Koekkoek JAF, McKhann GM, Riviello JJ, Rudà R, Schiff D, Tatum WO, Templer JW, Weller M, Wen PY. Brain tumor-related epilepsy management: A Society for Neuro-oncology (SNO) consensus review on current management. Neuro Oncol 2024; 26:7-24. [PMID: 37699031 PMCID: PMC10768995 DOI: 10.1093/neuonc/noad154] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tumor-related epilepsy (TRE) is a frequent and major consequence of brain tumors. Management of TRE is required throughout the course of disease and a deep understanding of diagnosis and treatment is key to improving quality of life. Gross total resection is favored from both an oncologic and epilepsy perspective. Shared mechanisms of tumor growth and epilepsy exist, and emerging data will provide better targeted therapy options. Initial treatment with antiseizure medications (ASM) in conjunction with surgery and/or chemoradiotherapy is typical. The first choice of ASM is critical to optimize seizure control and tolerability considering the effects of the tumor itself. These agents carry a potential for drug-drug interactions and therefore knowledge of mechanisms of action and interactions is needed. A review of adverse effects is necessary to guide ASM adjustments and decision-making. This review highlights the essential aspects of diagnosis and treatment of TRE with ASMs, surgery, chemotherapy, and radiotherapy while indicating areas of uncertainty. Future studies should consider the use of a standardized method of seizure tracking and incorporating seizure outcomes as a primary endpoint of tumor treatment trials.
Collapse
Affiliation(s)
- Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Neurology, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sara K Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Guy M McKhann
- Department of Neurosurgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - James J Riviello
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Italy
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Center, and Division of Neuro-Oncology, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Brigo F, Zelano J, Abraira L, Bentes C, Ekdahl CT, Lattanzi S, Ingvar Lossius M, Redfors P, Rouhl RPW, Russo E, Sander JW, Vogrig A, Wickström R. Proceedings of the "International Congress on Structural Epilepsy & Symptomatic Seizures" (STESS, Gothenburg, Sweden, 29-31 March 2023). Epilepsy Behav 2024; 150:109538. [PMID: 38039602 DOI: 10.1016/j.yebeh.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy.
| | - Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden; Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Sweden
| | - Laura Abraira
- Neurology Department, Epilepsy Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain; Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Epilepsy Research Group, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Carla Bentes
- Neurophysiological Monitoring Unit - EEG/Sleep Laboratory, Refractory Epilepsy Reference Centre (member of EpiCARE), Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Centro de Estudos Egas Moniz, Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Morten Ingvar Lossius
- National Centre for Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital, Member of the ERN EpiCARE, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Petra Redfors
- Department of Neurology, Member of the ERN EpiCARE, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Academic Centre for Epileptology Kempenhaeghe/MUMC+ Heeze and Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emilio Russo
- Science of Health Department, University Magna Grecia of Catanzaro, Italy
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London, UK; Centre for Epilepsy, Chalfont St Peter, Bucks., SL9 0RJ, United Kingdom; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103 SW, The Netherlands; Neurology Department, West of China Hospital, Sichuan University, Chengdu 610041, China
| | - Alberto Vogrig
- Department of Medicine (DAME), University of Udine, Udine, Italy; Clinical Neurology, Department of Head-Neck and Neuroscience, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), Udine, Italy
| | - Ronny Wickström
- Neuropediatric Unit, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Bianconi A, Koumantakis E, Gatto A, Zeppa P, Saaid A, Nico E, Bruno F, Pellerino A, Rizzo F, Junemann CV, Melcarne A, Garbossa D, Dalmasso P, Cofano F. Effects of Levetiracetam and Lacosamide on survival and seizure control in IDH-wild type glioblastoma during temozolomide plus radiation adjuvant therapy. BRAIN & SPINE 2023; 4:102732. [PMID: 38510602 PMCID: PMC10951696 DOI: 10.1016/j.bas.2023.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 03/22/2024]
Abstract
Introduction There are no clear indications for the best choice of anti-seizure medications to control brain tumor related epilepsy. In vitro studies have shown an antitumoral effect of Levetiracetam and Lacosamide on glioblastoma IDH-wild type. Research question This study investigates whether the use of levetiracetam and/or lacosamide impacts survival rates. The secondary aim was to evaluate the efficacy of both ASMs in controlling seizures. Materials and methods In this observational retrospective single-cohort study, patients underwent chemoradiation protocol after GBM surgery. They were grouped as follows: (1) use of levetiracetam, (2) use of lacosamide, (3) simultaneous use of levetiracetam and lacosamide, (4) no ASM usage. Survival curves were plotted using the Kaplan-Meier method coupled with a log-rank test for difference assesments. To evaluate the pharmacological efficacy of post-operative seizure control, a negative binomial regression was conducted. Results The study included 272 patients, 174 of which underwent adjuvant chemoradiation treatment. Patients without ASM therapy had a non-significant longer median OS (compared to the other groups (log-rank = 0.37). The IRR of seizure relapse was 2.57 (p = 0.007) times higher in lacosamide users, and MGMT promoter methylation demonstrated a protective effect against postoperative seizure onset (p = 0.05), regardless of the aforementioned confounding factors. Discussion and conclusions In patients diagnosed with GBM IDH-WT undergoing chemoradiation therapy, the use of levetiracetam or lacosamide for controlling BTRE does not seem to modify survival. Lacosamide users exhibited a higher IRR of postoperative seizures compared to levetiracetam users, and MGMT promoter methylation appears to be a protective factor.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Emanuele Koumantakis
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
- Post Graduate School of Medical Statistics, University of Turin, Turin, Italy
| | - Andrea Gatto
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Ayoub Saaid
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Elsa Nico
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Francesco Bruno
- Neurooncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessia Pellerino
- Neurooncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Francesca Rizzo
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Antonio Melcarne
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| | - Paola Dalmasso
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
11
|
Sabokrouh A, Sadeghi Motlagh B, Atabi F. Study of anticancer effects of platinum levetiracetam and levetiracetam via cancer biomarkers genes expression on HepG2 cell line. Mol Biol Rep 2023; 50:9431-9439. [PMID: 37831345 DOI: 10.1007/s11033-023-08890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND High expression of some anticancer biomarkers such as telomerase and B cell lymphoma-2(Bcl-2), microRNA-21(miRNA-21), and low expression FAS ligand (FASLG) are reported in many cancers. Some anticancer drugs such as Levetiracetam(Lev) produce their effects via the change of expression of these biomarkers. The present study aimed to evaluate the anti-cancer effects of a new compound, Platinum Levetiracetam(Pt-Lev), gene expression of mentioned biomarkers on hepatocyte G2 (HepG2) cells compared to Lev. METHODS AND RESULTS In this study, Human Dermal fibroblast cells (HDF) were used as the negative control group (group A) HepG2 cells were divided into three groups: untreated cancer cells as positive group (group B), groups C and D were treated with, Lev and Pt-Lev, respectively. After evaluating lethal concentration 50% (LC50) for the examined drugs using the MTT test, biomarker gene expression was evaluated by real-time PCR. No Apoptotic cell was found in groups C or D before drug treatment, but it was present using different concentrations of the drugs. Results indicated that telomerase and miRNA-21 genes expression was significantly lower and FASLG was higher in group D compared with group C but there was no significant difference for Bcl-2 expression between these two groups. CONCLUSIONS For the first time, it was indicated that Pt-Lev has anticancer effects by inhibiting telomerase and Bcl-2 and miRNA-21 and increasing FASLG gene expression and its effects were more than Lev. It effectively exerted its anticancer effects by extending apoptosis on HepG2 cells.
Collapse
Affiliation(s)
- Abdolreza Sabokrouh
- Department of Biochemistry, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Baharak Sadeghi Motlagh
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fereshteh Atabi
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Mozaffari K, Krishnakumar A, Chen JS, Goel K, Wang A, Shlobin NA, Weil AG, Fallah A. Seizure outcomes in children with Sturge-Weber syndrome undergoing epilepsy surgery: An individual participant data meta-analysis. Seizure 2023; 107:43-51. [PMID: 36958063 DOI: 10.1016/j.seizure.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND A subpopulation of patients with Sturge-Weber syndrome (SWS) develop medically intractable epilepsy. There is a paucity of literature on preoperative factors that predict postoperative seizure outcomes in these patients. An individual participant data meta-analysis (IPDMA) was performed to discern preoperative variables associated with favorable seizure outcomes in pediatric SWS patients undergoing epilepsy surgery. METHODS PubMed, Cochrane, Web of Science, and Scopus were independently queried following PRISMA guidelines. Studies that reported seizure outcomes in individual pediatric SWS patients were selected. Preoperative demographic variables and disease characteristics were recorded and evaluated in a time-to-event fashion via Cox regression and Kaplan-Meier analysis with log-rank test. RESULTS A total of 18 studies with 108 patients were included for meta-analysis. Median age at seizure onset was 4.5 months, and 85 patients (78.7%) were seizure-free at last follow-up (median: 72 months). On multivariable Cox regression, no variables were independent predictors of post-operative seizure freedom duration, including the extent of hemispheric resection. There were also no differences in time-to-seizure recurrence on Kaplan-Meier analysis when comparing those treated with hemispheric surgery and those with less than hemispheric surgery (p = 0.52). CONCLUSION This IPDMA showed that both resective and hemispheric epilepsy surgery achieve favorable and comparable seizure outcomes in pediatric SWS patients. The best available evidence using IPD suggests that resective surgery may be an appropriate alternative to hemispheric epilepsy surgery in well-selected patients. Prospective multi-institutional studies with greater follow-up are warranted to further investigate predictors of seizure outcome in pediatric SWS patients.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Asha Krishnakumar
- School of Medicine, Virginia Commonwealth University, Richmond, United States
| | - Jia-Shu Chen
- Warren Alpert Medical School of Brown University, Providence, United States
| | - Keshav Goel
- David Geffen School of Medicine at University of California, Los Angeles, United States
| | - Andrew Wang
- David Geffen School of Medicine at University of California, Los Angeles, United States
| | - Nathan A Shlobin
- Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Alexander G Weil
- Department of Surgery, Division of Neurosurgery, Ste. Justine University Hospital, University of Montreal, Quebec, Canada; Department of Neuroscience, University of Montreal, Quebec, Canada; Division of Neurosurgery, Ste. Justine Hospital, University of Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery and Pediatrics, Los Angeles (UCLA), University of California, 300 Stein Plaza Driveway, Suite 525, Los Angeles, CA 90095, United States.
| |
Collapse
|
13
|
Aronica E, Ciusani E, Coppola A, Costa C, Russo E, Salmaggi A, Perversi F, Maschio M. Epilepsy and brain tumors: Two sides of the same coin. J Neurol Sci 2023; 446:120584. [PMID: 36842341 DOI: 10.1016/j.jns.2023.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC location the University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Emilio Ciusani
- Department of Research and Technology, Fondazione IRCCS Istituto Neurologico C. Besta Milan, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Emilio Russo
- Science of Health Department, Magna Grecia University, Catanzaro, Italy
| | - Andrea Salmaggi
- Department of Neurosciences, Unit of Neurology, Presidio A. Manzoni, ASST Lecco, Italy
| | | | - Marta Maschio
- Center for tumor-related epilepsy, UOSD Neurooncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
14
|
Efficacy and Tolerability of Perampanel in Brain Tumor-Related Epilepsy: A Systematic Review. Biomedicines 2023; 11:biomedicines11030651. [PMID: 36979629 PMCID: PMC10045654 DOI: 10.3390/biomedicines11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Epilepsy is a frequent comorbidity in patients with brain tumors, in whom seizures are often drug-resistant. Current evidence suggests that excess of glutamatergic activity in the tumor microenvironment may favor epileptogenesis, but also tumor growth and invasiveness. The selective non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist perampanel (PER) was demonstrated to be efficacious and well-tolerated in patients with focal seizures. Moreover, preclinical in vitro studies suggested a potential anti-tumor activity of this drug. In this systematic review, the clinical evidence on the efficacy and tolerability of PER in brain tumor-related epilepsy (BTRE) is summarized. (2) Methods: Five databases and two clinical trial registries were searched from inception to December 2022. (3) Results: Seven studies and six clinical trials were included. Sample size ranged from 8 to 36 patients, who received add-on PER (mean dosage from 4 to 7 mg/day) for BTRE. After a 6–12 month follow-up, the responder rate (% of patients achieving seizure freedom or reduction ≥ 50% of seizure frequency) ranged from 75% to 95%, with a seizure freedom rate of up to 94%. Regarding tolerability, 11–52% of patients experienced non-severe adverse effects (most frequent: dizziness, vertigo, anxiety, irritability). The retention rate ranged from 56% to 83%. However, only up to 12.5% of patients discontinued the drug because of the adverse events. (4) Conclusions: PER seems to be efficacious, safe, and well-tolerated in patients with BTRE. Further randomized studies should be conducted in more homogeneous and larger populations, also evaluating the effect of PER on tumor progression, overall survival, and progression-free survival.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW A concise review of recent findings in brain tumor-related epilepsy (BTRE), with focus on the effect of antitumor treatment on seizure control and the management of antiepileptic drugs (AEDs). RECENT FINDINGS Isocitrate dehydrogenase mutation and its active metabolite d -2-hydroxyglutarate seem important contributing factors to epileptogenesis in BTRE. A beneficial effect of antitumor treatment (i.e. surgery, radiotherapy, and chemotherapy) on seizure control has mainly been demonstrated in low-grade glioma. AED prophylaxis in seizure-naïve BTRE patients is not recommended, but AED treatment should be initiated after a first seizure has occurred. Comparative efficacy randomized controlled trials (RCTs) are currently lacking, but second-generation AED levetiracetam seems the preferred choice in BTRE. Levetiracetam lacks significant drug-drug interactions, has shown favorable efficacy compared to valproic acid in BTRE, generally causes no hematological or neurocognitive functioning adverse effects, but caution should be exercised with regard to psychiatric adverse effects. Potential add-on AEDs in case of uncontrolled seizures include lacosamide, perampanel, and valproic acid. Ultimately, in the end-of-life phase when oral intake of medication is hampered, benzodiazepines via nonoral administration routes are potential alternatives. SUMMARY Management of seizures in BTRE is complex and with currently available evidence levetiracetam seems the preferred choice. Comparative efficacy RCTs in BTRE are warranted.
Collapse
Affiliation(s)
| | - Martin J.B. Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Johan A.F. Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|