1
|
Mansouri A, Ozair A, Bhanja D, Wilding H, Mashiach E, Haque W, Mikolajewicz N, de Macedo Filho L, Mahase SS, Machtay M, Metellus P, Dhermain F, Sheehan J, Kondziolka D, Lunsford LD, Niranjan A, Minniti G, Li J, Kalkanis SN, Wen PY, Kotecha R, McDermott MW, Bettegowda C, Woodworth GF, Brown PD, Sahgal A, Ahluwalia MS. Stereotactic radiosurgery for patients with brain metastases: current principles, expanding indications and opportunities for multidisciplinary care. Nat Rev Clin Oncol 2025; 22:327-347. [PMID: 40108412 DOI: 10.1038/s41571-025-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The management of brain metastases is challenging and should ideally be coordinated through a multidisciplinary approach. Stereotactic radiosurgery (SRS) has been the cornerstone of management for most patients with oligometastatic central nervous system involvement (one to four brain metastases), and several technological and therapeutic advances over the past decade have broadened the indications for SRS to include polymetastatic central nervous system involvement (>4 brain metastases), preoperative application and fractionated SRS, as well as combinatorial approaches with targeted therapy and immune-checkpoint inhibitors. For example, improved imaging and frameless head-immobilization technologies have facilitated fractionated SRS for large brain metastases or postsurgical cavities, or lesions in proximity to organs at risk. However, these opportunities come with new challenges and questions, including the implications of tumour histology as well as the role and sequencing of concurrent systemic treatments. In this Review, we discuss these advances and associated challenges in the context of ongoing clinical trials, with insights from a global group of experts, including recommendations for current clinical practice and future investigations. The updates provided herein are meaningful for all practitioners in clinical oncology.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Debarati Bhanja
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Hannah Wilding
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Waqas Haque
- Division of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonardo de Macedo Filho
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Sean S Mahase
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Frédéric Dhermain
- Radiation Therapy Department, Institut Gustave Roussy, Villejuif, France
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza IRCCS Neuromed, Pozzilli, Italy
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumour Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland-Medicine Institute for Neuroscience Discovery, Baltimore, MD, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
2
|
Reinhardt P, Ahmadli U, Uysal E, Shrestha BK, Schucht P, Hakim A, Ermiş E. Single versus multiple fraction stereotactic radiosurgery for medium-sized brain metastases (4-14 cc in volume): reducing or fractionating the radiosurgery dose? Front Oncol 2024; 14:1333245. [PMID: 39193387 PMCID: PMC11347337 DOI: 10.3389/fonc.2024.1333245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Background and purpose Stereotactic radiosurgery (SRS) of brain metastases (BM) and resection cavities is a widely used and effective treatment modality. Based on target lesion size and anatomical location, single fraction SRS (SF-SRS) or multiple fraction SRS (MF-SRS) are applied. Current clinical recommendations conditionally recommend either reduced dose SF-SRS or MF-SRS for medium-sized BM (2-2.9 cm in diameter). Despite excellent local control rates, SRS carries the risk of radionecrosis (RN). The purpose of this study was to assess the 12-months local control (LC) rate and 12-months RN rate of this specific patient population. Materials and methods This single-center retrospective study included 54 patients with medium-sized intact BM (n=28) or resection cavities (n=30) treated with either SF-SRS or MF-SRS. Follow-up MRI was used to determine LC and RN using a modification of the "Brain Tumor Reporting and Data System" (BT-RADS) scoring system. Results The 12-month LC rate following treatment of intact BM was 66.7% for SF-SRS and 60.0% for MF-SRS (p=1.000). For resection cavities, the 12-month LC rate was 92.9%% after SF-SRS and 46.2% after MF-SRS (p=0.013). For intact BM, RN rate was 17.6% for SF-SRS and 20.0% for MF-SRS (p=1.000). For resection cavities, RN rate was 28.6% for SF-SRS and 20.0% for MF-SRS (p=1.000). Conclusion Patients with intact BM showed no statistically significant differences in 12-months LC and RN rate following SF-SRS or MF-SRS. In patients with resection cavities the 12-months LC rate was significantly better following SF-SRS, with no increase in the RNFS.
Collapse
Affiliation(s)
- Philipp Reinhardt
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Uzeyir Ahmadli
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Emre Uysal
- Department of Radiation Oncology, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye
| | - Binaya Kumar Shrestha
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arsany Hakim
- Department of Radiation Oncology, Prof. Dr. Cemil Tascioglu City Hospital, Istanbul, Türkiye
| | - Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Dharnipragada R, Dusenbery K, Watanabe Y, Ferreira C, Chen CC. Comparison of Gamma Knife (GK) and Linear Accelerator (LINAC) radiosurgery of brain metastasis resection cavity: a systematic review and proportional meta-analysis. Clin Exp Metastasis 2024; 41:1-8. [PMID: 37943360 DOI: 10.1007/s10585-023-10240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) to the resection cavity is essential in the treatment of brain metastasis (BM) amenable to surgical resection. The two most common platforms for SRS delivery include Gamma Knife (GK) and LINAC. Here we collated the available peer-reviewed literature and performed a meta-analysis on clinical outcomes after GK or LINAC resection cavity SRS. METHODS Following PRISMA Guidelines, a search on PUBMED and MEDLINE was performed to include all studies evaluating each post-operative SRS modality. Local control, overall survival, radiation necrosis, and leptomeningeal disease were evaluated from the available data. A proportional meta-analysis was performed via R using the metafor package to pool the outcomes of studies and a moderator effect to assess the significance between groups. RESULTS We identified 21 GK studies (n = 2009) and 28 LINAC studies (n = 2219). The radiosurgery doses employed were comparable between GK and LINAC studies. The pooled estimate of 1-year local control, 1-year overall survival, and risk of leptomeningeal disease were statistically comparable between GK and LINAC (81.7 v 85.8%; 61.4 v 62.7%; 10.6 v 12.5%, respectively). However, the risk of radiation necrosis (RN) was higher for LINAC resection cavity SRS (5.4% vs. 10%, p = 0.036). The volume of the resection cavity was a significant modifying factor for RN in both modalities (p = 0.007) with a 0.5% and 0.7% increase in RN risk with every 1 cm3 increase in tumor volume for GK and LINAC, respectively. CONCLUSIONS Our meta-analysis suggests that GK and LINAC SRS of resection cavity achieve comparable 1-year local control and survival. However, resection cavity treated with GK SRS was associated with lowered RN risk relative to those treated with LINAC SRS.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
- University of Minnesota Medical School, University of Minnesota Twin-Cities, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Yoichi Watanabe
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
4
|
Vellayappan B, Lim-Fat MJ, Kotecha R, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan JP, Suh JH, Yomo S, Sahgal A. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int J Radiat Oncol Biol Phys 2024; 118:14-28. [PMID: 37482137 DOI: 10.1016/j.ijrobp.2023.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
| | - Mary Jane Lim-Fat
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, California; HCor Neuroscience, São Paulo, Brazil
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Ian Paddick
- Division Physics, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jean Regis
- Department of Functional Neurosurgery, Aix Marseille University, Timone University Hospital, Marseille, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Noda R, Kawashima M, Segawa M, Tsunoda S, Inoue T, Akabane A. Fractionated versus staged gamma knife radiosurgery for mid-to-large brain metastases: a propensity score-matched analysis. J Neurooncol 2023; 164:87-96. [PMID: 37525086 DOI: 10.1007/s11060-023-04374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE To compare treatment results between fractionated gamma knife radiosurgery (f-GKRS) and staged gamma knife radiosurgery (s-GKRS) for mid-to-large brain metastases (BMs). METHODS We retrospectively analyzed data of patients with medium (4-10 mL) to large (> 10 mL) BMs who underwent s-GKRS or f-GKRS between March 2008 and September 2022. Patients were treated with (i) s-GKRS before May 2018 and (ii) f-GKRS after May 2018. Patients who underwent follow-up magnetic resonance imaging at least once were enrolled. Case-matched studies were conducted by applying propensity score matching to minimize treatment selection bias and potential confounding. Local control (LC) was set as the primary endpoint and overall survival (OS) as the secondary endpoint. RESULTS This study included 129 patients with 136 lesions and 70 patients with 78 lesions who underwent s-GKRS and f-GKRS, respectively. Overall, 124 lesions (62 lesions in each group) were selected in the case-matched group. No differences were observed in the 6-month and 1-year cumulative incidences of LC failure between the s-GKRS and f-GKRS groups (15.6% vs. 15.9% at 6 months and 25.6% vs. 25.6% at 1 year; p = 0.617). One-year OS rates were 62.6% (95% confidence interval [CI]: 45.4-75.7%) and 73.9% (95% CI: 58.8-84.2%) in the s-GKRS and f-GKRS groups, respectively. The post-GKRS median survival time was shorter in the s-GKRS group than in the f-GKRS group (17 vs. 36 months), without significance (p = 0.202). CONCLUSIONS This is the first study to compare f-GKRS and s-GKRS in large BMs. Fractionation is as effective as staged GKRS for treating mid-to-large BMs.
Collapse
Affiliation(s)
- Ryuichi Noda
- Gamma Knife Center, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan.
- Department of Neurosurgery, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan.
| | - Mariko Kawashima
- Gamma Knife Center, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan
| | - Masafumi Segawa
- Department of Neurosurgery, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan
| | - Sho Tsunoda
- Department of Neurosurgery, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan
| | - Tomohiro Inoue
- Department of Neurosurgery, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan
| | - Atsuya Akabane
- Gamma Knife Center, NTT Medical Center Tokyo, 141-8625 5-9-22, Higashi-Gotanda, Shinagawa-Ku, Tokyo, Japan
| |
Collapse
|
6
|
Mishra A, Koffler D, Calugaru E, Rowe N, Viswanatha SD, Begley S, Bajaj V, Schulder M, Goenka A. Let's make size not matter: tumor control and toxicity outcomes of hypofractionated Gamma Knife radiosurgery for large brain metastases. J Neurooncol 2023; 163:587-595. [PMID: 37410346 DOI: 10.1007/s11060-023-04365-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Management of patients with large brain metastases poses a clinical challenge, with poor local control and high risk of adverse radiation events when treated with single-fraction stereotactic radiosurgery (SF-SRS). Hypofractionated SRS (HF-SRS) may be considered, but clinical data remains limited, particularly with Gamma Knife (GK) radiosurgery. We report our experience with GK to deliver mask-based HF-SRS to brain metastases greater than 10 cc in volume and present our control and toxicity outcomes. METHODS Patients who received hypofractionated GK radiosurgery (HF-GKRS) for the treatment of brain metastases greater than 10 cc between January 2017 and June 2022 were retrospectively identified. Local failure (LF) and adverse radiation events of CTCAE grade 2 or higher (ARE) were identified. Clinical, treatment, and radiological information was collected to identify parameters associated with clinical outcomes. RESULTS Ninety lesions (in 78 patients) greater than 10 cc were identified. The median gross tumor volume was 16.0 cc (range 10.1-56.0 cc). Prior surgical resection was performed on 49 lesions (54.4%). Six- and 12-month LF rates were 7.3% and 17.6%; comparable ARE rates were 1.9% and 6.5%. In multivariate analysis, tumor volume larger than 33.5 cc (p = 0.029) and radioresistant histology (p = 0.047) were associated with increased risk of LF (p = 0.018). Target volume was not associated with increased risk of ARE (p = 0.511). CONCLUSIONS We present our institutional experience treating large brain metastases using mask-based HF-GKRS, representing one of the largest studies implementing this platform and technique. Our LF and ARE compare favorably with the literature, suggesting that target volumes less than 33.5 cc demonstrate excellent control rates with low ARE. Further investigation is needed to optimize treatment technique for larger tumors.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Daniel Koffler
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Emel Calugaru
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Niara Rowe
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Sirisha Devi Viswanatha
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Sabrina Begley
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Vikram Bajaj
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Michael Schulder
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA
| | - Anuj Goenka
- Department of Radiation Oncology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY, USA.
| |
Collapse
|
7
|
Shiue K, Sahgal A, Lo SS. Precision Radiation for Brain Metastases With a Focus on Hypofractionated Stereotactic Radiosurgery. Semin Radiat Oncol 2023; 33:114-128. [PMID: 36990629 DOI: 10.1016/j.semradonc.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
There are multiple published randomized controlled trials supporting single-fraction stereotactic radiosurgery (SF-SRS) for patients presenting with 1 to 4 brain metastases, with the benefit of minimizing radiation-induced neurocognitive sequelae as compared to whole brain radiotherapy . More recently, the dogma of SF-SRS as the only means of delivering an SRS treatment has been challenged by hypofractionated SRS (HF-SRS). The ability to deliver 25-35 Gy in 3-5 HF-SRS fractions is a direct consequence of the evolution of radiation technologies to allow image guidance, specialized treatment planning, robotic delivery and/or patient positioning corrections in all 6 degrees-of-freedom, and frameless head immobilization. The intent is to mitigate the potentially devastating complication of radiation necrosis and improve rates of local control for larger metastases. This narrative review provides an overview of outcomes specific to HF-SRS in addition to the more recent developments of staged SRS, preoperative SRS, and hippocampal avoidance-whole brain radiotherapy with simultaneous integrated boost.
Collapse
|
8
|
Yan M, Lee M, Myrehaug S, Tseng CL, Detsky J, Chen H, Das S, Yeboah C, Lipsman N, Costa LD, Holden L, Heyn C, Maralani P, Ruschin M, Sahgal A, Soliman H. Hypofractionated stereotactic radiosurgery (HSRS) as a salvage treatment for brain metastases failing prior stereotactic radiosurgery (SRS). J Neurooncol 2023; 162:119-128. [PMID: 36914878 DOI: 10.1007/s11060-023-04265-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Various treatment options exist to salvage stereotactic radiosurgery (SRS) failures for brain metastases, including repeat SRS and hypofractionated SRS (HSRS). Our objective was to report outcomes specific to salvage HSRS for brain metastases that failed prior HSRS/SRS. METHODS Patients treated with HSRS to salvage local failures (LF) following initial HSRS/SRS, between July 2010 and April 2020, were retrospectively reviewed. The primary outcomes were the rates of LF, radiation necrosis (RN), and symptomatic radiation necrosis (SRN). Univariable (UVA) and multivariable (MVA) analyses using competing risk regression were performed to identify predictive factors for each endpoint. RESULTS 120 Metastases in 91 patients were identified. The median clinical follow up was 13.4 months (range 1.1-111.1), and the median interval between SRS courses was 13.1 months (range 3.0-56.5). 115 metastases were salvaged with 20-35 Gy in 5 fractions and the remaining five with a total dose ranging from 20 to 24 Gy in 3-fractions. 67 targets (56%) were postoperative cavities. The median re-treatment target volume and biological effective dose (BED10) was 9.5 cc and 37.5 Gy, respectively. The 6- and 12- month LF rates were 18.9% and 27.7%, for RN 13% and 15.6%, and for SRN were 6.1% and 7.0%, respectively. MVA identified larger re-irradiation volume (hazard ratio [HR] 1.02, p = 0.04) and shorter interval between radiosurgery courses (HR 0.93, p < 0.001) as predictors of LF. Treatment of an intact target was associated with a higher risk of RN (HR 2.29, p = 0.04). CONCLUSION Salvage HSRS results in high local control rates and toxicity rates that compare favorably to those single fraction SRS re-irradiation experiences reported in the literature.
Collapse
Affiliation(s)
- Michael Yan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Minha Lee
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Collins Yeboah
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Leodante Da Costa
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Lori Holden
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Chinthaka Heyn
- Division of Radiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Pejman Maralani
- Division of Radiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Mark Ruschin
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Loftus JP, Shepard M, Liang Y, Yu A, Karlovits SM, Wegner RE. A Comparison of Single Fraction and Multi Fraction Radiosurgery on the Gamma Knife ICON: A Single Institution Review. Adv Radiat Oncol 2022; 8:101161. [PMID: 36845616 PMCID: PMC9943766 DOI: 10.1016/j.adro.2022.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Brain metastases are a common development in patients with malignant solid tumors. Stereotactic radiosurgery (SRS) has a long track record of effectively and safely treating these patients, with some limitations to the use of single fraction SRS based on size and volume. In this study, we reviewed outcomes of patients treated using SRS and fractionated SRS (fSRS) to compare predictors and outcomes of those treatments. Methods and Materials Two hundred patients treated with SRS or fSRS for intact brain metastases were included. We tabulated baseline characteristics and performed a logistic regression to identify predictors of fSRS. Cox regression was used to identify predictors of survival. Kaplan-Meier analysis was used to calculate survival, local failure, and distant failure rates. A receiver operating characteristic curve was generated to determine timepoint from planning to treatment associated with local failure. Results The only predictor of fSRS was tumor volume >2.061 cm3. There was no difference in local failure, toxicity, or survival by fractionation of biologically effective dose. Predictors of worse survival were age, extracranial disease, history of whole brain radiation therapy, and volume. Receiver operating characteristic analysis identified 10 days as potential factor in local failure. At 1 year, local control was 96.48 and 76.92% for those patients treated before or after that interval, respectively (P = .0005). Conclusions Fractionated SRS is a safe and effective alternative for patients with larger volume tumors not suitable for single fraction SRS. Care should be taken to treat these patients expeditiously as a delay was shown to affect local control in this study.
Collapse
Affiliation(s)
- Joseph P. Loftus
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Matthew Shepard
- Allegheny Health Network, Department of Neurosurgery, Monroeville, Pennsylvania
| | - Yun Liang
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Alexander Yu
- Allegheny Health Network, Department of Neurosurgery, Monroeville, Pennsylvania
| | - Stephen M. Karlovits
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
| | - Rodney E. Wegner
- Allegheny Health Network Cancer Institute, Division of Radiation Oncology, Monroeville, Pennsylvania
- Corresponding author: Rodney E. Wegner, MD
| |
Collapse
|
10
|
McGranahan TM, Bonm AV, Specht JM, Venur V, Lo SS. Management of Brain Metastases from Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Breast Cancer. Cancers (Basel) 2022; 14:cancers14205136. [PMID: 36291922 PMCID: PMC9601150 DOI: 10.3390/cancers14205136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Treatment options for patients with Human Epidermal growth factor Receptor 2 positive (HER2+) metastatic breast cancer are rapidly changing, especially for patients with brain metastasis. Historically, treatment options for brain metastasis were focused on local therapies, radiation and surgery. There are now multiple targeted therapies that are able to treat brain metastasis and prolong the lives of patients with HER2+ breast cancer. With the growing number of treatment options, making medical decisions for patients and clinicians is more complicated. This paper reviews the treatment options for patients with HER2+ breast cancer brain metastasis and provides a simplified algorithm for when to consider delaying local treatments. Abstract In the past 5 years, the treatment options available to patients with HER2+ breast cancer brain metastasis (BCBM) have expanded. The longer survival of patients with HER2+ BCBM renders understanding the toxicities of local therapies even more important to consider. After reviewing the available literature for HER2 targeted systemic therapies as well as local therapies, we present a simplified algorithm for when to prioritize systemic therapies over local therapies in patients with HER2+ BCBM.
Collapse
Affiliation(s)
- Tresa M. McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alipi V. Bonm
- Virginia Mason Franciscan Health, Seattle, WA 98101, USA
| | - Jennifer M. Specht
- Division of Medical Oncology, Fred Hutchinson Cancer Center/University of Washington, Seattle, WA 98109, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Oncology, Fred Hutchinson Cancer Center/University of Washington, Seattle, WA 98109, USA
| | - Simon S. Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|