1
|
Ramirez NGP, Lee J, Zheng Y, Li L, Dennis B, Chen D, Challa A, Planelles V, Westover KD, Alto NM, D'Orso I. ADAP1 promotes latent HIV-1 reactivation by selectively tuning KRAS-ERK-AP-1 T cell signaling-transcriptional axis. Nat Commun 2022; 13:1109. [PMID: 35232997 PMCID: PMC8888757 DOI: 10.1038/s41467-022-28772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Immune stimulation fuels cell signaling-transcriptional programs inducing biological responses to eliminate virus-infected cells. Yet, retroviruses that integrate into host cell chromatin, such as HIV-1, co-opt these programs to switch between latent and reactivated states; however, the regulatory mechanisms are still unfolding. Here, we implemented a functional screen leveraging HIV-1's dependence on CD4+ T cell signaling-transcriptional programs and discovered ADAP1 is an undescribed modulator of HIV-1 proviral fate. Specifically, we report ADAP1 (ArfGAP with dual PH domain-containing protein 1), a previously thought neuronal-restricted factor, is an amplifier of select T cell signaling programs. Using complementary biochemical and cellular assays, we demonstrate ADAP1 inducibly interacts with the immune signalosome to directly stimulate KRAS GTPase activity thereby augmenting T cell signaling through targeted activation of the ERK-AP-1 axis. Single cell transcriptomics analysis revealed loss of ADAP1 function blunts gene programs upon T cell stimulation consequently dampening latent HIV-1 reactivation. Our combined experimental approach defines ADAP1 as an unexpected tuner of T cell programs facilitating HIV-1 latency escape.
Collapse
Affiliation(s)
- Nora-Guadalupe P Ramirez
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yue Zheng
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bryce Dennis
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Didi Chen
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kenneth D Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neal M Alto
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Regulators and Effectors of Arf GTPases in Neutrophils. J Immunol Res 2015; 2015:235170. [PMID: 26609537 PMCID: PMC4644846 DOI: 10.1155/2015/235170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.
Collapse
|
3
|
Zündorf G, Reiser G. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation. J Neurochem 2011; 119:1194-204. [PMID: 21988180 DOI: 10.1111/j.1471-4159.2011.07527.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration.
Collapse
Affiliation(s)
- Gregor Zündorf
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
4
|
Haase A, Nordmann C, Sedehizade F, Borrmann C, Reiser G. RanBPM, a novel interaction partner of the brain-specific protein p42IP4/centaurin α-1. J Neurochem 2008; 105:2237-48. [DOI: 10.1111/j.1471-4159.2008.05308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Bernstein HG, Stricker R, Dobrowolny H, Trübner K, Bogerts B, Reiser G. Histochemical evidence for wide expression of the metalloendopeptidase nardilysin in human brain neurons. Neuroscience 2007; 146:1513-23. [PMID: 17442499 DOI: 10.1016/j.neuroscience.2007.02.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/22/2007] [Accepted: 02/22/2007] [Indexed: 11/17/2022]
Abstract
Nardilysin is a metalloendopeptidase that in vitro cleaves peptides such as dynorphin-A, somatostatin-28, alpha-neoendorphin and glucagon at the N-terminus of arginine and lysine residues in dibasic moieties. The enzyme is highly expressed in many endocrine tissues. Nardilysin has also been found in the brain. Previously, we have detected that nardilysin interacts with brain-specific proteins, i.e. p42(IP4)/centaurin-alpha1 [Stricker R, Chow KM, Walther D, Hanck T, Hersh LB, Reiser G (2006) Interaction of the brain specific protein p42(IP4)/centaurin-alpha1 with the peptidase nardilysin is regulated by the cognate ligands of p42(IP4), PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4), with stereospecificity. J Neurochem 98:343-354]. However, very little is known about the distribution of nardilysin in the brain. The aim of the present study was to reveal its regional distribution and cellular localization in developing and adult human brain. Using immunohistochemistry and Western blot analysis we demonstrate that the enzyme is widely, but unevenly, expressed in the human brain. We found high staining intensity in the hypothalamus, neocortex and brain stem nuclei. The cellular localization is almost exclusively confined to neurons. In pre- and perinatal human brain cortex, most neurons express the enzyme. In cortical neurons nardilysin protein was found to be partially co-localized with parvalbumin but not calretinin. No co-expression was seen with somatostatin-28 immunoreactivity. A considerable overlap was revealed between p42(IP4) and nardilysin. Our data support the hypothesis that nardilysin might possibly play a role in brain development, whereas its putative function in brain peptide metabolism remains to be clarified further.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Medical Faculty of University of Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|