1
|
Antioxidant Properties of Fucoidan Alleviate Acceleration and Exacerbation of Hippocampal Neuronal Death Following Transient Global Cerebral Ischemia in High-Fat Diet-Induced Obese Gerbils. Int J Mol Sci 2019; 20:ijms20030554. [PMID: 30696078 PMCID: PMC6387260 DOI: 10.3390/ijms20030554] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Fucoidan, a natural sulfated polysaccharide, displays various biological activities including antioxidant properties. We examined the neuroprotective effect of fucoidan against transient global cerebral ischemia (tGCI) in high-fat diet (HFD)-induced obese gerbils and its related mechanisms. Gerbils received HFD for 12 weeks and fucoidan (50 mg/kg) daily for the last 5 days during HFD exposure, and they were subjected to 5-min tGCI. Pyramidal cell death was observed only in the CA 1 area (CA1) of the hippocampus in non-obese gerbils 5 days after tGCI. However, in obese gerbils, pyramidal cell death in the CA1 and CA2/3 occurred at 2 days and 5 days, respectively, after tGCI. In the obese gerbils, oxidative stress indicators (dihydroethidium, 8-hydroxyguanine and 4-hydroxy-2-nonenal) were significantly enhanced and antioxidant enzymes (SOD1 and SOD2) were significantly reduced in pre- and post-ischemic phases compared to the non-obese gerbils. Fucoidan treatment attenuated acceleration and exacerbation of tGCI-induced neuronal death in the CA1–3, showing that oxidative stress was significantly reduced, and antioxidant enzymes were significantly increased in pre- and post-ischemic phases. These findings indicate that pretreated fucoidan can relieve the acceleration and exacerbation of ischemic brain injury in an obese state via the attenuation of obesity-induced severe oxidative damage.
Collapse
|
2
|
Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR, Smith C, Ryten M, Patani R, Ule J. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Rep 2017; 18:557-570. [PMID: 28076797 PMCID: PMC5263238 DOI: 10.1016/j.celrep.2016.12.011] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.
Collapse
Affiliation(s)
- Lilach Soreq
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jamie Rose
- MRC Edinburgh Brain Bank, Academic Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eyal Soreq
- The Computational, Cognitive and Clinical NeuroImaging Laboratory, Division of Brain Sciences, Imperial College, London SW7 2AZ, UK
| | - John Hardy
- Institute of Neurology, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute of Neurological Studies, UCL ION, 1 Wakefield Street, London WC1N 1PJ, UK
| | - Daniah Trabzuni
- Institute of Neurology, University College London, London WC1N 3BG, UK; Departments of Genetics, King Faisal Specialist Hospital and Research Centre. Riyadh 12713, Saudi Arabia
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Colin Smith
- MRC Edinburgh Brain Bank, Academic Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mina Ryten
- Institute of Neurology, University College London, London WC1N 3BG, UK; Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Rickie Patani
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Reta Lila Weston Institute of Neurological Studies, UCL ION, 1 Wakefield Street, London WC1N 1PJ, UK; Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh EH8 9YL, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Jernej Ule
- Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
3
|
Toma JS, McPhail LT, Ramer MS. Differential RIP antigen (CNPase) expression in peripheral ensheathing glia. Brain Res 2006; 1137:1-10. [PMID: 17229407 DOI: 10.1016/j.brainres.2006.12.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/07/2006] [Accepted: 12/14/2006] [Indexed: 01/06/2023]
Abstract
The RIP monoclonal antibody is commonly used to identify oligodendrocytes. Recently, the RIP antigen was identified as 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a known non-compact myelin protein [Watanabe, M., Sakurai, Y., Ichinose, T., Aikawa, Y., Kotani, M., Itoh, K., 2006. Monoclonal antibody Rip specifically recognizes 2',3'-cyclic nucleotide 3'-phosphodiesterase in oligodendrocytes. J. Neurosci. Res. 84, 525-533]. In the present study we characterize normal and axotomy-induced changes in RIP immunoreactivity in peripheral glia. In myelinating Schwann cells, RIP demarcated paranodal regions of myelinated axons and clearly defined Schmidt-Lantermann incisures. Surprisingly, RIP immunoreactivity was not confined to myelinating glia. Robust RIP immunoreactivity was present in Remak bundles in mixed nerves and in sympathetic ganglia and grey rami. Following peripheral nerve injury, RIP immunoreactivity was redistributed diffusely throughout de-differentiating Schwann cell cytoplasm. In uninjured rats, low levels of RIP immunoreactivity were detectable in satellite cells surrounding dorsal root ganglion (DRG) neurons and in terminal Schwann cells at neuromuscular junctions. This pattern suggested a correlation between RIP immunoreactivity and the amount of axon-glial contact. We therefore injured the L5 spinal nerve to induce sympathetic sprouting and pericellular basket formation in the DRG, and asked whether relatively RIP-negative satellite glia, which normally contact only neuronal somata, would upregulate the RIP antigen upon contact with sprouting sympathetic axons. All perineuronal sympathetic sprouts infiltrated heavily RIP-immunoreactive satellite cell sheaths. RIP immunoreactivity was absent from placode-derived olfactory ensheathing glia, indicating that the relationship between axon-glial contact and RIP-immunoreactivity is restricted to peripheral ensheathing glia of the neural crest-derived Schwann cell lineage.
Collapse
Affiliation(s)
- Jeremy S Toma
- International Collaboration on Repair Discoveries, The University of British Columbia, Rm. 2465, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|