1
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Insights on the molecular mechanism of neuroprotection exerted by edible bird’s nest and its bioactive constituents. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Kedia S, Mandal K, Netrakanti PR, Jose M, Sisodia SS, Nair D. Nanoscale organization of Nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains. Mol Brain 2021; 14:158. [PMID: 34645511 PMCID: PMC8515736 DOI: 10.1186/s13041-021-00855-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Alterations in the canonical processing of Amyloid Precursor Protein generate proteoforms that contribute to the onset of Alzheimer’s Disease. Modified composition of γ-secretase or mutations in its subunits has been directly linked to altered generation of Amyloid beta. Despite biochemical evidence about the role of γ-secretase in the generation of APP, the molecular origin of how spatial heterogeneity in the generation of proteoforms arises is not well understood. Here, we evaluated the localization of Nicastrin, a γ-secretase subunit, at nanometer sized functional zones of the synapse. With the help of super resolution microscopy, we confirm that Nicastrin is organized into nanodomains of high molecular density within an excitatory synapse. A similar nanoorganization was also observed for APP and the catalytic subunit of γ-secretase, Presenilin 1, that were discretely associated with Nicastrin nanodomains. Though Nicastrin is a functional subunit of γ-secretase, the Nicastrin and Presenilin1 nanodomains were either colocalized or localized independent of each other. The Nicastrin and Presenilin domains highlight a potential independent regulation of these molecules different from their canonical secretase function. The collisions between secretases and substrate molecules decide the probability and rate of product formation for transmembrane proteolysis. Our observations of secretase nanodomains indicate a spatial difference in the confinement of substrate and secretases, affecting the local probability of product formation by increasing their molecular availability, resulting in differential generation of proteoforms even within single synapses.
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Kousik Mandal
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | | | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India
| | - Sangram S Sisodia
- Centre for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, 60637, Chicago, IL, USA
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
4
|
Abstract
Background: Several mechanisms likely cooperate with the mitogen-activated protein (MAP)-kinase pathway to promote cancer progression in the thyroid. One putative pathway is NOTCH signaling, which is implicated in several other malignancies. In thyroid cancer, data regarding the role of the NOTCH pathway are insufficient and even contradictory. Methods: A BRAFV600E-driven papillary thyroid carcinoma (PTC) mouse model was subjected to NOTCH pathway genetic alterations, and the tumor burden was followed by ultrasound. Further analyses were performed on PTC cell lines or noncancerous cells transfected with NOTCHIC or BRAFV600E, which were then subjected to pharmacological treatment with MAP-kinase or NOTCH pathway inhibitors. Results: The presence of the BRAFV600E mutation coupled with overexpression of the NOTCH intracellular domain led to significantly bigger thyroid tumors in mice, to a more aggressive carcinoma, and decreased overall survival. Although more cystic, the tumors did not progress into anaplastic thyroid carcinomas. On the contrary, the deletion of RBP-jκ (a major cofactor involved in NOTCH signaling) did not alter the phenotype in mice. BRAFV600E-mutated PTC cell lines were resistant to pharmacological inhibition of the NOTCH pathway. Inhibition of MEK1/2 uncovered a predominant effect on Hes1/Hey1 transcription compared with NOTCH inhibition in BRAFV600E-mutated cell lines. Finally, γ-secretase activity and γ-secretase subunit transcription levels were dependent on ERK activation. Our findings suggest that MAP-kinase activity overrides the NOTCH pathway in the context of thyroid cancer. Conclusions: The interaction between the BRAF and NOTCH pathways demonstrates that the BRAFV600E mutation might bypass NOTCH and exert a strong positive effect on NOTCH downstream targets in thyroid carcinoma.
Collapse
Affiliation(s)
- Florian Traversi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | | | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Schrank S, McDaid J, Briggs CA, Mustaly-Kalimi S, Brinks D, Houcek A, Singer O, Bottero V, Marr RA, Stutzmann GE. Human-Induced Neurons from Presenilin 1 Mutant Patients Model Aspects of Alzheimer's Disease Pathology. Int J Mol Sci 2020; 21:ijms21031030. [PMID: 32033164 PMCID: PMC7037274 DOI: 10.3390/ijms21031030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Traditional approaches to studying Alzheimer’s disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties. We selected an AD patient population expressing mutations in presenilin 1 (mPS1), which is linked to increased amyloid production, tau pathology, and calcium signaling abnormalities, among other features. While these AD components are detailed in model systems, they have yet to be collectively identified in human neurons. Thus, we conducted molecular, immune-based, electrophysiological, and calcium imaging studies to establish patterns of cellular pathology in this patient population. We found that mPS1 HiNs generate increased Aβ42 and hyperphosphorylated tau species relative to non-AD controls, and exaggerated ER calcium responses that are normalized with ryanodine receptor (RyR) negative allosteric modulators. The inflammasome product, interleukin-18 (IL-18), also increased PS1 expression. This work highlights the potential for HiNs to model AD pathology and validates their role in defining cellular pathogenesis and their utility for therapeutic screening.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Clark A. Briggs
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
| | - Sarah Mustaly-Kalimi
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Deanna Brinks
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Aiden Houcek
- Lake Forest College, Lake Forest, IL 60045, USA;
| | - Oded Singer
- Weizmann Institute of Science, Life Sciences Core Facilities, Rehovot 76100, Israel;
| | - Virginie Bottero
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
| | - Robert A. Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| | - Grace E. Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (S.S.); (J.M.); (C.A.B.); (S.M.-K.); (V.B.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd. North, Chicago, IL 60064, USA;
- Correspondence: (R.A.M.); (G.E.S.)
| |
Collapse
|
6
|
Arya M, Manoj Kumar MK, Sabitha M, Menon KN, Nair SC. Nanotechnology approaches for enhanced CNS delivery in treating Alzheimer's disease. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Pathak A, Rohilla A, Gupta T, Akhtar MJ, Haider MR, Sharma K, Haider K, Yar MS. DYRK1A kinase inhibition with emphasis on neurodegeneration: A comprehensive evolution story-cum-perspective. Eur J Med Chem 2018; 158:559-592. [PMID: 30243157 DOI: 10.1016/j.ejmech.2018.08.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 02/08/2023]
Abstract
Alzheimer, the fourth leading cause of death embodies a key responsible event including formation of β-amyloid protein clustering to amyloid plaque on blood vessels. The origin of above events is Amyloid precursor protein (APP) which is an integral membrane protein known for its function in synapses formation. Modern research had proposed that the over expression of DYRK1A (Dual specificity tyrosine phosphorylation regulated kinase1A, a family of protein kinases, positioned within the Down's syndrome critical region (DSCR) on human chromosome 21causes phosphorylation of APP protein resulting in its cleavage to Aβ 40, 42 and tau proteins (regulated by beta and gamma secretase) which plays critical role in early onset of Alzheimer's disease (AD) detected in Down's syndrome (DS), leading to permanent functional and structural deformities which results ultimately into neuro-degeneration and neuronal death. Therefore, DYRK1A emerges as a potential target for prevention of neuro-degeneration and hence Alzheimer. Presently, the treatment methods for Down's syndrome, as well as Alzheimer's disease are extremely biased and represent a major deficiency for therapeutic necessities. We hereby, focus our review on the current status of the research and contributions in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ankit Rohilla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tanya Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
8
|
Khan I, Krishnaswamy S, Sabale M, Groth D, Wijaya L, Morici M, Berger I, Schaffitzel C, Fraser PE, Martins RN, Verdile G. Efficient production of a mature and functional gamma secretase protease. Sci Rep 2018; 8:12834. [PMID: 30150752 PMCID: PMC6110731 DOI: 10.1038/s41598-018-30788-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Baculoviral protein expression in insect cells has been previously used to generate large quantities of a protein of interest for subsequent use in biochemical and structural analyses. The MultiBac baculovirus protein expression system has enabled, the use of a single baculovirus to reconstitute a protein complex of interest, resulting in a larger protein yield. Using this system, we aimed to reconstruct the gamma (γ)-secretase complex, a multiprotein enzyme complex essential for the production of amyloid-β (Aβ) protein. A MultiBac vector containing all components of the γ-secretase complex was generated and expression was observed for all components. The complex was active in processing APP and Notch derived γ-secretase substrates and proteolysis could be inhibited with γ-secretase inhibitors, confirming specificity of the recombinant γ-secretase enzyme. Finally, affinity purification was used to purify an active recombinant γ-secretase complex. In this study we demonstrated that the MultiBac protein expression system can be used to generate an active γ-secretase complex and provides a new tool to study γ-secretase enzyme and its variants.
Collapse
Affiliation(s)
- Imran Khan
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Sudarsan Krishnaswamy
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Miheer Sabale
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Linda Wijaya
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Psychology and Exercise Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Michael Morici
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Imre Berger
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Christiane Schaffitzel
- European Molecular Biology Laboratories, Grenoble, France.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
| | - Ralph N Martins
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia.,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Giuseppe Verdile
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia. .,Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| |
Collapse
|
9
|
Fessel J. Amyloid is essential but insufficient for Alzheimer causation: addition of subcellular cofactors is required for dementia. Int J Geriatr Psychiatry 2018; 33:e14-e21. [PMID: 28509380 DOI: 10.1002/gps.4730] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/03/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aim of this study is to examine the hypotheses stating the importance of amyloid or of its oligomers in the pathogenesis of Alzheimer's disease (AD). METHODS Published studies were examined. RESULTS The importance of amyloid in the pathogenesis of AD is well established, yet accepting it as the main cause for AD is problematic, because amyloid-centric treatments have provided no clinical benefit and about one-third of cognitively normal, older persons have cerebral amyloid plaques. Also problematic is the alternative hypothesis that, instead of amyloid plaques, it is oligomers of amyloid precursor protein that cause AD.Evidence is presented suggesting amyloid/oligomers as necessary but insufficient causes of the dementia and that, for dementia to develop, requires the addition of cofactors known to be associated with AD. Those cofactors include several subcellular processes: mitochondrial impairments; the Wnt signaling system; the unfolded protein response; the ubiquitin proteasome system; the Notch signaling system; and tau, calcium, and oxidative damage. CONCLUSIONS A modified amyloid/oligomer hypothesis for the pathogenesis of AD is that activation of one or more of the aforementioned cofactors creates a burden of functional impairments that, in conjunction with amyloid/oligomers, now crosses a threshold of dysfunction that results in clinical dementia. Of considerable importance, several treatments that might reverse the activation of some of the subcellular processes are available, for example, lithium, pioglitazone, erythropoietin, and prazosin; they should be given in combination in a clinical trial to test their safety and efficacy. © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Trials Unit, Kaiser Permanente, San Francisco, CA, USA
| |
Collapse
|
10
|
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, Ehrlich ME, Tanzi RE, Arancio O, Noggle S, Gandy S. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons. Acta Neuropathol Commun 2017; 5:77. [PMID: 29078805 PMCID: PMC5660456 DOI: 10.1186/s40478-017-0475-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are believed to be one of the first cell types to be affected in all forms of AD, and their dysfunction is clinically correlated with impaired short-term memory formation and retrieval. We present an optimized in vitro protocol to generate human BFCNs from iPSCs, using cell lines from presenilin 2 (PSEN2) mutation carriers and controls. As expected, cell lines harboring the PSEN2N141I mutation displayed an increase in the Aβ42/40 in iPSC-derived BFCNs. Neurons derived from PSEN2N141I lines generated fewer maximum number of spikes in response to a square depolarizing current injection. The height of the first action potential at rheobase current injection was also significantly decreased in PSEN2N141I BFCNs. CRISPR/Cas9 correction of the PSEN2 point mutation abolished the electrophysiological deficit, restoring both the maximal number of spikes and spike height to the levels recorded in controls. Increased Aβ42/40 was also normalized following CRISPR/Cas-mediated correction of the PSEN2N141I mutation. The genome editing data confirms the robust consistency of mutation-related changes in Aβ42/40 ratio while also showing a PSEN2-mutation-related alteration in electrophysiology.
Collapse
|
11
|
Oliveira J, Costa M, de Almeida MSC, da Cruz e Silva OA, Henriques AG. Protein Phosphorylation is a Key Mechanism in Alzheimer’s Disease. J Alzheimers Dis 2017; 58:953-978. [DOI: 10.3233/jad-170176] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joana Oliveira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Márcio Costa
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | | | - Odete A.B. da Cruz e Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
Fessel WJ. Concordance of Several Subcellular Interactions Initiates Alzheimer's Dementia: Their Reversal Requires Combination Treatment. Am J Alzheimers Dis Other Demen 2017; 32:166-181. [PMID: 28423937 PMCID: PMC10852791 DOI: 10.1177/1533317517698790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Alzheimer's disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.
Collapse
Affiliation(s)
- W. J. Fessel
- University of California, San Francisco, CA, USA
- Kaiser Permanente Medical Care Program, San Francisco, CA, USA
| |
Collapse
|
13
|
Xu X, Gao H, Qin J, He L, Liu W. TMP21 modulates cell growth in papillary thyroid cancer cells by inducing autophagy through activation of the AMPK/mTOR pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10824-10831. [PMID: 26617795 PMCID: PMC4637610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the role of transmembrane protein (TMP) 21 in human thyroid cancer. METHODS The recombinant expression vector pcDNA3.1 (+)-TMP21 and specific small interfering RNAs (siRNA) against TMP21 were transfected into a papillary thyroid cancer cell line (TPC1). After transfection, the expression of TMP21 was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Moreover, cell viability and apoptosis rate were respectively determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colorimetric assay and flow cytometry (FCM). Additionally, Western blotting was performed to analyze the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathways associated protein (P-AMPKα(Thr172), P-mTOR(Ser2448), light chain (LC)-II/LC3-I, and P-S6K(Thr389)) after pre-treatment with AMPK inhibitor, compound C (Com C) and siTMP21. RESULTS The TMP21 protein level and cell viability were significantly higher, but apoptotic rate was significantly lower by transfection with pcDNA3.1-TMP21 than those in control group (P < 0.05), and reverse results were obtained by transfection with siTMP21. However, qRT-PCR showed different results due to the feedback inhibition of mRNA. Besides, silencing of TMP21 significantly reduced the levels of P-mTOR(Ser2448) and P-S6K(Thr389) (P < 0.05), but significantly increased the levels of P-AMPKα(Thr172) and LC3-II/LC3-I compared with the control group (P < 0.01). Whereas, the levels of P-AMPKα(Thr172) and LC3-II/LC3-I were significantly decreased by Com C compared with the control group (P < 0.05). CONCLUSION TMP21 modulates cell growth in TPC1 cells by inducing autophagy, which may be associated with activation of AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Xiaobo Xu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| | - Hongqiang Gao
- Department of General Surgery, Shanghai Fengcheng HospitalShanghai 201411, China
| | - Jian Qin
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| | - Liu He
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| | - Wenyong Liu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of MedicineShanghai 200011, China
| |
Collapse
|
14
|
KHANAHMADI M, FARHUD DD, MALMIR M. Genetic of Alzheimer's Disease: A Narrative Review Article. IRANIAN JOURNAL OF PUBLIC HEALTH 2015; 44:892-901. [PMID: 26576367 PMCID: PMC4645760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/20/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most common problems for old peoples. Etiology of AD is not clear, but genetic factors play a major role in determining a person's risk to develop AD. Twin and family studies confirm that AD has a genetic basis. AD genetics has been split into two broad categories: early-onset and late-onset. EOAD cases are inherited in an autosomal dominant pattern. In this form, dominant mutations in genes like APP, PSEN-1 and PSEN-2 associated with AD. This study aimed to consider the role of genetic in AD. METHOD At the first, most of the references in relation with genetic basis of AD searched from the following web-sites: PubMed, Science direct, Wiley & Sons (1995-2014). Then, the most common genes and their affects described briefly. RESULTS Aging is the most obvious risk factor for developing AD. There is a genetic basis for AD, of course this relation is not complete but it is significant. CONCLUSION More than thousand genes studied in relation with Alzheimer's disease. Against the improvements in understanding different aspects of AD, the accurate genetic foundation of AD remain unclear.
Collapse
Affiliation(s)
| | - Dariush D. FARHUD
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Dept. of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
| | - Maryam MALMIR
- Dept. of Exceptional Children Psychology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Xie J, Yang Y, Li J, Hou J, Xia K, Song W, Liu S. Expression of tmp21 in normal adult human tissues. Int J Clin Exp Med 2014; 7:2976-2983. [PMID: 25356171 PMCID: PMC4211821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/11/2014] [Indexed: 06/04/2023]
Abstract
TMP21, known as p23 protein, is one important member of the p24 protein families. The degradation of TMP21 is mediated by the ubiquitin-proteasome pathway, as with the other presenilin-associated γ-secretase complex members. NFAT plays a very important role in regulation of human TMP21 gene expression. Compared with the function of TMP21, the studies about the distribution of this protein in human tissues are limited. We collected 19 normal adult human tissues from a healthy adult man died in a traffic accident and did examination of all the tissues collected for ICH, western blot and RT-PCR. It was shown that the expression of TMP21 is at high levels in heart, liver, lung, kidney and adrenal gland; moderate levels in brain, pancreas, prostate gland, testicle, small intestine, colon, stomach, gall bladder, thyroid gland and trachea; low levels in skeletal muscle, skin and lymphonodus. TMP21 is widely existed in normal adult human tissues. The current study provided for the first time a comprehensive expression of TMP21 in normal adult human tissues. It will benefit on helping in the design and interpretation of future studies focused on expounding the function of TMP21.
Collapse
Affiliation(s)
- Jian Xie
- Department of Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical UniversityChongqing, China
| | - Yuan Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Jianbo Li
- Department of Forensic Medicine, Chongqing Medical UniversityChongqing, China
| | - Jing Hou
- Department of Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Kun Xia
- National Laboratory of Medical Genetics of China, Central South UniversityChangsha, Hunan, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shengchun Liu
- Department of Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| |
Collapse
|
16
|
|
17
|
Ansari N, Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect. Curr Neuropharmacol 2014; 11:414-29. [PMID: 24381531 PMCID: PMC3744904 DOI: 10.2174/1570159x11311040005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca2+ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.
Collapse
Affiliation(s)
- Niloufar Ansari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rivabene R, Visentin S, Piscopo P, De Nuccio C, Crestini A, Svetoni F, Rosa P, Confaloni A. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells. Exp Biol Med (Maywood) 2013; 239:213-24. [PMID: 24363250 DOI: 10.1177/1535370213514317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Presenilin-1 (PS1) and presenilin-2 (PS2) are transmembrane proteins widely expressed in the central nervous system, which function as the catalytic subunits of γ-secretase, the enzyme that releases amyloid-β protein (Aβ) from ectodomain cleaved amyloid precursor protein (APP) by intramembrane proteolysis. Mutations in PS1, PS2, and Aβ protein precursor are involved in the etiology of familial Alzheimer's disease (FAD), while the cause of the sporadic form of AD (SAD) is still not known. However, since similar neuropathological changes have been observed in both FAD and SAD, a common pathway in the etiology of the disease has been suggested. Given that age-related deranged Ca(2+) regulation has been hypothesized to play a role in SAD pathogenesis via PS gene regulation and γ-secretase activity, we studied the in vitro regulation of PS1 and PS2 in the human neuron-like SK-N-BE cell line treated with the specific endoplasmic reticulum (ER) calcium ATPase inhibitor Thapsigargin (THG), to introduce intracellular Ca(2+) perturbations and mimic the altered Ca(2+) homeostasis observed in AD. Our results showed a consistent and significant down-regulation of PS2, while PS1 appeared to be unmodulated. These events were accompanied by oxidative stress and a number of morphological alterations suggestive of the induction of apoptotic machinery. The administration of the antioxidant N-acetylcysteine (NAC) did not revert the THG-induced effects reported, while treatment with the Ca(2+)-independent ER stressor Brefeldin A did not modulate basal PS1 and PS2 expression. Collectively, these results suggest that Ca(2+) fluctuation rather than ER stress and/or oxidative imbalance seems to play an essential role in PS2 regulation and confirm that, despite their strong homology, PS1 and PS2 could play different roles in AD.
Collapse
Affiliation(s)
- Roberto Rivabene
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Processing of the platelet amyloid precursor protein in the mild cognitive impairment (MCI). Neurochem Res 2013; 38:1415-23. [PMID: 23575575 DOI: 10.1007/s11064-013-1039-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/12/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
It has been suggested that mild cognitive impairment (MCI) patients deteriorate faster than the healthy elderly population and have an increased risk of developing dementia. Certain blood molecular biomarkers have been identified as prognostic markers in Alzheimer's disease (AD). The present study was aimed to assess the status of the platelet amyloid precursor protein (APP) metabolism in MCI and AD subjects and establish to what extent any variation could have a prognostic value suggestive of predictive AD in MCI patients. Thirty-four subjects diagnosed with MCI and 45 subjects with AD were compared to 28 healthy elderly individuals for assessing for protein levels of APP, β-APP cleaving enzyme 1 (BACE1), presenilin 1 (PS1) and a disintegrin and metalloproteinase-10 (ADAM-10) by western blot, and for the enzyme activities of BACE1 and γ-secretase by using specific fluorogenic substrates, in samples of platelets. A similar pattern in the healthy elderly and MCI patients was found for BACE1 and PS1 levels. A reduction of APP levels in MCI and AD patients compared with healthy elderly individuals was found. Augmented levels of ADAM-10 in both MCI and AD were displayed in comparison with age-matched control subjects. The ratio ADAM-10/BACE1 was higher for the MCI group versus AD group. Whereas BACE1 and PS1 levels were only increased in AD regarding to controls, BACE1 and γ-secretase activities augmented significantly in both MCI and AD groups. Finally, differences and similarities between MCI and AD patients were observed in several markers of platelet APP processing. Larger sample sets from diverse populations need to be analyzed to define a signature for the presence of MCI or AD pathology and to early detect AD at the MCI stage.
Collapse
|
20
|
Gael B, Georgakopoulos A, Robakis NK. Cellular mechanisms of γ-secretase substrate selection, processing and toxicity. Prog Neurobiol 2012; 98:166-75. [PMID: 22622135 PMCID: PMC3404154 DOI: 10.1016/j.pneurobio.2012.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 01/04/2023]
Abstract
Presenilins (PSs) are catalytic components of the γ-secretase proteolytic complexes that produce Aβ and cell signaling peptides. γ-Secretase substrates are mostly membrane-bound peptides derived following proteolytic cleavage of the extracellular domain of type I transmembrane proteins. Recent work reveals that γ-secretase substrate processing is regulated by proteins termed γ-secretase substrate recruiting factors (γSSRFs) that bridge substrates to γ-secretase complexes. These factors constitute novel targets for pharmacological control of specific γ-secretase products, such as Aβ and signaling peptides. PS familial Alzheimer's disease (FAD) mutants cause a loss of γ-secretase cleavage function at epsilon sites of substrates thus inhibiting production of cell signaling peptides while promoting accumulation of uncleaved toxic substrates. Importantly, γ-secretase inhibitors may cause toxicity in vivo by similar mechanisms. Here we review novel mechanisms that control γ-secretase substrate selection and cleavage and examine their relevance to AD.
Collapse
Affiliation(s)
- Barthet Gael
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anastasios Georgakopoulos
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Nikolaos K. Robakis
- Center for Molecular Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
21
|
Abstract
The Alzheimer's disease (AD)-associated amyloid-β protein precursor (AβPP) is cleaved by α-, β-, and presenilin (PS)/γ-secretases through sequential regulated proteolysis. These proteolytic events control the generation of the pathogenic amyloid-β (Aβ) peptide, which excessively accumulates in the brains of individuals afflicted by AD. A growing number of additional proteins cleaved by PS/γ-secretase continue to be discovered. Similarly to AβPP, most of these proteins are type-I transmembrane proteins involved in vital signaling functions regulating cell fate, adhesion, migration, neurite outgrowth, or synaptogenesis. All the identified proteins share common structural features, which are typical for their proteolysis. The consequences of the PS/γ-secretase-mediated cleavage on the function of many of these proteins are largely unknown. Here, we review the current literature on the proteolytic processing mediated by the versatile PS/γ-secretase complex. We begin by discussing the steps of AβPP processing and PS/γ-secretase complex composition and localization, which give clues to how and where the processing of other PS/γ-secretase substrates may take place. Then we summarize the typical features of PS/γ-secretase-mediated protein processing. Finally, we recapitulate the current knowledge on the possible physiological function of PS/γ-secretase-mediated cleavage of specific substrate proteins.
Collapse
Affiliation(s)
- Annakaisa Haapasalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
22
|
Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteomics 2011; 74:1091-103. [PMID: 21515431 DOI: 10.1016/j.jprot.2011.03.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/07/2011] [Accepted: 03/31/2011] [Indexed: 01/20/2023]
Abstract
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Gasperi R, Sosa MAG, Dracheva S, Elder GA. Presenilin-1 regulates induction of hypoxia inducible factor-1α: altered activation by a mutation associated with familial Alzheimer's disease. Mol Neurodegener 2010; 5:38. [PMID: 20863403 PMCID: PMC2955646 DOI: 10.1186/1750-1326-5-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 09/23/2010] [Indexed: 12/23/2022] Open
Abstract
Background Mutations in presenilin-1 (Psen1) cause familial Alzheimer's disease (FAD). Both hypoxia and ischemia have been implicated in the pathological cascade that leads to amyloid deposition in AD. Here we investigated whether Psen1 might regulate hypoxic responses by modulating induction of the transcription factor hypoxia inducible factor 1-α (HIF-1α). Results In fibroblasts that lack Psen1 induction of HIF-1α was impaired in response to the hypoxia mimetic cobalt chloride, as well as was induction by insulin and calcium chelation. Reintroduction of human Psen1 using a lentiviral vector partially rescued the responsiveness of Psen1-/- fibroblasts to cobalt chloride induction. HIF-1α induction did not require Psen1's associated γ-secretase activity. In addition, the failure of insulin to induce HIF-1α was not explicable on the basis of failed activation of the phosphatidylinositol 3-kinase (PI3K/Akt) pathway which activated normally in Psen1-/- fibroblasts. Rather we found that basal levels of HIF-1α were lower in Psen1-/- fibroblasts and that the basis for lower constitutive levels of HIF-1α was best explained by accelerated HIF-1α degradation. We further found that Psen1 and HIF-1α physically interact suggesting that Psen1 may protect HIF-1α from degradation through the proteasome. In fibroblasts harboring the M146V Psen1 FAD mutation on a mouse Psen1 null background, metabolic induction of HIF-1α by insulin was impaired but not hypoxic induction by cobalt chloride. Unlike Psen1-/- fibroblasts, basal levels of HIF-1α were normal in FAD mutant fibroblasts but activation of the insulin-receptor pathway was impaired. Interestingly, in Psen1-/- primary neuronal cultures HIF-1α was induced normally in response to cobalt chloride but insulin induction of HIF-1α was impaired even though activation of the PI3K/Akt pathway by insulin proceeded normally in Psen1-/- neuronal cultures. Basal levels of HIF-1α were not significantly different in Psen1-/- neurons and HIF-1α levels were normal in Psen1-/- embryos. Conclusions Collectively these studies show that Psen1 regulates induction of HIF-1α although they indicate that cell type specific differences exist in the effect of Psen1 on induction. They also show that the M146V Psen1 FAD mutation impairs metabolic induction of HIF-1α, an observation that may have pathophysiological significance for AD.
Collapse
Affiliation(s)
- Rita De Gasperi
- Neurology Service, James J Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|
24
|
Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto GD, Cowie TF, Crouch PJ, Duce JA, Evin G, Faux NG, Hill AF, Hung YH, James SA, Li QX, Mok SS, Tew DJ, White AR, Bush AI, Hermjakob H, Masters CL. A domain level interaction network of amyloid precursor protein and Abeta of Alzheimer's disease. Proteomics 2010; 10:2377-95. [PMID: 20391539 DOI: 10.1002/pmic.200900773] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.
Collapse
Affiliation(s)
- Victoria M Perreau
- Neuroproteomics and Neurogenomics Platform, National Neurosciences Facility, The University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Krishnaswamy S, Verdile G, Groth D, Kanyenda L, Martins RN. The structure and function of Alzheimer’s gamma secretase enzyme complex. Crit Rev Clin Lab Sci 2009; 46:282-301. [DOI: 10.3109/10408360903335821] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Down-regulation of APLP1 mRNA expression in hippocampus of pilocarpine-induced epileptic rats. Neurosci Bull 2009; 25:109-14. [PMID: 19448684 DOI: 10.1007/s12264-009-1229-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To investigate the expression of amyloid beta precursor-like protein 1(APLP1) gene on the transcription level in hippocampus of pilocarpine-induced epileptic rats. METHODS Epileptic rats were developed by LiC1 (3 mmol/kg, i.p.) approximately 20 h prior to pilocarpine (30 mg/kg, i.p.) administration. The 3' end partial sequence of rat APLP1 gene was cloned, and the expression levels of APLP1 mRNA in hippocampus of epileptic rats at 6 h, 30 h, 7 d and 15 d were determined by semi-quantitative RT-PCR. RESULTS The 3'end partial sequence of rat APLP1 gene shared a 97% homology with that of mice, and 90% with that of human. The APLP1 amino acid sequence of rat was identical with that of mouse, but was different from that of human in 3 residues. Moreover, pilocarpine induced a significant down-regulation of APLP1 mRNA expression at 6 h after epilepsy initiation (P< 0.05), and at 30 h, this down-regulation became more dramatic (P< 0.01), which lasted till day 15 (P< 0.01). CONCLUSION The 3' end of APLP1 gene is highly conserved, and APLP1 mRNA expression is kept at low level in hippocampus of pilocarpine-induced epileptic rats.
Collapse
|
28
|
Abstract
The modification of proteins by reversible phosphorylation is a key mechanism in the regulation of various physiological functions. Abnormal protein kinase or phosphatase activity can cause disease by altering the phosphorylation of critical proteins in normal cellular and disease processes. Alzheimer's disease (AD), typically occurring in the elderly, is an irreversible, progressive brain disorder characterized by memory loss and cognitive decline. Accumulating evidence suggests that protein kinase and phosphatase activity are altered in the brain tissue of AD patients. Tau is a highly recognized phosphoprotein that undergoes hyperphosphorylation to form neurofibrillary tangles, a neuropathlogical hallmark with amyloid plaques in AD brains. This study is a brief overview of the altered protein phosphorylation pathways found in AD. Understanding the molecular mechanisms by which the activities of protein kinases and phosphatases are altered as well as the phosphorylation events in AD can potentially reveal novel insights into the role aberrant phosphorylation plays in the pathogenesis of AD, providing support for protein phosphorylation as a potential treatment strategy for AD.
Collapse
Affiliation(s)
- Sul-Hee Chung
- Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 614-735, Korea.
| |
Collapse
|
29
|
Jacobsen KT, Iverfeldt K. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 2009; 66:2299-318. [PMID: 19333550 PMCID: PMC11115575 DOI: 10.1007/s00018-009-0020-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
The Alzheimer's amyloid precursor protein (APP) belongs to a conserved gene family that also includes the mammalian APLP1 and APLP2, the Drosophila APPL, and the C. elegans APL-1. The biological function of APP is still not fully clear. However, it is known that the APP family proteins have redundant and partly overlapping functions, which demonstrates the importance of studying all APP family members to gain a more complete picture. When APP was first cloned, it was speculated that it could function as a receptor. This theory has been further substantiated by studies showing that APP and its homologues bind both extracellular ligands and intracellular adaptor proteins. The APP family proteins undergo regulated intramembrane proteolysis (RIP), generating secreted and cytoplasmic fragments that have been ascribed different functions. In this review, we will discuss the APP family with focus on biological functions, binding partners, and regulated processing.
Collapse
Affiliation(s)
| | - Kerstin Iverfeldt
- Department of Neurochemistry, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
30
|
Abstract
Mental retardation--known more commonly nowadays as intellectual disability--is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.
Collapse
Affiliation(s)
- François V Bolduc
- Watson School of Biological Sciences, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
31
|
Gosney R, Liau WS, Lamunyon CW. A novel function for the presenilin family member spe-4: inhibition of spermatid activation in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2008; 8:44. [PMID: 18430247 PMCID: PMC2383881 DOI: 10.1186/1471-213x-8-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 11/23/2022]
Abstract
Background Sperm cells must regulate the timing and location of activation to maximize the likelihood of fertilization. Sperm from most species, including the nematode Caenorhabditis elegans, activate upon encountering an external signal. Activation for C. elegans sperm occurs as spermatids undergo spermiogenesis, a profound cellular reorganization that produces a pseudopod. Spermiogenesis is initiated by an activation signal that is transduced through a series of gene products. It is now clear that an inhibitory pathway also operates in spermatids, preventing their premature progression to spermatozoa and resulting in fine-scale control over the timing of activation. Here, we describe the involvement of a newly assigned member of the inhibitory pathway: spe-4, a homolog of the human presenilin gene PS1. The spe-4(hc196) allele investigated here was isolated as a suppressor of sterility of mutations in the spermiogenesis signal transduction gene spe-27. Results Through mapping, complementation tests, DNA sequencing, and transformation rescue, we determined that allele hc196 is a mutation in the spe-4 gene. Our data show that spe-4(hc196) is a bypass suppressor that eliminates the need for the spermiogenesis signal transduction. On its own, spe-4(hc196) has a recessive, temperature sensitive spermatogenesis-defective phenotype, with mutants exhibiting (i) defective spermatocytes, (ii) defective spermatids, (iii) premature spermatid activation, and (iv) spermatozoa defective in fertilization, in addition to a small number of functional sperm which appear normal microscopically. Conclusion A fraction of the sperm from spe-4(hc196) mutant males progress directly to functional spermatozoa without the need for an activation signal, suggesting that spe-4 plays a role in preventing spermatid activation. Another fraction of spermatozoa from spe-4(hc196) mutants are defective in fertilization. Therefore, prematurely activated spermatozoa may have several defects: we show that they may be defective in fertilization, and earlier work showed that they obstruct sperm transfer from males at mating. hc196 is a hypomorphic allele of spe-4, and its newly-discovered role inhibiting spermiogenesis may involve known proteolytic and/or calcium regulatory aspects of presenilin function, or it may involve yet-to-be discovered functions.
Collapse
Affiliation(s)
- Ryoko Gosney
- Department of Biological Science, California State Polytechnic University, Pomona, CA, USA.
| | | | | |
Collapse
|
32
|
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairment. Free Radic Biol Med 2007; 43:658-77. [PMID: 17664130 PMCID: PMC2031860 DOI: 10.1016/j.freeradbiomed.2007.05.037] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/20/2007] [Accepted: 05/25/2007] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss. In this review we discuss the role of Abeta in the pathogenesis of AD and also the use of redox proteomics to identify oxidatively modified brain proteins in AD and mild cognitive impairment. In addition, redox proteomics studies in in vivo models of AD centered around human Abeta(1-42) are discussed.
Collapse
|