1
|
Scarr E, Hopper S, Vos V, Seo MS, Everall IP, Aumann TD, Chana G, Dean B. Low levels of muscarinic M1 receptor-positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia. J Psychiatry Neurosci 2018; 43:170202. [PMID: 29848411 PMCID: PMC6158028 DOI: 10.1503/jpn.170202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/28/2017] [Accepted: 01/04/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Results of neuroimaging and postmortem studies suggest that people with schizophrenia may have lower levels of muscarinic M1 receptors (CHRM1) in the cortex, but not in the hippocampus or thalamus. Here, we use a novel immunohistochemical approach to better understand the likely cause of these low receptor levels. METHODS We determined the distribution and number of CHRM1-positive (CHRM1+) neurons in the cortex, medial dorsal nucleus of the thalamus and regions of the hippocampus from controls (n = 12, 12 and 5, respectively) and people with schizophrenia (n = 24, 24 and 13, respectively). RESULTS Compared with controls, levels of CHRM1+ neurons in people with schizophrenia were lower on pyramidal cells in layer III of Brodmann areas 9 (-44%) and 17 (-45%), and in layer V in Brodmann areas 9 (-45%) and 17 (-62%). We found no significant differences in the number of CHRM1+ neurons in the medial dorsal nucleus of the thalamus or in the hippocampus. LIMITATIONS Although diagnostic cohort sizes were typical for this type of study, they were relatively small. As well, people with schizophrenia were treated with antipsychotic drugs before death. CONCLUSION The loss of CHRM1+ pyramidal cells in the cortex of people with schizophrenia may underpin derangements in the cholinergic regulation of GABAergic activity in cortical layer III and in cortical/subcortical communication via pyramidal cells in layer V.
Collapse
Affiliation(s)
- Elizabeth Scarr
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Shaun Hopper
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Valentina Vos
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Myoung Suk Seo
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Ian Paul Everall
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Timothy Douglas Aumann
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Gursharan Chana
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| | - Brian Dean
- From the Molecular Psychiatry Laboratory, University of Melbourne, Victoria, Australia (Scarr, Hopper, Vos, Suk Seo, Dean); the Midbrain Dopamine Plasticity Laboratory, the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia (Aumann); the Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Victoria, Australia (Dean); the Department of Psychiatry, University of Melbourne, Victoria, Australia (Everall); the Integrative Biological Psychiatry Laboratory, Centre for Neural Engineering, University of Melbourne, Victoria, Australia (Chunam); and the Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia (Scarr)
| |
Collapse
|
2
|
Dean B, Hopper S, Conn PJ, Scarr E. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations. Neuropsychopharmacology 2016; 41:1620-8. [PMID: 26511338 PMCID: PMC4832025 DOI: 10.1038/npp.2015.330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/04/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,The CRC for Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia,The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia, Tel: +61 3 8344 3786, Fax: +61 3 9348 1707, E-mail:
| | - Shaun Hopper
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,The CRC for Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia,The CRC for Mental Health, Parkville, VIC, Australia,Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Weston-Green K, Huang XF, Lian J, Deng C. Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels. Eur Neuropsychopharmacol 2012; 22:364-73. [PMID: 21982116 DOI: 10.1016/j.euroneuro.2011.09.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/01/2011] [Accepted: 09/01/2011] [Indexed: 12/19/2022]
Abstract
The second generation antipsychotic drug (SGA) olanzapine has an efficacy to treat schizophrenia, but can cause obesity and type II diabetes mellitus. Cholinergic muscarinic M3 receptors (M3R) are expressed on pancreatic β-cells and in the brain where they influence insulin secretion and may regulate other metabolic hormones via vagal innervation of the gastrointestinal tract. Olanzapine's M3R antagonism is an important risk factor for its diabetogenic liability. However, the effects of olanzapine on central M3Rs are unknown. Rats were treated with 0.25, 0.5, 1.0 or 2.0 mg olanzapine/kg or vehicle (3×/day, 14-days). M3R binding densities in the hypothalamic arcuate (Arc) and ventromedial nuclei (VMH), and dorsal vagal complex (DVC) of the brainstem were investigated using [3H]4-DAMP plus pirenzepine and AF-DX116. M3R binding correlations to body weight, food intake, insulin, ghrelin and cholecystokinin (CCK) were analyzed. Olanzapine increased M3R binding density in the Arc, VMH and DVC, body weight, food intake, circulating plasma ghrelin and CCK levels, and decreased plasma insulin and glucose. M3R negatively correlated to insulin, and positively correlated to ghrelin, CCK, food intake and body weight. Increased M3R density is a compensatory up-regulation in response to olanzapine's M3R antagonism. Olanzapine acts on M3R in regions of the brain that control food intake and insulin secretion. Olanzapine's M3R blockade in the brain may inhibit the acetylcholine pathway for insulin secretion. These findings support a role for M3Rs in the modulation of insulin, ghrelin and CCK via the vagus nerve and provide a mechanism for olanzapine's diabetogenic and weight gain liability.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, 2522, NSW, Australia
| | | | | | | |
Collapse
|