1
|
Durigon DC, Duarte L, Fonseca J, Tizziani T, R. S. Candela D, Braga AL, Bortoluzzi AJ, Neves A, Peralta RA. Synthesis, structure and properties of new triiron(III) complexes: Phosphodiester cleavage and antioxidant activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Jimoh YA, Lawal AO, Kade IJ, Olatunde DM, Oluwayomi O. Diphenyl diselenide modulate antioxidant status, inflammatory and redox-sensitive genes in diesel exhaust particle-induced neurotoxicity. Chem Biol Interact 2022; 367:110196. [PMID: 36174737 DOI: 10.1016/j.cbi.2022.110196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
This study seeks to determine the influence of diphenyl diselenide (DPDSe) on redox status, inflammatory and redox-sensitive genes in diesel exhaust particle (DEP)-induced neurotoxicity in male albino rats. Male Wistar albino rats were administered nasally with DEP (30 and 60 μg/kg) and treated with intraperitoneal administration of 10 mg/kg DPDSe. Non-enzymatic (lipid peroxidation and conjugated diene concentrations) and enzymatic (catalase, superoxide dismutase, glutathione peroxidase) antioxidant indices and activity of acetylcholinesterase enzyme were evaluated in brain tissues of the rats. Furthermore, the expression of genes linked to oxidative stress (HO-1, Nrf2), pro-inflammatory (NF-KB, IL-8, TNF-α) anti-inflammatory (IL-10) and brain-specific (GFAP, ENO-2) genes were also determined. The results indicated that DPDSe caused a notable reduction in the high levels of thiobarbituric acid reactive substances and conjugated diene observed in the brain of DEP-administered rats. DPDSe also reversed the observed reduction in catalase, superoxide dismutase and glutathione peroxidase enzyme activities in the brain of DEP-administered rats. Lastly, the downregulation of genes associated with redox homeostasis, anti-inflammatory and brain-specific genes and upregulation of pro-inflammatory genes observed in the DEP-treated groups were ameliorated by DPDSe. The immediate restoration of altered biochemical conditions and molecular expression in the brain of DEP-treated rats by DPDSe further validates its use as a promising therapeutic candidate for restoring neurotoxicity linked with DEP-induced oxidative stress.
Collapse
Affiliation(s)
- Yomade Ayodeji Jimoh
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | - Akeem Olalekan Lawal
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria.
| | - Ige Joseph Kade
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | | | - Oluwafunso Oluwayomi
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| |
Collapse
|
3
|
Nogara PA, Orian L, Rocha JBT. The Se …S/N interactions as a possible mechanism of δ-aminolevulinic acid dehydratase enzyme inhibition by organoselenium compounds: A computational study. ACTA ACUST UNITED AC 2020; 15:100127. [PMID: 32572387 PMCID: PMC7280828 DOI: 10.1016/j.comtox.2020.100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
DPDS and PSA interacts with cysteine residues from AlaD active site. The Se…S interactions could be involved in the δ-AlaD inhibition. δ-AlaD from Cucumis sativus does not present cysteine residues in the active site. Se…N interactions could be involved in the organoselenium action.
Organoselenium compounds present many pharmacological properties and are promising drugs. However, toxicological effects associated with inhibition of thiol-containing enzymes, such as the δ-aminolevulinic acid dehydratase (δ-AlaD), have been described. The molecular mechanism(s) by which they inhibit thiol-containing enzymes at the atomic level, is still not well known. The use of computational methods to understand the physical–chemical properties and biological activity of chemicals is essential to the rational design of new drugs. In this work, we propose an in silico study to understand the δ-AlaD inhibition mechanism by diphenyl diselenide (DPDS) and its putative metabolite, phenylseleninic acid (PSA), using δ-AlaD enzymes from Homo sapiens (Hsδ-AlaD), Drosophila melanogaster (Dmδ-AlaD) and Cucumis sativus (Csδ-AlaD). Protein modeling homology, molecular docking, and DFT calculations are combined in this study. According to the molecular docking, DPDS and PSA might bind in the Hsδ-AlaD and Dmδ-AlaD active sites interacting with the cysteine residues by Se…S interactions. On the other hand, the DPDS does not access the active site of the Csδ-AlaD (a non-thiol protein), while the PSA interacts with the amino acids residues from the active site, such as the Lys291. These interactions might lead to the formation of a covalent bond, and consequently, to the enzyme inhibition. In fact, DFT calculations (mPW1PW91/def2TZVP) demonstrated that the selenylamide bond formation is energetically favored. The in silico data showed here are in accordance with previous experimental studies, and help us to understand the reactivity and biological activity of organoselenium compounds.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
4
|
Tiezza MD, Ribaudo G, Orian L. Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180803123137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organodiselenides are an important class of compounds characterized by the
presence of two adjacent covalently bonded selenium nuclei. Among them,
diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest
in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and
biochemistry. A search in SCOPUS database has revealed that in the last three years 105
papers have been published on the archetypal diphenyl diselenide and its use in organic
catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium
make diselenides efficient catalysts for numerous organic reactions, such as Bayer-
Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols
and nitrogen containing compounds. In addition, organodiselenides might find application
as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions,
regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic
and reactivity aspects of organoselenides are collected and rationalized using the results of accurate
computational studies, which have been carried out mainly in the last two decades. The results obtained in
silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their
ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic
activity of the GPx, inspiring novel elements for rational catalyst and drug design.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Universita degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Ecker A, da Silva RS, Dos Santos MM, Ardisson-Araújo D, Rodrigues OED, da Rocha JBT, Barbosa NV. Safety profile of AZT derivatives: Organoselenium moieties confer different cytotoxic responses in fresh human erythrocytes during in vitro exposures. J Trace Elem Med Biol 2018; 50:240-248. [PMID: 30262286 DOI: 10.1016/j.jtemb.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The incorporation of selenium in the structure of nucleosides is a promising strategy to develop novel therapeutic molecules. OBJECTIVE To assess the toxic effects of three AZT derivatives containing organoselenium moieties on human erythrocytes. METHODOLOGY Freshly human erythrocytes were acutely treated with AZT and selenium derivatives SZ1 (chlorophenylseleno), SZ2 (phenylseleno) and SZ3 (methylphenylseleno) at concentrations ranging from 10 to 500 μM. Afterwards, parameters related to membrane damage, redox dyshomeostasis and eryptosis were determined in the cells. RESULTS The effects of AZT and derivatives toward erythrocytes differed considerably. Overall, the SZ3 exhibited similar effect profiles to the prototypal AZT, without causing cytotoxicity. Contrary, the derivative SZ1 induced hemolysis and increased the membrane fragility of cells. Reactive species generation, lipid peroxidation and thiol depletion were also substantially increased in cells after exposure to SZ1. δ-ALA-D and Na+/K+-ATPase activities were inhibited by derivatives SZ1 and SZ2. Additionally, both derivatives caused eryptosis, promoting cell shrinkage and translocation of phosphatidylserine at the membrane surface. The size and granularity of erythrocytes were not modified by any compound. CONCLUSION The insertion of either chlorophenylseleno or, in a certain way, phenylseleno moietes in the structure of AZT molecule was harmful to erythrocytes and this effect seems to involve a pro-oxidant activity. This was not true for the derivative encompassing methylphenylseleno portion, making it a promising candidate for pharmacological studies.
Collapse
Affiliation(s)
- Assis Ecker
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Daniel Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Fragoso E, Azpiroz R, Sharma P, Espinosa-Pérez G, Lara-Ochoa F, Toscano A, Gutierrez R, Portillo O. New organoselenium compounds with intramolecular Se⋯O/ Se⋯H interactions: NMR and theoretical studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
8
|
Ribaudo G, Bellanda M, Menegazzo I, Wolters LP, Bortoli M, Ferrer-Sueta G, Zagotto G, Orian L. Mechanistic Insight into the Oxidation of Organic Phenylselenides by H 2 O 2. Chemistry 2017; 23:2405-2422. [PMID: 27935210 DOI: 10.1002/chem.201604915] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 12/24/2022]
Abstract
The oxidation of organic phenylselenides by H2 O2 is investigated in model compounds, namely, n-butyl phenyl selenide (PhSe(nBu)), bis(phenylselanyl)methane (PhSeMeSePh), diphenyl diselenide (PhSeSePh), and 1,2-bis(phenylselanyl)ethane (PhSeEtSePh). Through a combined experimental (1 H and 77 Se NMR) and computational approach, we characterize the direct oxidation of monoselenide to selenoxide, the stepwise double oxidation of PhSeMeSePh that leads to different diastereomeric diselenoxides, the complete oxidation of the diphenyldiselenide that leads to selenium-selenium bond cleavage, and the subsequent formation of the phenylseleninic product. The oxidation of PhSeEtSePh also results in the formation of phenylseleninic acid along with 1-(vinylseleninyl)benzene, which is derived from a side elimination reaction. The evidence of a direct mechanism, in addition to an autocatalytic mechanism that emerges from kinetic studies, is discussed. By considering our observations of diselenides with chalcogen atoms that are separated by alkyl spacers of different length, a rationale for the advantage of diselenide versus monoselenide catalysts is presented.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Massimo Bellanda
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Ileana Menegazzo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lando P Wolters
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la Repúbica, Igua 4225, Montevideo, Uruguay
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
9
|
Torsello M, Pimenta AC, Wolters LP, Moreira IS, Orian L, Polimeno A. General AMBER Force Field Parameters for Diphenyl Diselenides and Diphenyl Ditellurides. J Phys Chem A 2016; 120:4389-400. [DOI: 10.1021/acs.jpca.6b02250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mauro Torsello
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Antonio C. Pimenta
- CNC−Center for Neuroscience
and Cell Biology, Universidade de Coimbra, Rua Larga, FMUC, Polo I, 1°andar, 3004-517 Coimbra, Portugal
| | - Lando P. Wolters
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Irina S. Moreira
- CNC−Center for Neuroscience
and Cell Biology, Universidade de Coimbra, Rua Larga, FMUC, Polo I, 1°andar, 3004-517 Coimbra, Portugal
| | - Laura Orian
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| | - Antonino Polimeno
- Dipartimento
di Scienze Chimiche, Università degli Studi di Padova, Via
Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Zaccaria F, Wolters LP, Fonseca Guerra C, Orian L. Insights on selenium and tellurium diaryldichalcogenides: A benchmark DFT study. J Comput Chem 2016; 37:1672-80. [DOI: 10.1002/jcc.24383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Francesco Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Lando P. Wolters
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling; Vrije Universiteit Amsterdam; De Boelelaan 1083 Amsterdam 1081 HV the Netherlands
| | - Laura Orian
- Dipartimento Di Scienze Chimiche; Università Studi Di Padova; via Marzolo 1 Padova 35129 Italy
| |
Collapse
|
11
|
Iwaoka M, Sano N, Lin YY, Katakura A, Noguchi M, Takahashi K, Kumakura F, Arai K, Singh BG, Kunwar A, Priyadarsini KI. Fatty Acid Conjugates of Water-Soluble (±)-trans-Selenolane-3,4-diol: Effects of Alkyl Chain Length on the Antioxidant Capacity. Chembiochem 2015; 16:1226-34. [DOI: 10.1002/cbic.201500047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 11/11/2022]
|
12
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae. J Biol Chem 2015; 290:10741-50. [PMID: 25745108 DOI: 10.1074/jbc.m115.640375] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/29/2022] Open
Abstract
Toxicity of selenomethionine, an organic derivative of selenium widely used as supplement in human diets, was studied in the model organism Saccharomyces cerevisiae. Several DNA repair-deficient strains hypersensitive to selenide displayed wild-type growth rate properties in the presence of selenomethionine indicating that selenide and selenomethionine exert their toxicity via distinct mechanisms. Cytotoxicity of selenomethionine decreased when the extracellular concentration of methionine or S-adenosylmethionine was increased. This protection resulted from competition between the S- and Se-compounds along the downstream metabolic pathways inside the cell. By comparing the sensitivity to selenomethionine of mutants impaired in the sulfur amino acid pathway, we excluded a toxic effect of Se-adenosylmethionine, Se-adenosylhomocysteine, or of any compound in the methionine salvage pathway. Instead, we found that selenomethionine toxicity is mediated by the trans-sulfuration pathway amino acids selenohomocysteine and/or selenocysteine. Involvement of superoxide radicals in selenomethionine toxicity in vivo is suggested by the hypersensitivity of a Δsod1 mutant strain, increased resistance afforded by the superoxide scavenger manganese, and inactivation of aconitase. In parallel, we showed that, in vitro, the complete oxidation of the selenol function of selenocysteine or selenohomocysteine by dioxygen is achieved within a few minutes at neutral pH and produces superoxide radicals. These results establish a link between superoxide production and trans-sulfuration pathway seleno-amino acids and emphasize the importance of the selenol function in the mechanism of organic selenium toxicity.
Collapse
Affiliation(s)
- Myriam Lazard
- From the Ecole Polytechnique, Laboratoire de Biochimie, CNRS, 91128 Palaiseau Cedex, France
| | - Marc Dauplais
- From the Ecole Polytechnique, Laboratoire de Biochimie, CNRS, 91128 Palaiseau Cedex, France
| | - Sylvain Blanquet
- From the Ecole Polytechnique, Laboratoire de Biochimie, CNRS, 91128 Palaiseau Cedex, France
| | - Pierre Plateau
- From the Ecole Polytechnique, Laboratoire de Biochimie, CNRS, 91128 Palaiseau Cedex, France
| |
Collapse
|
13
|
Omotayo TI, Akinyemi GS, Omololu PA, Ajayi BO, Akindahunsi AA, Rocha JBT, Kade IJ. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity. Redox Biol 2014; 4:234-41. [PMID: 25618580 PMCID: PMC4803792 DOI: 10.1016/j.redox.2014.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 11/20/2022] Open
Abstract
The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. Fe2+ evoked lipid peroxidation (LPO) and inhibition of sodium pump (SP) in rat brain. However, dithiothreitol prevented both Fe2+-mediated LPO and inhibition of SP. Conversely, vitamin E prevented only Fe2+-mediated LPO but not inhibition of SP. Thus Fe2+ mediated inactivation of SP likely by oxidizing the essential thiol on SP. However, malondialdehyde inhibited SP by a mechanism not related to thiol oxidation.
Collapse
Affiliation(s)
- T I Omotayo
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - G S Akinyemi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - P A Omololu
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - B O Ajayi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - A A Akindahunsi
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | - J B T Rocha
- Centro de Ciencias Naturais e Exatas, Programa Posgraduacao em Bioquimica Toxciologica, Universidade Federal de Santa Maria, RS, Brazil
| | - I J Kade
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria.
| |
Collapse
|
14
|
de Oliveira IM, Degrandi TH, Jorge PM, Saffi J, Rosa RM, Guecheva TN, Henriques JAP. Dicholesteroyl diselenide: Cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 763:1-11. [DOI: 10.1016/j.mrgentox.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/25/2013] [Accepted: 12/28/2013] [Indexed: 12/30/2022]
|
15
|
Kade IJ, Balogun BD, Rocha JBT. In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral suphydryl proteins - A novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated toxicology and pharmacology. Chem Biol Interact 2013; 206:27-36. [PMID: 23933410 DOI: 10.1016/j.cbi.2013.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 11/30/2022]
Abstract
The antioxidant mechanism of ebselen in rats brain is largely linked with its glutathione peroxidase (GPx) rather than its peroxiredoxin mimicry ability. However, the precise molecular dynamics between the GPx-mimicry of ebselen and thiol utilization is yet to be fully clarified and thus still open. Herein, we investigated the influence of dithiothreitol (DTT) on the antioxidant action of ebselen against oxidant-induced cerebral lipid peroxidation and deoxyribose degradation. Furthermore, the critical inhibitory concentrations of ebselen on the activities of sulphydryl enzymes such as cerebral sodium pump, δ-aminolevulinic acid dehydratase (δ-ALAD) and lactate dehydrogenase (LDH) were also investigated. We observe that ebselen (at ≥42 μM) markedly inhibited lipid peroxidation in the presence and absence of DTT, whereas it inhibited deoxyribose degradation only in the presence of DTT. Furthermore, under in vitro conditions, ebselen inhibited the thiol containing enzymes; cerebral sodium pump (at ≥40 μM), δ-ALAD (≥10 μM) and LDH (≥1 μM) which were either prevented or reversed by DTT. However, the inhibition of the activities of these sulphydryl proteins in diabetic animals was prevented by ebselen. Summarily, it is apparent that the effective in vitro inhibitory doses of ebselen on the activity of the sulphydryl proteins are far less than its antioxidant doses. In addition, the presence of DTT is evidently a critical requirement for ebselen to effect its antioxidant action against deoxyribose degeradation and not lipid peroxidation. Consequently, we conclude that ebselen possibly utilizes available thiols on sulphydryl proteins to effect its GPx mimicry antioxidant action against lipid peroxidation in rat brain homogenate.
Collapse
Affiliation(s)
- I J Kade
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria.
| | | | | |
Collapse
|
16
|
Bitencourt PER, Bellé LP, Bonfanti G, Cargnelutti LO, Bona KSD, Silva PS, Abdalla FH, Zanette RA, Guerra RB, Funchal C, Moretto MB. Differential effects of organic and inorganic selenium compounds on adenosine deaminase activity and scavenger capacity in cerebral cortex slices of young rats. Hum Exp Toxicol 2013; 32:942-9. [DOI: 10.1177/0960327113479045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selenium (Se) has anti-inflammatory and antioxidant properties and is necessary for the development and normal function of the central nervous system. This study was aimed to compare the in vitro effects of 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one (C21H2HOSe; organoselenium) and sodium selenate (inorganic Se) on adenosine deaminase (ADA) activity, cell viability, lipid peroxidation, scavenger of nitric oxide (NO) and nonprotein thiols (NP-SH) content in the cerebral cortex slices of the young rats. A decrease in ADA activity was observed when the slices were exposed to organoselenium at the concentrations of 1, 10 and 30 µM. The same compound showed higher scavenger capacity of NO than the inorganic compound. Inorganic Se was able to protect against sodium nitroprusside-induced oxidative damage and increased the NP-SH content. Both the compounds displayed distinctive antioxidant capacities and were not cytotoxic for the cerebral cortex slices in the conditions tested. These findings are likely to be related to immunomodulatory and antioxidant properties of this compound.
Collapse
Affiliation(s)
- PER Bitencourt
- Postgraduate Program in Pharmaceutical Sciences, Health Science Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - LP Bellé
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - G Bonfanti
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - LO Cargnelutti
- Postgraduate Program in Pharmaceutical Sciences, Health Science Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - KS de Bona
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - PS Silva
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - FH Abdalla
- Postgraduate Program in Pharmaceutical Sciences, Health Science Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - RA Zanette
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - RB Guerra
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Sertão, RS, Brazil
| | - C Funchal
- Postgraduate Program in Biosciences and Rehabilitation, Methodist University Center, IPA, Porto Alegre, RS, Brazil
| | - MB Moretto
- Postgraduate Program in Pharmaceutical Sciences, Health Science Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
Gallic Acid Modulates Cerebral Oxidative Stress Conditions and Activities of Enzyme-Dependent Signaling Systems in Streptozotocin-Treated Rats. Neurochem Res 2013; 38:761-71. [DOI: 10.1007/s11064-013-0975-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/17/2023]
|
18
|
Ibrahim M, Hassan W, Meinerz DF, dos Santos M, V. Klimaczewski C, M. Deobald A, Costa MS, Nogueira CW, Barbosa NBV, Rocha JBT. Antioxidant properties of diorganoyl diselenides and ditellurides: modulation by organic aryl or naphthyl moiety. Mol Cell Biochem 2012; 371:97-104. [DOI: 10.1007/s11010-012-1426-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/03/2012] [Indexed: 01/22/2023]
|
19
|
Diphenyl diselenide reduces inflammation in the mouse model of pleurisy induced by carrageenan: reduction of pro-inflammatory markers and reactive species levels. Inflamm Res 2012; 61:1117-24. [DOI: 10.1007/s00011-012-0504-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
|
20
|
Prauchner CA, Prestes ADS, da Rocha JBT. Effects of diphenyl diselenide on oxidative stress induced by sepsis in rats. Pathol Res Pract 2012; 207:554-8. [PMID: 21856092 DOI: 10.1016/j.prp.2011.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 01/03/2023]
Abstract
Sepsis is a potentially deadly complication that can be caused by different factors. Actually, it is known that oxidative stress is involved in the pathogenesis of sepsis. Thus, the aim of this study was to evaluate the effect of diphenyl diselenide (PhSe)(2), an emergent compound, on oxidative stress parameters induced by sepsis in rats. Animals were pre-injected with (PhSe)(2) or vehicle. Twenty-four hours later, sepsis was induced by cecal ligation puncture (CLP). After 12 h, liver was taken for thiobarbituric acid reactive species (TBARS) measurement, δ-aminolevunic acid dehydratase (δ-ALA-D), Cu/Zn superoxide dismutase (Cu/Zn SOD) and catalase (CAT) activities assay. The sepsis increased TBARS, inhibited δ-ALA-D, activated Cu/Zn SOD and had a tendency to decrease CAT activity. However, (PhSe)(2) prevented the TBARS formation, but did not prevent the inhibition of δ-ALA-D activity in the animals with damage. Thus, this study showed that (PhSe)(2) partially prevents the oxidative stress induced by sepsis, indicating the potential of this compound as a treatment for this pathology. Nevertheless, more tests should be performed to confirm the hypothesis suggested here.
Collapse
Affiliation(s)
- Carlos A Prauchner
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
21
|
de Souza Prestes A, Stefanello ST, Salman SM, Pazini AM, Schwab RS, Braga AL, de Vargas Barbosa NB, Rocha JBT. Antioxidant activity of β-selenoamines and their capacity to mimic different enzymes. Mol Cell Biochem 2012; 365:85-92. [PMID: 22311601 DOI: 10.1007/s11010-012-1246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/14/2012] [Indexed: 11/25/2022]
Abstract
The antioxidant properties of organoselenium compounds have been extensively investigated because oxidative stress is a hallmark of a variety of chronic human diseases. Here, we reported the influence of substituent groups in the antioxidant activity of β-selenoamines. We have investigated whether they exhibited glutathione peroxidase-like (GPx-like) activity and whether they could be substrate of thioredoxin reductase (TrxR). In the DPPH assay, the β-selenium amines did not exhibit antioxidant activity. However, the β-selenium amines with p-methoxy and tosyl groups prevented the lipid peroxidation. The β-selenium amine compound with p-methoxy substituent group exhibited thiol-peroxidase-like activity (GPx-like activity) and was reduced by the hepatic TrxR. These results contribute to understand the influence of structural alteration of non-conventional selenium compounds as synthetic mimetic of antioxidant enzymes of mammalian organisms.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS CEP 97105-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Santos Lacerda D, Oliveira Castro V, Mascarenhas M, Guerra RB, Dani C, Coitinho A, Gomez R, Funchal C. Acute administration of the organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces biochemical and hematological disorders in male rats. Cell Biochem Funct 2012; 30:315-9. [DOI: 10.1002/cbf.2806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/12/2011] [Accepted: 01/03/2012] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Robson Brum Guerra
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul; Sertão; Rio Grande do Sul; Brazil
| | - Caroline Dani
- Centro Universitário Metodista IPA; Porto Alegre; Rio Grande do Sul; Brazil
| | - Adriana Coitinho
- Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre; Rio Grande do Sul; Brazil
| | - Rosane Gomez
- Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre; Rio Grande do Sul; Brazil
| | - Cláudia Funchal
- Centro Universitário Metodista IPA; Porto Alegre; Rio Grande do Sul; Brazil
| |
Collapse
|
23
|
Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20014g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Ibrahim M, Hassan W, Anwar J, Nogueira CW, Teixeira Rocha JB. Fe(II) and sodium nitroprusside induce oxidative stress: a comparative study of diphenyl diselenide and diphenyl ditelluride with their napthyl analog. Drug Chem Toxicol 2011; 35:48-56. [PMID: 21919597 DOI: 10.3109/01480545.2011.588711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we compare the influence of molecular structural modifications of diphenyl diselenide (DPDS) and diphenyl ditelluride (DPDT) with their naphthalene analogs, 1-dinapthyl diselenide (1-NapSe)2, 2-dinapthyl diselenide (2-NapSe)2, 1-dinapthyl distelluride (1-NapTe)2, and 2-dinapthyl ditelluride (2-NapTe)2. Fe(II)-induced hepatic thiobarbituric acid reactive species (TBARS) was in the order [(2-NapTe)2] > [(2-NapSe)2] > [(DPDS)] > [(1-NapSe)2] > [(1-NapTe)2]> [(DPDT)]. For sodium nitroprusside (SNP)-induced hepatic TBARS, the order was [(2-NapTe)2] > [(DPDT)] > [(1-NapSe)2] > [(2-NapSe)2] > [(1-NapTe)2] > [(DPDS)]. For Fe(II) and SNP-induced renal TBARS, the orders were [(2-NapTe)2] > [(1-NapTe)2] = [(DPDT)] > [(1-NapSe)2] > [(2-NapSe)2] > [(DPDS)] and [(2-NapTe)2] > [(1-NapTe)2] > [(1-NapSe)2] > [(2-NapSe)2] > [(DPDS)] > [(DPDS)], respectively. The present investigation shows that DPDS was less potent and the change in the organic moiety from an aryl to napthyl group dramatically changed the potency of diselenides. These results suggest that minor changes in the organic moiety of aromatic diselenides can profoundly modify their antioxidant properties. In view of the fact that the pharmacological properties of organochalcogens are linked, at least in part, to their antioxidant properties, it becomes important to explore the pharmacological properties of dinaphtyl diselenides and ditellurides.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
25
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
26
|
Omotayo TI, Rocha JBT, Ibukun EO, Kade IJ. Inorganic mercury interacts with thiols at the nucleotide and cationic binding sites of the ouabain-sensitive cerebral electrogenic sodium pump. Neurochem Int 2011; 58:776-84. [PMID: 21397648 DOI: 10.1016/j.neuint.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/26/2011] [Accepted: 03/04/2011] [Indexed: 11/17/2022]
Abstract
The molecular events leading to neuronal dysfunction often associated with mercury toxicity can be complex and is yet to be fully elucidated. Hence, the present study sought to evaluate the interaction of inorganic mercury (Hg(2+)) with the ouabain-sensitive electrogenic pump in partially purified mammalian brain membrane preparations. The results show that Hg(2+) significantly inhibited the transmembrane enzyme in a concentration dependent manner. In addition, Hg(2+) exerts its inhibitory effect on the activity of the enzyme by interacting with groups at the adenosine triphosphate (ATP), Na(+) and K(+) binding sites. However, preincubation of the enzyme with exogenous monothiols, cysteine, prevented the inhibition of Hg(2+) on the pump's activity suggesting that Hg(2+) may be interacting with the thiols at the nucleotide (ATP) and cationic (Na(+) and K(+)) binding sites. In fact, our data show that Hg(2+) oxidizes sulphydryl groups in cysteine in a time dependent fashion in vitro. Finally, we speculate that the small molecular volume of Hg(2+) in comparison with the substrates (ATP, Na(+) and K(+)) of sodium pump, its possibly high reactivity and strong affinity for thiols may account for its high toxicity towards the membrane bound ouabain-sensitive electrogenic pump.
Collapse
Affiliation(s)
- T I Omotayo
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | | | | |
Collapse
|
27
|
Kade IJ, Rocha JBT. Comparative study on the influence of subcutaneous administration of diphenyl and dicholesteroyl diselenides on sulphydryl proteins and antioxidant parameters in mice. J Appl Toxicol 2011; 30:688-93. [PMID: 20583318 DOI: 10.1002/jat.1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although in vitro data from our previous studies show that the antioxidant effect and reactions of both diphenyl diselenide (DPDS) and dicholesteroyl diselenide (DCDS) towards thiol-containing proteins differ considerably, the present study sought to evaluate the interaction of both organodiselenides with thiol-containing proteins in vivo. Mice were injected subcutaneously with DPDS or DCDS previously dissolved in soya bean oil at doses of 0.5 mmol kg⁻¹ body weight for four consecutive days. The activities of delta aminolevulinic acid dehydratase (ALA-D), Na+/K+-ATPase, and isoforms of lactate dehydrogenase (LDH) and catalase were investigated. In addition, the antioxidant status of the mice was determined by measuring the levels of glutathione (GSH), vitamin C (Vit C) and thiobarbituric acid reactive substances. The results show that both diselenides significantly increased the levels of GSH and Vit C but did not markedly alter other antioxidant indices. With respect to the thiol-containing enzymes that were evaluated, DPDS and not DCDS caused a marked reduction in the activities of hepatic ALA-D; however, both diselenides inhibited all isoforms of LDH evaluated. In addition, the activities of cerebral Na+/K+-ATPase were not markedly inhibited by both diselenides, suggesting that this cerebral enzyme may not be a molecular target of organodiselenides toxicity. Taken together, the pharmacological and toxicological chemistry of organoselenium compounds is complex and multifactorial and is dependent on delicate equations which include vehicle solution, animal species and mode of delivery.
Collapse
Affiliation(s)
- I J Kade
- Postgraduate Programme in Biochemical Toxicology, Centre for Natural and Exact Sciences, Federal University of Santa Maria, CEP 97105-900, Camobi, Santa Maria, RS, Brazil.
| | | |
Collapse
|
28
|
Sausen de Freitas A, de Souza Prestes A, Wagner C, Haigert Sudati J, Alves D, Oliveira Porciúncula L, Kade IJ, Teixeira Rocha JB. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010; 15:7699-714. [PMID: 21030914 DOI: 10.3390/molecules15117700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/14/2010] [Accepted: 10/26/2010] [Indexed: 01/05/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
Affiliation(s)
- Andressa Sausen de Freitas
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010. [PMID: 21030914 PMCID: PMC6259470 DOI: 10.3390/molecules15117699] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
|
30
|
Rosseti IB, Wagner C, Fachinetto R, Taube Junior P, Costa MS. Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (p-Cl-PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses 2010; 54:506-13. [DOI: 10.1111/j.1439-0507.2010.01888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Ibrahim M, Prigol M, Hassan W, Nogueira CW, Rocha JB. Protective effect of binaphthyl diselenide, a synthetic organoselenium compound, on 2-nitropropane-induced hepatotoxicity in rats. Cell Biochem Funct 2010; 28:258-65. [DOI: 10.1002/cbf.1645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Ibrahim M, Luchese C, Pinton S, Roman SS, Hassan W, Nogueira CW, Rocha JBT. Involvement of catalase in the protective effect of binaphthyl diselenide against renal damage induced by glycerol. ACTA ACUST UNITED AC 2010; 63:331-5. [PMID: 20307962 DOI: 10.1016/j.etp.2010.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 02/02/2023]
Abstract
In the present study, the protective effect of binapthyl diselenide [(NapSe)(2)] was investigated on glycerol-induced renal damage in rats. Adult male Wistar rats were treated with (NapSe)(2) (50 mg/kg, orally) or vehicle. After 24 h (NapSe)(2) treatment, the animals received an intramuscular injection of glycerol (8 ml/kg, dissolved in saline) or vehicle as a divided dose into the hind limbs. Twenty-four hours afterwards, rats were euthanized and the levels of urea and creatinine were measured in plasma. Non-protein thiol (NPSH) levels and catalase (CAT) activity were evaluated in renal homogenates. Histopathological evaluations were also performed in kidneys of rats. The rats exposed to glycerol presented swelling of the proximal and distal tubules with evidence of cell damage and death. Glycerol-exposed rats presented an increase in renal failure markers (plasmatic urea and creatinine levels) and a reduction in renal CAT activity. No change was observed in NPSH levels in kidneys of rats exposed to glycerol. (NapSe)(2) protected against the alterations caused by glycerol in rats. (NapSe)(2) increased per se NPSH levels (33%) in kidneys of rats. In conclusion, the results demonstrated that treatment with (NapSe)(2) protected against renal damage induced by glycerol in rats, probably due to its antioxidant effect.
Collapse
Affiliation(s)
- Mohammad Ibrahim
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Departamento de Quimica, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Omololu PA, Rocha JBT, Kade IJ. Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties. ACTA ACUST UNITED AC 2010; 63:249-55. [PMID: 20122821 DOI: 10.1016/j.etp.2010.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 01/05/2010] [Indexed: 11/16/2022]
Abstract
The pharmacological essence of the natural addition of rhamnosyl glucoside on quercetin that is commonly found in nature in medicinal plants is rather obscure. The present study therefore sought to compare the antioxidant activities of both compounds by comparing their ability to decolourise DPPH radicals, reduce Fe(3+), chelate Fe(2+), prevent deoxyribose degradation and inhibit hepatic thiobarbituric acid reactive substances induced by both Fe(2+) and sodium nitroprusside. The results show that quercetin is generally a more potent antioxidant than its rhamnosyl glucoside derivative (rutin). However, rutin exerted a more potent iron-chelating ability than quercetin which diminishes in a time dependent fashion suggesting why it exhibited a reduced inhibitory effect on lipid peroxidation and deoxyribose degradation under harsh prooxidant assault than quercetin. Taken together, we speculate that rutin may have been produced initially in plants as a possible defense mechanism for protection and survival under oxidative assaults and where both flavonoids are found to co-exist in nature, there is a possible synergy in their antioxidant actions.
Collapse
Affiliation(s)
- P A Omololu
- Department of Biochemistry, Federal University of Technology, FUTA Road, PMB 704 Akure, Ondo State, Nigeria
| | | | | |
Collapse
|
34
|
Ogunmoyole T, Rocha J, Okoronkwo A, Kade I. Altered pH homeostasis modulates the glutathione peroxidase mimics and other antioxidant properties of diphenyl diselenide. Chem Biol Interact 2009; 182:106-11. [DOI: 10.1016/j.cbi.2009.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 01/22/2023]
|
35
|
Santos D, Schiar V, Paixão M, Meinerz D, Nogueira C, Aschner M, Rocha J, Barbosa N. Hemolytic and genotoxic evaluation of organochalcogens in human blood cells in vitro. Toxicol In Vitro 2009; 23:1195-204. [DOI: 10.1016/j.tiv.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/24/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
|
36
|
Kade I, Nogueira C, Rocha J. Diphenyl diselenide and streptozotocin did not alter cerebral glutamatergic and cholinergic systems but modulate antioxidant status and sodium pump in diabetic rats. Brain Res 2009; 1284:202-11. [DOI: 10.1016/j.brainres.2009.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 11/26/2022]
|
37
|
Kade I, Paixão M, Rodrigues O, Ibukun E, Braga A, Zeni G, Nogueira C, Rocha J. Studies on the antioxidant effect and interaction of diphenyl diselenide and dicholesteroyl diselenide with hepatic δ-aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase. Toxicol In Vitro 2009; 23:14-20. [DOI: 10.1016/j.tiv.2008.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 08/12/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
38
|
Kade IJ, Borges VC, Savegnago L, Ibukun EO, Zeni G, Nogueira CW, Rocha JBT. Effect of oral administration of diphenyl diselenide on antioxidant status, and activity of delta aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase, in streptozotocin-induced diabetic rats. Cell Biol Toxicol 2008; 25:415-24. [DOI: 10.1007/s10565-008-9095-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 06/17/2008] [Indexed: 01/17/2023]
|