1
|
Berdasco C, Pinto A, Blake MG, Correa F, Carbajosa NAL, Celi AB, Geoghegan PA, Cangelosi A, Nuñez M, Gironacci MM, Goldstein J. Cognitive Deficits Found in a Pro-inflammatory State are Independent of ERK1/2 Signaling in the Murine Brain Hippocampus Treated with Shiga Toxin 2 from Enterohemorrhagic Escherichia coli. Cell Mol Neurobiol 2023; 43:2203-2217. [PMID: 36227397 PMCID: PMC11412172 DOI: 10.1007/s10571-022-01298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.
Collapse
Affiliation(s)
- Clara Berdasco
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alipio Pinto
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano G Blake
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos - CONICET (CEFyBO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia A Longo Carbajosa
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas - CONICET (IQUIFIB), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana B Celi
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia A Geoghegan
- Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" - ANLIS - Centro Nacional de Control de Calidad de Biológicos, Buenos Aires, Argentina
| | - Adriana Cangelosi
- Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" - ANLIS - Centro Nacional de Control de Calidad de Biológicos, Buenos Aires, Argentina
| | - Myriam Nuñez
- Cátedra de Matemáticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela M Gironacci
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas - CONICET (IQUIFIB), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Goldstein
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay" - CONICET (IFIBIO), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Schweickert PG, Yang Y, White EE, Cresswell GM, Elzey BD, Ratliff TL, Arumugam P, Antoniak S, Mackman N, Flick MJ, Konieczny SF. Thrombin-PAR1 signaling in pancreatic cancer promotes an immunosuppressive microenvironment. J Thromb Haemost 2021; 19:161-172. [PMID: 33064371 PMCID: PMC7790967 DOI: 10.1111/jth.15115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Essentials Elimination of PDAC tumor cell PAR1 increased cytotoxic T cells and reduced tumor macrophages. PAR1KO PDAC cells are preferentially eliminated from growing tumors. Thrombin-PAR1 signaling in PDAC tumor cells drives an immunosuppressive gene signature. Csf2 and Ptgs2 are thrombin-PAR1 downstream immune suppressor genes in PDAC tumor cells. ABSTRACT: Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prothrombotic state and a lack of host antitumor immune responsiveness. Linking these two key features, we previously demonstrated that tumor-derived coagulation activity promotes immune evasion. Specifically, thrombin-protease-activated receptor-1 (PAR1) signaling in mouse PDAC cells drives tumor growth by evading cytotoxic CD8a+ cells. Methods Syngeneic mixed cell tumor growth, transcriptional analyses, and functional tests of immunosuppressive response genes were used to identify cellular and molecular immune evasion mechanisms mediated by thrombin-PAR-1 signaling in mouse PDAC tumor cells. Results Elimination of tumor cell PAR1 in syngeneic graft studies increased cytotoxic T lymphocyte (CTL) infiltration and decreased tumor-associated macrophages in the tumor microenvironment. Co-injection of PAR1-expressing and PAR1-knockout (PAR-1KO ) tumor cells into immunocompetent mice resulted in preferential elimination of PAR-1KO cells from developing tumors, suggesting that PAR1-dependent immune evasion is not reliant on CTL exclusion. Transcriptomics analyses revealed no PAR1-dependent changes in the expression of immune checkpoint proteins and no difference in major histocompatibility complex-I cell surface expression. Importantly, thrombin-PAR1 signaling in PDAC cells upregulated genes linked to immunosuppression, including Csf2 and Ptgs2. Functional analyses confirmed that both Csf2 and Ptgs2 are critical for PDAC syngeneic graft tumor growth and overexpression of each factor partially restored tumor growth of PAR1KO cells in immunocompetent mice. Conclusions Our results provide novel insight into the mechanisms of a previously unrecognized pathway coupling coagulation to PDAC immune evasion by identifying PAR1-dependent changes in the tumor microenvironment, a PAR1-driven immunosuppressive gene signature, and Csf2 and Ptgs2 as critical PAR1 downstream targets.
Collapse
Affiliation(s)
- Patrick G. Schweickert
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Yi Yang
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Emily E. White
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Gregory M. Cresswell
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Bennett D. Elzey
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Timothy L. Ratliff
- Purdue University, Department of Comparative Pathobiology
and the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| | - Paritha Arumugam
- Cincinnati Children’s Hospital Medical Center,
Division of Pulmonary Biology, Cincinnati, Ohio, USA
| | - Silvio Antoniak
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- University of North Carolina, Department of Medicine and
the UNC Blood Research Center, Chapel Hill, North Carolina, USA
| | - Matthew J. Flick
- University of North Carolina, Department of Pathology and
Laboratory Medicine, the Lineberger Comprehensive Cancer Center, and the UNC Blood
Research Center, Chapel Hill, North Carolina, USA
| | - Stephen F. Konieczny
- Purdue University, Department of Biological Sciences and
the Purdue Center for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Role of the protease-activated receptor 1 in regulating the function of glial cells within central and peripheral nervous system. J Neural Transm (Vienna) 2019; 126:1259-1271. [DOI: 10.1007/s00702-019-02075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023]
|
4
|
Piers TM, East E, Villegas-Llerena C, Sevastou IG, Matarin M, Hardy J, Pocock JM. Soluble Fibrinogen Triggers Non-cell Autonomous ER Stress-Mediated Microglial-Induced Neurotoxicity. Front Cell Neurosci 2018; 12:404. [PMID: 30524237 PMCID: PMC6257202 DOI: 10.3389/fncel.2018.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Aberrant or chronic microglial activation is strongly implicated in neurodegeneration, where prolonged induction of classical inflammatory pathways may lead to a compromised blood-brain barrier (BBB) or vasculature, features of many neurodegenerative disorders and implicated in the observed cognitive decline. BBB disruption or vascular disease may expose the brain parenchyma to “foreign” plasma proteins which subsequently impact on neuronal network integrity through neurotoxicity, synaptic loss and the potentiation of microglial inflammation. Here we show that the blood coagulation factor fibrinogen (FG), implicated in the pathogenesis of dementias such as Alzheimer’s disease (AD), induces an inflammatory microglial phenotype as identified through genetic microarray analysis of a microglial cell line, and proteome cytokine profiling of primary microglia. We also identify a FG-mediated induction of non-cell autonomous ER stress-associated neurotoxicity via a signaling pathway that can be blocked by pharmacological inhibition of microglial TNFα transcription or neuronal caspase-12 activity, supporting a disease relevant role for plasma components in neuronal dysfunction.
Collapse
Affiliation(s)
- Thomas M Piers
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Emma East
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Claudio Villegas-Llerena
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom.,Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Ioanna G Sevastou
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| | - Mar Matarin
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.,Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Pocock
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 2017; 39:1338-1346. [PMID: 28440493 PMCID: PMC5428947 DOI: 10.3892/ijmm.2017.2962] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways are critical modulators of a variety of physiological and pathological processes, and the abnormal activation of some signaling pathways can contribute to disease progression in various conditions. As a result, signaling pathways have emerged as an important tool through which the occurrence and development of diseases can be studied, which may then lead to the development of novel drugs. Accumulating evidence supports a key role for extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the embryonic development of the central nervous system (CNS) and in the regulation of adult brain function. ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family, regulates a range of processes, from metabolism, motility and inflammation, to cell death and survival. In the nervous system, ERK1/2 regulates synaptic plasticity, brain development and repair as well as memory formation. ERK1/2 is also a potent effector of neuronal death and neuroinflammation in many CNS diseases. This review summarizes recent findings in neurobiological ERK1/2 research, with a special emphasis on findings that clarify our understanding of the processes that regulate the plethora of isoform-specific ERK functions under physiological and pathological conditions. Finally, we suggest some potential therapeutic strategies associated with agents acting on the ERK1/2 signaling to prevent or treat neurological diseases.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
6
|
Abstract
UNLABELLED Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon whereby brief ischemic exposure confers tolerance to a subsequent ischemic challenge. IPC has not been studied selectively in CNS white matter (WM), although stroke frequently involves WM. We determined whether IPC is present in WM and, if so, its mechanism. We delivered a brief in vivo preconditioning ischemic insult (unilateral common carotid artery ligation) to 12- to 14-week-old mice and determined WM ischemic vulnerability [oxygen-glucose deprivation (OGD)] 72 h later, using acutely isolated optic nerves (CNS WM tracts) from the preconditioned (ipsilateral) and control (contralateral) hemispheres. Functional and structural recovery was assessed by quantitative measurement of compound action potentials (CAPs) and immunofluorescent microscopy. Preconditioned mouse optic nerves (MONs) showed better functional recovery after OGD than the non-preconditioned MONs (31 ± 3 vs 17 ± 3% normalized CAP area, p < 0.01). Preconditioned MONs also showed improved axon integrity and reduced oligodendrocyte injury compared with non-preconditioned MONs. Toll-like receptor-4 (TLR4) and type 1 interferon receptor (IFNAR1), key receptors in innate immune response, are implicated in gray matter preconditioning. Strikingly, IPC-mediated WM protection was abolished in both TLR4(-/-) and IFNAR1(-/-) mice. In addition, IPC-mediated protection in WM was also abolished in IFNAR1(fl/fl) LysM(cre), but not in IFNAR1(fl/fl) control, mice. These findings demonstrated for the first time that IPC was robust in WM, the phenomenon being intrinsic to WM itself. Furthermore, WM IPC was dependent on innate immune cell signaling pathways. Finally, these data demonstrated that microglial-specific expression of IFNAR1 plays an indispensable role in WM IPC. SIGNIFICANCE STATEMENT Ischemic preconditioning (IPC) has been studied predominantly in gray matter, but stroke in humans frequently involves white matter (WM) as well. Here we describe a novel, combined in vivo/ex vivo mouse model to determine whether IPC occurs in WM. It does. Using genetically altered mice, we identified two innate immune cell receptors, Toll-like receptor 4 and type 1 interferon receptor (IFNAR1), that are required for IPC-mediated protection in WM. Furthermore, using microglia-targeted IFNAR1 knockdown, we demonstrate that interferon signaling specifically in microglia is essential for this protection. The discovery of IPC as an intrinsic capability of WM is novel and important. This is also the first in vivo demonstration that cell-type-specific expression of an individual gene plays an indispensable role in IPC-mediated protection.
Collapse
|
7
|
Weinstein JR, Quan Y, Hanson JF, Colonna L, Iorga M, Honda SI, Shibuya K, Shibuya A, Elkon KB, Möller T. IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcα/μ Receptor. THE JOURNAL OF IMMUNOLOGY 2015; 195:5309-17. [PMID: 26500348 DOI: 10.4049/jimmunol.1401195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Microglia play an important role in receptor-mediated phagocytosis in the CNS. In brain abscess and other CNS infections, invading bacteria undergo opsonization with Igs or complement. Microglia recognize these opsonized pathogens by Fc or complement receptors triggering phagocytosis. In this study, we investigated the role of Fcα/μR, the less-studied receptor for IgM and IgA, in microglial phagocytosis. We showed that primary microglia, as well as N9 microglial cells, express Fcα/μR. We also showed that anti-Staphylococcus aureus IgM markedly increased the rate of microglial S. aureus phagocytosis. To unequivocally test the role of Fcα/μR in IgM-mediated phagocytosis, we performed experiments in microglia from Fcα/μR(-/-) mice. Surprisingly, we found that IgM-dependent phagocytosis of S. aureus was similar in microglia derived from wild-type or Fcα/μR(-/-) mice. We hypothesized that IgM-dependent activation of complement receptors might contribute to the IgM-mediated increase in phagocytosis. To test this, we used immunologic and genetic inactivation of complement receptor 3 components (CD11b and CD18) as well as C3. IgM-, but not IgG-mediated phagocytosis of S. aureus was reduced in wild-type microglia and macrophages following preincubation with an anti-CD11b blocking Ab. IgM-dependent phagocytosis of S. aureus was also reduced in microglia derived from CD18(-/-) and C3(-/-) mice. Taken together, our findings implicate complement receptor 3 and C3, but not Fcα/μR, in IgM-mediated phagocytosis of S. aureus by microglia.
Collapse
Affiliation(s)
- Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195;
| | - Yi Quan
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Josiah F Hanson
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Lucrezia Colonna
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Michael Iorga
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Shin-ichiro Honda
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Keith B Elkon
- Division of Rheumatology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195; and
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
8
|
Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, Yang Y, Feng H, Chen Z, Zhu G. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology 2015; 95:424-33. [PMID: 25963415 DOI: 10.1016/j.neuropharm.2015.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/27/2015] [Indexed: 01/13/2023]
Abstract
Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain. However, the underlying mechanisms remain poorly defined. Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells. We demonstrated that activation of CB2R played a key role in attenuating brain edema, neuronal degeneration, microglial accumulation and the phosphorylated extracellular signal-regulated kinase (p-ERK) protein level 24 h following GMH. In vitro, Western blot analysis and immunostaining indicated that ERK and P38 phosphorylation levels in microglia stimulated by thrombin were decreased after JWH-133 (CB2R selective agonist) treatment in a concentration-dependent manner. Microglia proliferation (EDU + microglia) and inflammatory and oxidative stress responses were attenuated by UO126 (ERK pathway inhibitor) 24 h after thrombin stimulation, an activity that was prevented by AM630 (CB2R selective antagonist). Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation. Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yunfeng Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Quan Y, Jiang J, Dingledine R. EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 2013; 288:9293-302. [PMID: 23404506 DOI: 10.1074/jbc.m113.455816] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.
Collapse
Affiliation(s)
- Yi Quan
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
10
|
Pompili E, Fabrizi C, Nori SL, Panetta B, Geloso MC, Corvino V, Michetti F, Fumagalli L. Protease-activated receptor-1 expression in rat microglia after trimethyltin treatment. J Histochem Cytochem 2011; 59:302-11. [PMID: 21378284 DOI: 10.1369/0022155410397996] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the nervous system, protease-activated receptors (PARs), which are activated by thrombin and other extracellular proteases, are expressed widely at both neuronal and glial levels and have been shown to be involved in several brain pathologies. As far as the glial receptors are concerned, previous experiments performed in rat hippocampus showed that expression of PAR-1, the prototypic member of the PAR family, increased in astrocytes both in vivo and in vitro following treatment with trimethyltin (TMT). TMT is an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. In the present experiments, the authors extended their investigation to microglial cells. In particular, by 7 days following TMT intoxication in vivo, confocal immunofluorescence revealed an evident PAR-1-related specific immunoreactivity in OX-42-positive microglial cells of the CA3 and hilus hippocampal regions. In line with the in vivo results, when primary rat microglial cells were treated in vitro with TMT, a strong upregulation of PAR-1 was observed by immunocytochemistry and Western blot analysis. These data provide further evidence that PAR-1 may be involved in microglial response to brain damage.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Human Anatomy, University of Rome "La Sapienza," Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee EJ, Woo MS, Moon PG, Baek MC, Choi IY, Kim WK, Junn E, Kim HS. Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. THE JOURNAL OF IMMUNOLOGY 2010; 185:615-23. [PMID: 20511551 DOI: 10.4049/jimmunol.0903480] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mutation or overexpression of alpha-synuclein protein plays a pivotal role in the pathogenesis of Parkinson's disease. In our preliminary experiments, we found that alpha-synuclein induced the expression of matrix metalloproteinases (MMPs) (MMP-1, -3, -8, and -9) in rat primary cultured microglia. Thus, the current study was undertaken to determine the roles of MMPs in alpha-synuclein-induced microglial activation. The inhibition of MMP-3, -8, or -9 significantly reduced NO and reactive oxygen species levels and suppressed the expression of TNF-alpha and IL-1beta. Notably, MMP-8 inhibitor suppressed TNF-alpha production more efficaciously than MMP-3 or MMP-9 inhibitors. Inhibition of MMP-3 or -9 also suppressed the activities of MAPK, NF-kappaB, and AP-1. Previously, protease-activated receptor-1 (PAR-1) has been associated with the actions of MMPs, and thus, we further investigated the role of PAR-1 in alpha-synuclein-induced inflammatory reactions. A PAR-1-specific inhibitor and a PAR-1 antagonist significantly suppressed cytokine levels, and NO and reactive oxygen species production in alpha-synuclein-treated microglia. Subsequent PAR-1 cleavage assay revealed that MMP-3, -8, and -9, but not alpha-synuclein, cleaved the synthetic peptide containing conventional PAR-1 cleavage sites. These results suggest that MMPs secreted by alpha-synuclein-stimulated microglia activate PAR-1 and amplify microglial inflammatory signals in an autocrine or paracrine manner. Furthermore, our findings suggest that modulation of the activities of MMPs and/or PAR-1 may provide a new therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Molecular Medicine & Brain and Cognitive Sciences, Ewha Womans University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene-expression profile and phenotype of a variety of endogenous CNS cell types (astrocytes, neurons and microglia), as well as an influx of leukocytic cells (neutrophils, macrophages and T-cells) from the periphery. Many molecules and conditions can trigger a transformation of surveying microglia to microglia of an alerted or reactive state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. In particular, we focus on the role of specific molecular signaling systems, such as hypoxia inducible factor-1 and Toll-like receptor-4, in regulating the microglial response in this setting. We then review histological and novel radiological data that confirm a key role for microglial activation in the setting of ischemic stroke in humans. We also discuss recent progress in the pharmacologic and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in pre-emptively targeting microglial activation in order to reduce stroke severity.
Collapse
Affiliation(s)
- Jonathan R Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington 98195-6465, USA Tel.: +1 206 221 5362
| | | | | |
Collapse
|
13
|
Quan Y, Möller T, Weinstein JR. Regulation of Fcgamma receptors and immunoglobulin G-mediated phagocytosis in mouse microglia. Neurosci Lett 2009; 464:29-33. [PMID: 19679164 PMCID: PMC2747046 DOI: 10.1016/j.neulet.2009.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022]
Abstract
As resident macrophages in the CNS, microglia can transform from a surveillance state to an activated phenotype in response to brain injury. During this transition microglia become highly capable phagocytic cells. Invading pathogens undergo opsonization with immunoglobulins and microglia recognize these opsonized pathogens through interaction with their cognate F(c) receptors. In mice, both FcgammaRI and FcgammaRIIb receptors are involved in IgG-mediated phagocytosis of opsonzied pathogens. At sites of inflammation, microglial activity is regulated by T-cell derived cytokines. Here we first investigated the effects of IFN-gamma, IL-4, IL-13 and GM-CSF on expression of FcgammaRI and FcgammaRIIb mRNA levels in both primary microglia and microglial cell line N9. Using quantitative real-time PCR we show that IFN-gamma induced a 4-fold increase in the mRNA level of FcgammaRI but did not induce changes in FcgammaRIIb expression. IL-4 and IL-13 induced approximately 2-fold increases in expression of FcgammaRIIb mRNA, but had no effect on FcgammaRI expression. GM-CSF increased both FcgammaRI and FcgammaRIIb mRNA expression. We then characterized the ability of these same cytokines to regulate phagocytosis of immune complexes composed of IgG and the bacteria Staphylococcus aureus. IFN-gamma and GM-CSF both induced approximately 2-fold increases in IgG-mediated phagocytosis whereas IL-4 and IL-13 both decreased IgG-mediated phagocytosis by about one-third. None of the cytokines influenced basal levels of phagocytosis. These findings demonstrate a highly selective cytokine-induced regulation of both phagocytosis-related Fcgamma receptor subtypes and IgG-mediated phagocytosis itself in microglia. This selective regulation has implications for our understanding of the pathophysiology of CNS infection and autoimmune disease.
Collapse
Affiliation(s)
- Yi Quan
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jonathan R. Weinstein
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|