1
|
Zhang N, Xie K, Yang F, Wang Y, Yang X, Zhao L. Combining biomarkers of BNIP3 L, S100B, NSE, and accessible measures to predict sepsis-associated encephalopathy: a prospective observational study. Curr Med Res Opin 2024; 40:575-582. [PMID: 38385550 DOI: 10.1080/03007995.2024.2322059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Accurate identification of delirium in sepsis patients is crucial for guiding clinical diagnosis and treatment. However, there are no accurate biomarkers and indicators at present. We aimed to identify which combinations of cognitive impairment-related biomarkers and other easily accessible assessments best predict delirium in sepsis patients. METHODS One hundred and one sepsis patients were enrolled in a prospective study cohort. S100B, NSE, and BNIP3 L biomarkers were detected in plasma and cerebrospinal fluid and patients' optic nerve sheath diameter (ONSD). The optimal biomarkers identified by Logistic regression are combined with other factors such as ONSD to filter out the perfect model to predict delirium in sepsis patients through Logistic regression, Naïve Bayes, decision tree, and neural network models. MAIN RESULTS Among all biomarkers, compared with BNIP3 L (AUC = .706, 95% CI = .597-.815) and NSE (AUC = .711, 95% CI = .609-.813) in cerebrospinal fluid, plasma S100B (AUC = .729, 95% CI = .626-.832) had the best discrimination performance for delirium in sepsis patients. Logistic regression analysis showed that the combination of cerebrospinal fluid BNIP3 L with plasma S100B, ONSD, neutrophils, and age provided the best discrimination to cognitive impairment in sepsis patients (accuracy = .901, specificity = .923, sensitivity = .911), which was better than Naïve Bayes, decision tree, and neural network models. Neutrophils, ONSD, and cerebrospinal fluid BNIP3 L were consistently the major contributors in a few models. CONCLUSIONS The logistic regression showed that the combination model was strongly correlated with cognitive dysfunction in sepsis patients.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
| | - Xinhao Yang
- Medical Laboratory Technology, Ulanqab Medical College, Wulanchabu City, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Wu S, Wang Y, Song Y, Hu H, Jing L, Zhu W. Application of magnetic resonance imaging-related techniques in the diagnosis of sepsis-associated encephalopathy: present status and prospect. Front Neurosci 2023; 17:1152630. [PMID: 37304016 PMCID: PMC10248056 DOI: 10.3389/fnins.2023.1152630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to diffuse brain dysfunction secondary to systemic infection without central nervous system infection. The early diagnosis of SAE remains a major clinical problem, and its diagnosis is still exclusionary. Magnetic resonance imaging (MRI) related techniques, such as magnetic resonance spectroscopy (MRS), molecular MRI (mMRI), arterial spin-labeling (ASL), fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging (DWI), currently provide new options for the early identification of SAE. This review collected clinical and basic research and case reports related to SAE and MRI-related techniques in recent years, summarized and analyzed the basic principles and applications of MRI technology in diagnosing SAE, and provided a basis for diagnosing SAE by MRI-related techniques.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongjie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Han Q, Bai Y, Zhou C, Dong B, Li Y, Luo N, Chen H, Yu Y. Effect of molecular hydrogen treatment on Sepsis-Associated encephalopathy in mice based on gut microbiota. CNS Neurosci Ther 2022; 29:633-645. [PMID: 36468415 PMCID: PMC9873526 DOI: 10.1111/cns.14043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION In our experiments, male wild-type mice were randomly divided into four groups: the sham, SAE, SAE + 2% hydrogen gas inhalation (H2 ), and SAE + hydrogen-rich water (HW) groups. The feces of the mice were collected for 16 S rDNA analysis 24 h after the models were established, and the serum and brain tissue of the mice were collected for nontargeted metabolomics analysis. AIM Destruction of the intestinal microbiota is a risk factor for sepsis and subsequent organ dysfunction, and up to 70% of severely ill patients with sepsis exhibit varying degrees of sepsis-associated encephalopathy (SAE). The pathogenesis of SAE remains unclear. We aimed to explore the changes in gut microbiota in SAE and the regulatory mechanism of molecular hydrogen. RESULTS Molecular hydrogen treatment significantly improved the functional outcome of SAE and downregulated inflammatory reactions in both the brain and the gut. In addition, molecular hydrogen treatment improved gut microbiota dysbiosis and partially amended metabolic disorder after SAE. CONCLUSIONS Molecular hydrogen treatment promotes functional outcomes after SAE in mice, which may be attributable to increasing beneficial bacteria, repressing harmful bacteria, and metabolic disorder, and reducing inflammation.
Collapse
Affiliation(s)
- Qingqing Han
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yuanyuan Bai
- Department of AnesthesiologyTianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical UniversityTianjinChina
| | - Chunjing Zhou
- Department of AnaesthesiologyTianjin 4 center hospitalTianjinChina
| | - Beibei Dong
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yingning Li
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Ning Luo
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Hongguang Chen
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| | - Yonghao Yu
- Department of AnaesthesiologyTianjin Medical University General Hospital, Tianjin Research Institute of AnaesthesiologyTianjinChina
| |
Collapse
|
5
|
Liu YX, Yu Y, Liu JP, Liu WJ, Cao Y, Yan RM, Yao YM. Neuroimmune Regulation in Sepsis-Associated Encephalopathy: The Interaction Between the Brain and Peripheral Immunity. Front Neurol 2022; 13:892480. [PMID: 35832175 PMCID: PMC9271799 DOI: 10.3389/fneur.2022.892480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE), the most popular cause of coma in the intensive care unit (ICU), is the diffuse cerebral damage caused by the septic challenge. SAE is closely related to high mortality and extended cognitive impairment in patients in septic shock. At present, many studies have demonstrated that SAE might be mainly associated with blood–brain barrier damage, abnormal neurotransmitter secretion, oxidative stress, and neuroimmune dysfunction. Nevertheless, the precise mechanism which initiates SAE and contributes to the long-term cognitive impairment remains largely unknown. Recently, a growing body of evidence has indicated that there is close crosstalk between SAE and peripheral immunity. The excessive migration of peripheral immune cells to the brain, the activation of glia, and resulting dysfunction of the central immune system are the main causes of septic nerve damage. This study reviews the update on the pathogenesis of septic encephalopathy, focusing on the over-activation of immune cells in the central nervous system (CNS) and the “neurocentral–endocrine–immune” networks in the development of SAE, aiming to further understand the potential mechanism of SAE and provide new targets for diagnosis and management of septic complications.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Jing-peng Liu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yang Cao
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
| | - Run-min Yan
- Department of Neurosurgery, The Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong-ming Yao
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Run-min Yan
| |
Collapse
|
6
|
Barichello T, Generoso JS, Dominguini D, Córneo E, Giridharan VV, Sahrapour TA, Simões LR, Rosa MID, Petronilho F, Ritter C, Sharshar T, Dal-Pizzol F. Postmortem Evidence of Brain Inflammatory Markers and Injury in Septic Patients: A Systematic Review. Crit Care Med 2022; 50:e241-e252. [PMID: 34402457 DOI: 10.1097/ccm.0000000000005307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis is a life-threatening organ dysfunction caused by a host's unregulated immune response to eliminate the infection. After hospitalization, sepsis survivors often suffer from long-term impairments in memory, attention, verbal fluency, and executive functioning. To understand the effects of sepsis and the exacerbated peripheral inflammatory response in the brain, we asked the question: What are the findings and inflammatory markers in the brains of deceased sepsis patients? To answer this question, we conducted this systematic review by the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES Relevant studies were identified by searching the PubMed/National Library of Medicine, PsycINFO, EMBASE, Bibliographical Index in Spanish in Health Sciences, Latin American and Caribbean Health Sciences Literature, and Web of Science databases for peer-reviewed journal articles published on April 05, 2021. STUDY SELECTION A total of 3,745 articles were included in the primary screening; after omitting duplicate articles, animal models, and reviews, 2,896 articles were selected for the study. These studies were selected based on the title and abstract, and 2,772 articles were still omitted based on the exclusion criteria. DATA EXTRACTION The complete texts of the remaining 124 articles were obtained and thoroughly evaluated for the final screening, and 104 articles were included. DATA SYNTHESIS The postmortem brain had edema, abscess, hemorrhagic and ischemic injuries, infarction, hypoxia, atrophy, hypoplasia, neuronal loss, axonal injuries, demyelination, and necrosis. CONCLUSIONS The mechanisms by which sepsis induces brain dysfunction are likely to include vascular and neuronal lesions, followed by the activation of glial cells and the presence of peripheral immune cells in the brain.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Taha A Sahrapour
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Lutiana R Simões
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Maria Inês da Rosa
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Santa Catarina, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Tarek Sharshar
- Department of Neurointensive Care and Neuroanesthesia, GHU Paris Psychiatrie et Neuroscience, Paris, France
- Université de Paris, Paris, France
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| |
Collapse
|
7
|
Liu J, Jin Y, Ye Y, Tang Y, Dai S, Li M, Zhao G, Hong G, Lu ZQ. The Neuroprotective Effect of Short Chain Fatty Acids Against Sepsis-Associated Encephalopathy in Mice. Front Immunol 2021; 12:626894. [PMID: 33584734 PMCID: PMC7876449 DOI: 10.3389/fimmu.2021.626894] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Short chain fatty acids (SCFAs) are known to be actively involved in multiple brain disorders, but their roles in sepsis-associated encephalopathy (SAE) remain unclear. Here, we investigated the neuroprotective effects of SCFAs on SAE in mice. Male C57BL/6 mice were intragastrically pretreated with SCFAs for seven successive days, and then subjected to SAE induced by cecal ligation and puncture. The behavioral impairment, neuronal degeneration, and levels of inflammatory cytokines were assessed. The expressions of tight junction (TJ) proteins, including occludin and zoula occludens-1 (ZO-1), cyclooxygenase-2 (COX-2), cluster of differentiation 11b (CD11b), and phosphorylation of JNK and NF-κB p65 in the brain, were measured by western blot and Immunofluorescence analysis. Our results showed that SCFAs significantly attenuated behavioral impairment and neuronal degeneration, and decreased the levels of IL-1β and IL-6 in the brain of SAE mice. Additionally, SCFAs upregulated the expressions of occludin and ZO-1 and downregulated the expressions of COX-2, CD11b, and phosphorylation of JNK and NF-κB p65 in the brain of SAE mice. These findings suggested that SCFAs could exert neuroprotective effects against SAE in mice.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangjie Jin
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanglie Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yahui Tang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Dai
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengfang Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhong-Qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Erikson K, Tuominen H, Vakkala M, Liisanantti JH, Karttunen T, Syrjälä H, Ala-Kokko TI. Brain tight junction protein expression in sepsis in an autopsy series. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:385. [PMID: 32600371 PMCID: PMC7325252 DOI: 10.1186/s13054-020-03101-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
Background Neuroinflammation often develops in sepsis along with increasing permeability of the blood-brain barrier (BBB), which leads to septic encephalopathy. The barrier is formed by tight junction structures between the cerebral endothelial cells. We investigated the expression of tight junction proteins related to endothelial permeability in brain autopsy specimens in critically ill patients deceased with sepsis and analyzed the relationship of BBB damage with measures of systemic inflammation and systemic organ dysfunction. Methods The case series included all (385) adult patients deceased due to sepsis in the years 2007–2015 with available brain specimens taken at autopsy. Specimens were categorized according to anatomical location (cerebrum, cerebellum). The immunohistochemical stainings were performed for occludin, ZO-1, and claudin. Patients were categorized as having BBB damage if there was no expression of occludin in the endothelium of cerebral microvessels. Results Brain tissue samples were available in 47 autopsies, of which 38% (18/47) had no expression of occludin in the endothelium of cerebral microvessels, 34% (16/47) developed multiple organ failure before death, and 74.5% (35/47) had septic shock. The deceased with BBB damage had higher maximum SOFA scores (16 vs. 14, p = 0.04) and more often had procalcitonin levels above 10 μg/L (56% vs. 28%, p = 0.045) during their ICU stay. BBB damage in the cerebellum was more common in cases with C-reactive protein (CRP) above 100 mg/L as compared with CRP less than 100 (69% vs. 25%, p = 0.025). Conclusions In fatal sepsis, damaged BBB defined as a loss of cerebral endothelial expression of occludin is related with severe organ dysfunction and systemic inflammation.
Collapse
Affiliation(s)
- Kristo Erikson
- Division of Intensive Care Medicine, Department of Anesthesiology, Research Group of Surgery, Anesthesiology and Intensive Care Medicine, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Anesthesiology, Intensive Care Center, North Estonia Medical Centre, Tallinn, Estonia.
| | - Hannu Tuominen
- Department of Anesthesiology, Intensive Care Center, North Estonia Medical Centre, Tallinn, Estonia
| | - Merja Vakkala
- Division of Intensive Care Medicine, Department of Anesthesiology, Research Group of Surgery, Anesthesiology and Intensive Care Medicine, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Janne Henrik Liisanantti
- Division of Intensive Care Medicine, Department of Anesthesiology, Research Group of Surgery, Anesthesiology and Intensive Care Medicine, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tuomo Karttunen
- Department of Anesthesiology, Intensive Care Center, North Estonia Medical Centre, Tallinn, Estonia
| | - Hannu Syrjälä
- Department of Pathology and Department of Infection Control, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tero Ilmari Ala-Kokko
- Division of Intensive Care Medicine, Department of Anesthesiology, Research Group of Surgery, Anesthesiology and Intensive Care Medicine, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Heming N, Mazeraud A, Azabou E, Moine P, Annane D. Vasopressor Therapy and the Brain: Dark Side of the Moon. Front Med (Lausanne) 2020; 6:317. [PMID: 31998736 PMCID: PMC6966606 DOI: 10.3389/fmed.2019.00317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis, a leading cause of morbidity and mortality, is caused by a deregulated host response to pathogens, and subsequent life-threatening organ dysfunctions. All major systems, including the cardiovascular, respiratory, renal, hepatic, hematological, and the neurological system may be affected by sepsis. Sepsis associated neurological dysfunction is triggered by multiple factors including neuro-inflammation, excitotoxicity, and ischemia. Ischemia results from reduced cerebral blood flow, caused by extreme variations of blood pressure, occlusion of cerebral vessels, or more subtle defects of the microcirculation. International guidelines comprehensively describe the initial hemodynamic management of sepsis, revolving around the normalization of systemic hemodynamics and of arterial lactate. By contrast, the management of sepsis patients suffering from brain dysfunction is poorly detailed, the only salient point being mentioned is that sedation and analgesia should be optimized. However, sepsis and the hemodynamic consequences thereof as well as vasopressors may have severe untoward neurological consequences. The current review describes the general neurological complications, as well as the consequences of vasopressor therapy on the brain and its circulation and addresses methods for cerebral monitoring during sepsis.
Collapse
Affiliation(s)
- Nicholas Heming
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| | - Aurélien Mazeraud
- Department of Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Teaching Hospital, Paris-Descartes University, Paris, France
| | - Eric Azabou
- U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France.,Department of Physiology, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, Garches, France
| | - Pierre Moine
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| | - Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Lab Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-le-Bretonneux, France
| |
Collapse
|
10
|
Griton M, Dhaya I, Nicolas R, Raffard G, Periot O, Hiba B, Konsman JP. Experimental sepsis-associated encephalopathy is accompanied by altered cerebral blood perfusion and water diffusion and related to changes in cyclooxygenase-2 expression and glial cell morphology but not to blood-brain barrier breakdown. Brain Behav Immun 2020; 83:200-213. [PMID: 31622656 DOI: 10.1016/j.bbi.2019.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.
Collapse
Affiliation(s)
- Marion Griton
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Réanimation Anesthésie Neurochirurgicale, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Ibtihel Dhaya
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, UR/11ES09, Faculté des Sciences Mathématiques, Physiques et Naturelles, Université de Tunis El Manar, Tunis, Tunisia
| | - Renaud Nicolas
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - Gérard Raffard
- CNRS, Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux, France; Univ. Bordeaux, RMSB, UMR 5536, Bordeaux, France
| | - Olivier Periot
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; Service de Médecine Nucléaire, Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Bassem Hiba
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France; CNRS UMR 5229, Centre de Neurosciences Cognitives Marc Jeannerod, Bron, France
| | - Jan Pieter Konsman
- INCIA, Institut de Neurosciences Cognitive et Intégrative d'Aquitaine, UMR 5287, Bordeaux, France; Univ. Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
11
|
Association between Elevated Serum Tau Protein Level and Sepsis-Associated Encephalopathy in Patients with Severe Sepsis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:1876174. [PMID: 31396296 PMCID: PMC6664571 DOI: 10.1155/2019/1876174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis. It is imperative to recognize, diagnose, and effectively manage SAE at the early stages. The aim of this study was to evaluate the potential of using the serum tau protein level in the diagnosis of SAE and the prediction of SAE outcomes. This was a retrospective and observational study. The patients included in this study were diagnosed with severe sepsis or septic shock. The serum tau protein level was measured using a commercial enzyme-linked immunosorbent assay. The association between the level of serum tau protein and SAE was assessed by multiple logistic regression analysis. One hundred nine patients with severe sepsis were enrolled during a period of two years. Of the 109 enrolled patients, 27 developed SAE. The serum tau protein level was significantly higher in the patients with SAE than that of the non-SAE group. The serum tau protein level and the sequential organ failure assessment (SOFA) score were independent factors that were associated with SAE. The combined use of the serum tau protein level with the SOFA score improved the accuracy in distinguishing SAE from non-SAE patients. A cutoff value serum tau protein level of 75.92 pg/mL had 81.1% sensitivity and 86.1% specificity in predicting the 28-day mortality in patients with severe sepsis. We identified a close association between the serum tau protein level with the appearance of SAE in patients with severe sepsis. The serum tau protein level can be useful in the prediction of poor outcomes in patients with sepsis.
Collapse
|
12
|
Abstract
Delirium is a serious complication of acute illness. Little is known, however, regarding the neurobiology of delirium, largely due to challenges in studying the complex inpatient population. Neuroimaging is one noninvasive method that can be used to study structural and functional brain abnormalities associated with delirium. The purpose of this integrative literature review was to examine the content and quality of current structural neuroimaging evidence in delirium. After meeting inclusion criteria, 11 articles were included in the review. Commonly noted structural abnormalities were impaired white matter integrity, brain atrophy, ischemic lesions, edema, and inflammation. Findings demonstrated widespread alterations in several brain structures. Limitations of the studies in this review included small sample sizes, inappropriate or questionable delirium measurements, and failure to consider confounding variables. This review provides insight into possible structural changes responsible for the signs and symptoms seen in patients with delirium, but more high-quality studies are needed.
Collapse
Affiliation(s)
| | - Todd B Monroe
- 1 The Ohio State University College of Nursing, Columbus, OH, USA
| |
Collapse
|
13
|
Nwafor DC, Brichacek AL, Mohammad AS, Griffith J, Lucke-Wold BP, Benkovic SA, Geldenhuys WJ, Lockman PR, Brown CM. Targeting the Blood-Brain Barrier to Prevent Sepsis-Associated Cognitive Impairment. J Cent Nerv Syst Dis 2019; 11:1179573519840652. [PMID: 31007531 PMCID: PMC6456845 DOI: 10.1177/1179573519840652] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB's role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.
Collapse
Affiliation(s)
- Divine C Nwafor
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Allison L Brichacek
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Afroz S Mohammad
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Jessica Griffith
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Brandon P Lucke-Wold
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Stanley A Benkovic
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Paul R Lockman
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Candice M Brown
- Graduate Programs in Neuroscience, Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Immunology and Microbial Pathogenesis, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Neuroimaging Findings in Sepsis-Induced Brain Dysfunction: Association with Clinical and Laboratory Findings. Neurocrit Care 2019; 30:106-117. [PMID: 30027347 DOI: 10.1007/s12028-018-0581-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Incidence and patterns of brain lesions of sepsis-induced brain dysfunction (SIBD) have been well defined. Our objective was to investigate the associations between neuroimaging features of SIBD patients and well-known neuroinflammation and neurodegeneration factors. METHODS In this prospective observational study, 93 SIBD patients (45 men, 48 women; 50.6 ± 12.7 years old) were enrolled. Patients underwent a neurological examination and brain magnetic resonance imaging (MRI). Severity-of-disease scoring systems (APACHE II, SOFA, and SAPS II) and neurological outcome scoring system (GOSE) were used. Also, serum levels of a panel of mediators [IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IFN-γ, TNF-α, complement factor Bb, C4d, C5a, iC3b, amyloid-β peptides, total tau, phosphorylated tau (p-tau), S100b, neuron-specific enolase] were measured by ELISA. Voxel-based morphometry (VBM) was employed to available patients for assessment of neuronal loss pattern in SIBD. RESULTS MRI of SIBD patients were normal (n = 27, 29%) or showed brain lesions (n = 51, 54.9%) or brain atrophy (n = 15, 16.1%). VBM analysis showed neuronal loss in the insula, cingulate cortex, frontal lobe, precuneus, and thalamus. Patients with abnormal MRI findings had worse APACHE II, SOFA, GOSE scores, increased prevalence of delirium and mortality. Presence of MRI lesions was associated with reduced C5a and iC3b levels and brain atrophy was associated with increased p-tau levels. Regression analysis identified an association between C5a levels and presence of lesion on MRI and p-tau levels and the presence of atrophy on MRI. CONCLUSIONS Neuronal loss predominantly occurs in limbic and visceral pain perception regions of SIBD patients. Complement breakdown products and p-tau stand out as adverse neuroimaging outcome markers for SIBD.
Collapse
|
15
|
Ehler J, Petzold A, Wittstock M, Kolbaske S, Gloger M, Henschel J, Heslegrave A, Zetterberg H, Lunn MP, Rommer PS, Grossmann A, Sharshar T, Richter G, Nöldge-Schomburg G, Sauer M. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study. PLoS One 2019; 14:e0211184. [PMID: 30677080 PMCID: PMC6345472 DOI: 10.1371/journal.pone.0211184] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors.
Collapse
Affiliation(s)
- Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
- * E-mail:
| | - Axel Petzold
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Matthias Wittstock
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Stephan Kolbaske
- Department of Neurology, University Medical Center Rostock, Rostock, Germany
| | - Martin Gloger
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Jörg Henschel
- Department of Internal Medicine, Intensive Care Unit, University Medical Center Rostock, Rostock, Germany
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Michael P. Lunn
- Department of Neuroimmunology, Institute of Neurology, University College London, London, United Kingdom
| | - Paulus S. Rommer
- Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Annette Grossmann
- Institute for Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Tarek Sharshar
- Department of Neuro-anesthesiology and Intensive Care Medicine, Saint-Anne Teaching Hospital, Paris-Decartes University, Paris, France
- Laboratory of Human Histopathology and Animal Models, Institut Pasteur, Paris, France
| | - Georg Richter
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| | - Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
16
|
Diagnostic value of NT-proCNP compared to NSE and S100B in cerebrospinal fluid and plasma of patients with sepsis-associated encephalopathy. Neurosci Lett 2018; 692:167-173. [PMID: 30423400 DOI: 10.1016/j.neulet.2018.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023]
Abstract
Sepsis-associated encephalopathy (SAE) has significant impact on the neurocognitive outcome of sepsis survivors. This study was conducted to analyze the amino-terminal propeptide of the C-type natriuretic peptide (NT-proCNP) as a biomarker for SAE in comparison to neuron-specific enolase (NSE) and S100B protein. Cerebrospinal fluid (CSF) and plasma samples from twelve septic patients with SAE and nine non-septic controls without encephalopathy were analyzed. The assessment of SAE comprised a neuropsychiatric examination, delirium screening using the confusion assessment method in the ICU (CAM-ICU) and magnetic resonance imaging (MRI) in all participants. NSE, S100B and NT-proCNP were measured in plasma at study days 1, 3 and 7 in sepsis patients, once in controls and once in the CSF of both groups. The long-term outcome was assessed using the validated Barthel index (BI). Plasma NT-proCNP levels were significantly higher in the sepsis cohort compared to controls with peak concentrations at study day 1 (10.1 ± 6.6 pmol/l vs. 3.3 ± 0.9 pmol/l; p < 0.01) and a decrease over time. Plasma NT-proCNP levels at day 7 correlated with NT-proCNP in CSF (r = 0.700, p < 0.05). A comparable decrease of significantly higher plasma S100B values in sepsis patients compared to controls was observed. Plasma NSE levels were not significantly different between both groups. CSF NT-proCNP levels just tended to be higher in sepsis patients compared to controls and tended to be higher in patients with septic brain lesions seen on MRI. In the sepsis cohort CSF NT-proCNP levels correlated with CSF Interleukin-6 (IL-6) levels (r = 0.616, p < 0.05) and systemic inflammation represented by high plasma procalcitonin (PCT) levels at day 3 (r = 0.727, p < 0.05). The high peak concentration of plasma NT-proCNP in the early phase of sepsis might help to predict the emergence of SAE during the further course of disease. NT-proCNP in plasma might, in contrast to CSF, indicate neurological impairment in patients with SAE.
Collapse
|
17
|
Abstract
PURPOSE OF THE REVIEW To discuss the diagnostic approach to patients with septic encephalopathy as well as the need for specific neuro-monitoring and the perspectives on future therapeutic approaches in this setting. RECENT FINDINGS Most of data-concern experimental studies evaluating the pathophysiology of septic encephalopathy. A combination of neurodegenerative pathways with neurovascular injury is the cornerstone for the development of such complication and the long-term neurological sequelae among survivors. Septic encephalopathy is a common complication in septic patients. Clinical presentation may range from mild confusion and disorientation to convulsions and deep coma. The diagnosis of septic encephalopathy is made difficult by the lack of any specific clinical and non-clinical feature, in particular among sedated patients in whom neurological examination is unreliable. In spite of the high mortality rate associated with this condition, there is no prophylactic or targeted therapy to reduce or minimize brain damage in septic patients and clinical management is limited to the treatment of the underlying infection.
Collapse
|
18
|
Wen M, Lian Z, Huang L, Zhu S, Hu B, Han Y, Deng Y, Zeng H. Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis. Exp Ther Med 2017; 14:4118-4124. [PMID: 29067103 PMCID: PMC5647722 DOI: 10.3892/etm.2017.5034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (−0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.
Collapse
Affiliation(s)
- Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhesi Lian
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Senzhi Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Hu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongke Zeng
- Department of Acute Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
19
|
Mazeraud A, Pascal Q, Verdonk F, Heming N, Chrétien F, Sharshar T. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis. Clin Chest Med 2017; 37:333-45. [PMID: 27229649 DOI: 10.1016/j.ccm.2016.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels.
Collapse
Affiliation(s)
- Aurelien Mazeraud
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France; General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France
| | - Quentin Pascal
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France
| | - Franck Verdonk
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France
| | - Nicholas Heming
- General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France
| | - Fabrice Chrétien
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; Sorbonne Paris Cité, Paris Descartes University, Rue de l'école de médecine, Paris 75006, France; Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, 1 rue cabanis, Paris 75014, France
| | - Tarek Sharshar
- Institut Pasteur - Unité Histopathologie Humaine et Modèles Animaux, Département Infection et Épidémiologie, Rue du docteur roux, Paris 75724 Cedex 15, France; General Intensive Care, Assistance Publique Hopitaux de Paris, Raymond Poincaré Teaching Hosptal, Garches 92380, France; Versailles-Saint Quentin University, Avenue de Paris, Versailles 78000, France.
| |
Collapse
|
20
|
Ning Q, Liu Z, Wang X, Zhang R, Zhang J, Yang M, Sun H, Han F, Zhao W, Zhang X. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice. Neurol Res 2017; 39:357-366. [PMID: 28173746 DOI: 10.1080/01616412.2017.1281197] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a frequent and nasty complication of sepsis, associated with patients increased risk of death and long-term brain dysfunctions. OBJECTIVE This study aimed to explore the effect of dexmedetomidine (Dex), an anesthetic adjuvant, on the development of SAE. METHODS Lipopolysaccharide (LPS, 10 mg/kg) was intraperitoneally injected to male BALB/c mice to induce sepsis. Dex (25 μg/kg) was given intraperitoneally immediately after LPS injection. Levels of TNF-α, IL-1β, malondialdehyde (MDA) and reactive oxygen species (ROS) were detected in mice brains tissue eight hours later after drug administration. Hematoxylin and eosin (HE) staining was used to detect brain pathologic change. We also detected apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and Bcl-2, Bax, Caspase-3 expressions by western blot. RESULTS Levels of TNF-α, IL-1β, MDA and ROS were increased in the brain tissue after LPS treatment, indicating that LPS injection resulted in increased brain inflammation and elevated oxidative stress. We further found a large quantity of degenerative neurons widespread in hippocampal CA1, CA3 regions and cerebral cortex according to HE staining. Dex could significantly decrease brain inflammation and oxidative stress by decreasing the levels of TNF-α, IL-1β, MDA and ROS, and ameliorate neurodegenerative changes. The associated results also demonstrated that Dex treatment ameliorated the LPS-induced neuronal apoptosis, probably by upregulating the Bcl-2 expression and downregulating the Bax expression. CONCLUSION Our results indicated that Dex could reverse neurodegenerative changes and neuroapoptosis in mice brain of septic mice induced by LPS through anti-inflammatory and antiapoptotic effects.
Collapse
Affiliation(s)
- Qiaoqing Ning
- a School of Pharmaceutical Sciences , Binzhou Medical University , Yantai , China.,b Department of Anesthesiology , Binzhou Medical University Hospital , Binzhou , China
| | - Zhaoguo Liu
- b Department of Anesthesiology , Binzhou Medical University Hospital , Binzhou , China
| | - Xiuhua Wang
- c Department of Respiration , Binzhou Medical University Hospital, Binzhou Medical University , Binzhou , China
| | - Ruyi Zhang
- b Department of Anesthesiology , Binzhou Medical University Hospital , Binzhou , China
| | - Jing Zhang
- a School of Pharmaceutical Sciences , Binzhou Medical University , Yantai , China
| | - Meizi Yang
- a School of Pharmaceutical Sciences , Binzhou Medical University , Yantai , China
| | - Hongliu Sun
- a School of Pharmaceutical Sciences , Binzhou Medical University , Yantai , China
| | - Fang Han
- c Department of Respiration , Binzhou Medical University Hospital, Binzhou Medical University , Binzhou , China
| | - Wenxiang Zhao
- b Department of Anesthesiology , Binzhou Medical University Hospital , Binzhou , China
| | - Xiuli Zhang
- a School of Pharmaceutical Sciences , Binzhou Medical University , Yantai , China
| |
Collapse
|
21
|
Abstract
Over the past decades, the incidence of sepsis and resultant neurologic sequelae has increased, both in industrialized and low- or middle-income countries, by approximately 5% per year. Up to 300 patients per 100 000 population per year are reported to suffer from sepsis, severe sepsis, and septic shock. Mortality is up to 30%, depending on the precision of diagnostic criteria. The increasing incidence of sepsis is partially explained by demographic changes in society, with aging, increasing numbers of immunocompromised patients, dissemination of multiresistant pathogens, and greater availability of supportive medical care in both industrialized and middle-income countries. This results in more septic patients being admitted to intensive care units. Septic encephalopathy is a manifestation especially of severe sepsis and septic shock where the neurologist plays a crucial role in diagnosis and management. It is well known that timely treatment of sepsis improves outcome and that septic encephalopathy may precede other signs and symptoms. Particularly in the elderly and immunocompromised patient, the brain may be the first organ to show signs of failure. The neurologist diagnosing early septic encephalopathy may therefore contribute to the optimal management of septic patients. The brain is not only an organ failing in sepsis (a "sepsis victim" - as with other organs), but it also overwhelmingly influences all inflammatory processes on a variety of pathophysiologic levels, thus contributing to the initiation and propagation of septic processes. Therefore, the best possible pathophysiologic understanding of septic encephalopathy is essential for its management, and the earliest possible therapy is crucial to prevent the evolution of septic encephalopathy, brain failure, and poor prognosis.
Collapse
Affiliation(s)
- E Schmutzhard
- Neurocritical Care Unit, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - B Pfausler
- Neurocritical Care Unit, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Sutter R, Chalela JA, Leigh R, Kaplan PW, Yenokyan G, Sharshar T, Stevens RD. Significance of Parenchymal Brain Damage in Patients with Critical Illness. Neurocrit Care 2016; 23:243-52. [PMID: 25650012 DOI: 10.1007/s12028-015-0110-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND To determine the prevalence, type, and significance of brain damage in critically ill patients with a primary non-neurological diagnosis developing acute brain dysfunction. METHODS This retrospective cohort study was performed at the Johns Hopkins University School of Medicine, an academic tertiary care hospital. Medical records were reviewed of 479 consecutive ICU patients who underwent brain magnetic resonance imaging (MRI) over a 2-year period. Patients were selected for analysis if MRI was obtained to evaluate an acute onset of brain dysfunction (altered mental status, seizures, and/or focal neurological deficit). Subjects with a history of a central nervous system disorder were excluded. The principal clinical endpoint was Glasgow Outcome Scale (GOS) assessed at discharge. MRI-defined brain abnormalities were classified according to type and location. Factors associated with MRI-defined abnormalities were assessed in uni- and multivariable models. RESULTS 146 patients met inclusion criteria (mean age 54 ± 7 years). Brain damage was detected in 130 patients (89%). The most prevalent lesions were white matter hyperintensities (104/146, 71%) and acute cerebral infarcts (59/146, 40%). In a multivariable model, lesions on brain MRI were independently associated with unfavorable outcome (GOS1-3 in 71% of patients with lesions vs. 44% in those without, p = 0.007). No adverse events occurred in relation to transport and MRI scanning. CONCLUSIONS In critically ill patients without known neurological disease who have acute brain dysfunction, MRI reveals an unexpectedly high burden of underlying brain damage, which is associated with unfavorable outcome. The results indicate that brain damage could be an important and under-recognized factor contributing to critical illness brain dysfunction.
Collapse
Affiliation(s)
- Raoul Sutter
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Meyer 8-140, 600 N Wolfe St, Baltimore, MD, 21287, USA,
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
This update comprises six important topics under neurocritical care that require reevaluation. For post-cardiac arrest brain injury, the evaluation of the injury and its corresponding therapy, including temperature modulation, is required. Analgosedation for target temperature management is an essential strategy to prevent shivering and minimizes endogenous stress induced by catecholamine surges. For severe traumatic brain injury, the diverse effects of therapeutic hypothermia depend on the complicated pathophysiology of the condition. Continuous electroencephalogram monitoring is an essential tool for detecting nonconvulsive status epilepticus in the intensive care unit (ICU). Neurocritical care, including advanced hemodynamic monitoring, is a fundamental approach for delayed cerebral ischemia following subarachnoid hemorrhage. We must be mindful of the high percentage of ICU patients who may develop sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa Japan 761-0793
| |
Collapse
|
24
|
Lu CX, Qiu T, Tong HS, Liu ZF, Su L, Cheng B. Peripheral T-lymphocyte and natural killer cell population imbalance is associated with septic encephalopathy in patients with severe sepsis. Exp Ther Med 2016; 11:1077-1084. [PMID: 26998040 DOI: 10.3892/etm.2016.3000] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022] Open
Abstract
Septic encephalopathy (SE) is a diffuse cerebral dysfunction resulting from a systemic inflammatory response, and is associated with an increased risk of mortality. The pathogenesis of SE is complex and multifactorial, but unregulated immune imbalance may be an important factor. The current retrospective study examined the clinical data of 86 patients with severe sepsis who were admitted to the Intensive Care Unit at Zhongshan Hospital, Xiamen University (Xiamen, China) from January, 2014 to January, 2015. The patients were assigned to SE and non-SE patient groups according to the presence or absence of SE. The proportion of T-lymphocyte subsets and natural killer (NK) cells in the immune cell population, representing the function of the immune system, were analyzed for their association with SE and compared with other clinical predictors and biomarkers. The incidence of SE in the patients was 39.5%, and this group demonstrated higher mortality rates (38 vs. 10% in non-SE patients; P=0.001). Univariate analysis revealed that the SE patients reported a lower percentage of cluster of differentiation 4+(CD4+) T-lymphocytes (51.67±7.12 vs. 60.72±3.70% in non-SE patients; P<0.01), a lower CD4+/cluster of differentiation 8+(CD8+) ratio (1.59±0.32 vs. 1.85±0.26% in non-SE patients; P<0.01) and a higher percentage of NK cells (11.80±1.44 vs. 9.19±2.36% in non-SE patients; P<0.01). Using a binary logistic regression model, the Acute Physiology and Chronic Health Evaluation II score and the percentage of CD4+ T-lymphocytes were demonstrated to be independently associated with SE (respectively, P=0.012 and OR, 4.763; P=0.005 and OR, 0.810). An area under the curve analysis of a receiver operating characteristic curve of the two indicators revealed that these were equally powerful measures in prediction of SE (Z=1.247, P>0.05). The present results confirm that SE leads to higher mortality in patients with severe sepsis, and demonstrate that immune imbalance is important in the development of SE. The proportion of CD4+ T-lymphocytes present were revealed in the current study to be a powerful predictor of SE in patients with severe sepsis.
Collapse
Affiliation(s)
- Cheng-Xiang Lu
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Intensive Care Unit, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ting Qiu
- Department of Neurology, Zhongshan Hospital Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Hua-Sheng Tong
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Zhi-Feng Liu
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Lei Su
- Department of Intensive Care Unit, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Biao Cheng
- Department of Plastic Surgery, Affiliated General Hospital of Guangzhou Military Command of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
25
|
Zivkovic AR, Sedlaczek O, von Haken R, Schmidt K, Brenner T, Weigand MA, Bading H, Bengtson CP, Hofer S. Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity. Acta Neuropathol Commun 2015; 3:67. [PMID: 26531194 PMCID: PMC4632469 DOI: 10.1186/s40478-015-0245-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium. Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS) injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in treatment of septic delirium in the intensive care unit.
Collapse
|
26
|
BÄNZIGER B, REGUEIRA T, VOGT R, BRANDT S, VANDEVELDE M, JAKOB SM. Neurohistological abnormalities during early porcine endotoxemia. Acta Anaesthesiol Scand 2015; 59:586-97. [PMID: 25782165 DOI: 10.1111/aas.12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain dysfunction is common in sepsis. We aimed to assess whether cerebral perfusion, oxygenation, and/or metabolism are abnormal during early endotoxemia, and how they may relate to potential neurohistological changes. METHODS In this prospective animal study, we included 12 pigs (weight: 42 ± 4 kg; mean ± SD) that were exposed to Escherichia coli lipopolysaccharide (E. coli LPS B0111 : B4, 0.4 μg/kg/h) or saline infusion (n = 6, each) for 10 h. Systemic hemodynamics, cerebral blood flow, intracranial pressure, and brain tissue oxygen tension were continuously measured. At the end of the experiment, formalin-fixed brains were cut in coronal sections and embedded in paraffin. Afterwards, the sections were cut at 5 microns and stained with hematoxylin and eosin. RESULTS Stable systemic hemodynamics in both groups were associated with higher carotid arterial blood flow after 10 h of endotoxemia (9.0 ± 2.2 ml/kg/min) compared to controls (6.6 ± 1.2 ml/kg/min; time-group interaction: P = 0.014). Intracranial pressure, cerebral perfusion pressure, brain oxygen consumption, and brain tissue oxygen tension were similar in both groups. In four of the six endotoxemic animals but in none of the controls, cerebral tissue lesions were found (encephalomalacia with spongy degeneration of white matter, axonal swelling, and ischemic neuronal thalamic necrosis), including significant venous vascular alterations, predominantly in the brainstem, in three of the four animals. CONCLUSIONS Early endotoxemia seems to be associated with histological signs of brain damage unrelated to systemic or cerebral hemodynamics or oxygenation.
Collapse
Affiliation(s)
- B. BÄNZIGER
- Department of Anesthesiology and Pain Therapy; Bern University Hospital; University of Bern; Bern Switzerland
| | - T. REGUEIRA
- Department of Intensive Care Medicine; Bern University Hospital; University of Bern; Bern Switzerland
| | - R. VOGT
- Division of Anesthesiology; Vetsuisse Faculty; University of Zürich; Zürich Switzerland
| | - S. BRANDT
- Department of Anesthesiology and Pain Therapy; Bern University Hospital; University of Bern; Bern Switzerland
| | - M. VANDEVELDE
- Department of Clinical Veterinary Medicine; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - S. M. JAKOB
- Department of Intensive Care Medicine; Bern University Hospital; University of Bern; Bern Switzerland
| |
Collapse
|
27
|
Blom C, Deller BL, Fraser DD, Patterson EK, Martin CM, Young B, Liaw PC, Yazdan-Ashoori P, Ortiz A, Webb B, Kilmer G, Carter DE, Cepinskas G. Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro. Crit Care 2015; 19:149. [PMID: 25882865 PMCID: PMC4409718 DOI: 10.1186/s13054-015-0883-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. METHODS The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). RESULTS Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. CONCLUSIONS Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.
Collapse
Affiliation(s)
- Chris Blom
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Str. North, London, ON, N6A 5C1, Canada.
| | - Brittany L Deller
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Str. North, London, ON, N6A 5C1, Canada.
| | - Douglas D Fraser
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Str. North, London, ON, N6A 5C1, Canada.
- Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada.
- Centre for Critical Illness Research, Lawson Health Research Institute, 800 Commissioners Rd East, London, ON, N6C 6B5, Canada.
- Department of Paediatrics, Western University, 100 Collip Circle, London, ON, N6G 4X8, Canada.
- Department of Clinical Neurological Sciences, Western University, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, 800 Commissioners Rd East, London, ON, N6C 6B5, Canada.
| | - Claudio M Martin
- Centre for Critical Illness Research, Lawson Health Research Institute, 800 Commissioners Rd East, London, ON, N6C 6B5, Canada.
- Department of Medicine, Western University, 1151 Richmond Str. North, London, ON, N6A 3K6, Canada.
| | - Bryan Young
- Department of Clinical Neurological Sciences, Western University, 339 Windermere Road, London, ON, N6A 5A5, Canada.
| | - Patricia C Liaw
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- The Thrombosis and Atherosclerosis Research Institute, 237 Barton Str. East, Hamilton, ON, L8L 2X2, Canada.
| | - Payam Yazdan-Ashoori
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Str. North, London, ON, N6A 5C1, Canada.
| | - Angelica Ortiz
- Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada.
| | - Brian Webb
- Thermo Fisher Scientific, 3747 N Meridian Rd, Rockford, IL, 61105, USA.
| | - Greg Kilmer
- Thermo Fisher Scientific, 3747 N Meridian Rd, Rockford, IL, 61105, USA.
| | - David E Carter
- London Regional Genomics Centre, Robarts Research Institute, 1151 Richmond Str. North, London, ON, N6A 5B7, Canada.
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, 800 Commissioners Rd East, London, ON, N6C 6B5, Canada.
- Department of Medical Biophysics, Western University, 1151 Richmond Str. North, London, ON, N6A 5C1, Canada.
| |
Collapse
|
28
|
Zenaide PV, Gusmao-Flores D. Biomarkers in septic encephalopathy: a systematic review of clinical studies. Rev Bras Ter Intensiva 2015; 25:56-62. [PMID: 23887761 PMCID: PMC4031860 DOI: 10.1590/s0103-507x2013000100011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/20/2013] [Indexed: 01/06/2023] Open
Abstract
Objective The aim of this study was to systematically review the importance of
neuron-specific enolase and S100 beta for diagnosing and monitoring septic
encephalopathy. Methods A PubMed database search was performed to identify studies that evaluated S100
beta and neuron-specific enolase serum levels in patients with sepsis and that
were published between January 2000 and April 2012. Only human studies that
employed an additional method of neurological assessment were selected. Results Nine studies were identified, seven of which associated high concentrations of
S100 beta and neuron-specific enolase with the development of septic
encephalopathy. Four studies also associated these concentrations with increased
mortality. However, two studies did not find such an association when they
evaluated S100 beta levels, and one of these studies did not observe a correlation
between neuron-specific enolase and septic encephalopathy. Conclusion S100 beta and neuron-specific enolase are promising biomarkers for diagnosing and
monitoring patients with septic encephalopathy, but more research is
necessary.
Collapse
Affiliation(s)
- Paula Veriato Zenaide
- Academic Medical Course, Escola Bahiana de Medicina e Saúde Pública - Salvador, Brazil.
| | | |
Collapse
|
29
|
Sutter R, Kaplan PW. What to see when you are looking at confusion: a review of the neuroimaging of acute encephalopathy. J Neurol Neurosurg Psychiatry 2015; 86:446-59. [PMID: 25091365 DOI: 10.1136/jnnp-2014-308216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute encephalopathy is a clinical conundrum in neurocritical care facing physicians with diagnostic and therapeutic challenges. Encephalopathy arises from several concurrent causes, and delayed diagnosis adds to its grim prognosis. Diagnosis is reached by melding clinical, neurophysiological and biochemical features with various neuroimaging studies. We aimed to compile the pathophysiology of acute encephalopathies in adults, and the contribution of cerebral CT, MRI, MR spectroscopy (MRS), positron emission tomography (PET) and single-photon emission CT (SPECT) to early diagnosis, treatment and prognostication. Reports from 1990 to 2013 were identified. Therefore, reference lists were searched to identify additional publications. Encephalopathy syndromes best studied by neuroimaging emerge from hypoxic-ischaemic injury, sepsis, metabolic derangements, autoimmune diseases, infections and rapidly evolving dementias. Typical and pathognomonic neuroimaging patterns are presented. Cerebral imaging constitutes an important component of diagnosis, management and prognosis of acute encephalopathy. Its respective contribution is dominated by rapid exclusion of acute cerebral lesions and further varies greatly depending on the underlying aetiology and the range of possible differential diagnoses. CT has been well studied, but is largely insensitive, while MRI appears to be the most helpful in the evaluation of encephalopathies. MRS may provide supplementary biochemical information and determines spectral changes in the affected brain tissue. The less frequently used PET and SPECT may delineate areas of high or low metabolic activity or cerebral blood flow. However, publications of MRS, PET and SPECT are limited only providing anecdotal evidence of their usefulness and sensitivity.
Collapse
Affiliation(s)
- Raoul Sutter
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA Clinic of Intensive Care Medicine, University Hospital Basel, Basel, Switzerland Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Peter W Kaplan
- Division of Neurosciences Critical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
30
|
BURKHART CS, DELL-KUSTER S, SIEGEMUND M, PARGGER H, MARSCH S, STREBEL SP, STEINER LA. Effect of n-3 fatty acids on markers of brain injury and incidence of sepsis-associated delirium in septic patients. Acta Anaesthesiol Scand 2014; 58:689-700. [PMID: 24660837 DOI: 10.1111/aas.12313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Data regarding immunomodulatory effects of parenteral n-3 fatty acids in sepsis are conflicting. In this study, the effect of administration of parenteral n-3 fatty acids on markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients was investigated. METHODS Fifty patients with sepsis were randomized to receive either 2 ml/kg/day of a lipid emulsion containing highly refined fish oil (equivalent to n-3 fatty acids 0.12 mg/kg/day) during 7 days after admission to the intensive care unit or standard treatment. Markers of brain injury and inflammatory mediators were measured on days 1, 2, 3 and 7. Assessment for sepsis-associated delirium was performed daily. The primary outcome was the difference in S-100β from baseline to peak level between both the intervention and the control group, compared by t-test. Changes of all markers over time were explored in both groups, fitting a generalized estimating equations model. RESULTS Mean difference in change of S-100β from baseline to peak level was 0.34 (95% CI: -0.18-0.85) between the intervention and control group, respectively (P = 0.19). We found no difference in plasma levels of S-100β, neuron-specific enolase, interleukin (IL)-6, IL-8, IL-10, and C-reactive protein between groups over time. Incidence of sepsis-associated delirium was 75% in the intervention and 71% in the control groups (risk difference 4%, 95% CI -24-31%, P = 0.796). CONCLUSION Administration of n-3 fatty acids did not affect markers of brain injury, incidence of sepsis-associated delirium, and inflammatory mediators in septic patients.
Collapse
Affiliation(s)
- C. S. BURKHART
- Department for Anesthesia; Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy; University Hospital of Basel; Basel Switzerland
| | - S. DELL-KUSTER
- Department for Anesthesia; Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy; University Hospital of Basel; Basel Switzerland
- Basel Institute for Clinical Epidemiology and Biostatistics; University Hospital of Basel; Basel Switzerland
| | - M. SIEGEMUND
- Department of Anesthesia and Intensive Care Medicine; Kantonsspital Baden; Baden Switzerland
| | - H. PARGGER
- Department for Anesthesia; Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy; University Hospital of Basel; Basel Switzerland
| | - S. MARSCH
- Medical Intensive Care Unit; University Hospital of Basel; Basel Switzerland
| | - S. P. STREBEL
- Department for Anesthesia; Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy; University Hospital of Basel; Basel Switzerland
| | - L. A. STEINER
- Department for Anesthesia; Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy; University Hospital of Basel; Basel Switzerland
- Department of Anesthesia; University Hospital Centre and University of Lausanne; Lausanne Switzerland
| |
Collapse
|
31
|
|
32
|
Abstract
Acute encephalopathies arise as a result of various contributions from infections or toxic, metabolic, and/or structural cerebral derangements. With the variety of clinical presentations, neurologic examination, electroencephalography (EEG), and imaging may not identify specific etiologies, but in combination, they can offer guidance regarding underlying causes. Among several different neuroimaging techniques, cerebral computed tomography and brain magnetic resonance imaging are most frequently used for diagnosis, treatment monitoring, and prognostication in acute brain dysfunction. This review compiles the most common and typical features of head computed tomography and magnetic resonance imaging and presents the clinical and EEG associations in adult patients with different types of acute encephalopathy.
Collapse
|
33
|
Elevated serum vascular cell adhesion molecule-1 is associated with septic encephalopathy in adult community-onset severe sepsis patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:598762. [PMID: 24883317 PMCID: PMC4032707 DOI: 10.1155/2014/598762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 11/26/2022]
Abstract
Background and Aim. Septic encephalopathy (SE) is a common complication of severe sepsis. Increased concentrations of circulating soluble adhesion molecules are reported in septic patients. This study aimed to determine whether serum adhesion molecules are associated with SE. Methods. Seventy nontraumatic, nonsurgical adult patients with severe sepsis admitted through ER were evaluated. Serum adhesion molecules were assessed for their relationship with SE, and compared with other clinical predictors and biomarkers. Results. Twenty-three (32.8%) patients had SE. SE group had higher in-hospital mortality (40% versus 11%, P = 0.009) and their sVCAM-1, sICAM-1, and lactate levels on admission were also higher than non-SE group. By stepwise logistic regression model, sVCAM-1, age, and maximum 24-hours SOFA score were independently associated with septic encephalopathy. The AUC analysis of ROC curve of different biomarkers showed that sVCAM-1 is better to predict SE. The sVCAM-1 levels in the SE group were significantly higher than those of the non-SE group at three time periods (Days 1, 4, and 7). Conclusions. Septic encephalopathy implies higher mortality in nontraumatic, nonsurgical patients with severe sepsis. VCAM-1 level on presentation is a more powerful predictor of SE in these patients than lactate concentration and other adhesion molecules on admission.
Collapse
|
34
|
Yao B, Zhang LN, Ai YH, Liu ZY, Huang L. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res 2014; 39:1263-9. [PMID: 24760429 DOI: 10.1007/s11064-014-1308-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/27/2014] [Accepted: 04/10/2014] [Indexed: 11/29/2022]
Abstract
S100β and neuron-specific enolase (NSE) are brain injury biomarkers, mainly used in brain trauma, cerebral stroke and hypoxic ischemia encephalopathy. The aim of this study was to study the clinical significance of serum S100β and NSE in diagnosing sepsis-associated encephalopathy (SAE) and predicting its prognosis. This was a prospective and observational study. Clinical data of septic patients were collected within 24 h after ICU admission from May 2012 to April 2013. We evaluated the level of consciousness twice per day. SAE was defined as cerebral dysfunction in the presence of sepsis that fulfilled the exclusion criteria. The infection biochemical indicators, Glasgow coma scale (GCS) score, acute physiology and chronic health evaluation score II, serum NSE and S100β were newly measured or evaluated for SAE patients. Finally, hospital mortality, bacteriological categories, length of ICU stay and length of hospital stay were also recorded for all enrolled patients. The data was analyzed with the Chi square test, two-sample t test or Mann-Whitney U test between two groups. The correlation between two factors was analyzed using the Pearson or Spearman analysis. Receiver operating characteristic (ROC) curves were used to determine the ability of S100β and NSE in diagnosing SAE and predicting the hospital mortality. In addition, cut-off points were obtained from the curves to determine the highest sum of sensitivity and specificity. Of 112 enrolled patients, 48 patients were diagnosed with SAE. The serum S100β and NSE concentrations in SAE patients were both significantly higher than in non-SAE patients 0.306 (IQR 0.157-0.880) μg/L vs. 0.095 (IQR 0.066-0.177) μg/L, 24.87 (IQR 31.73-12.73) ng/mL vs. 15.49 (IQR 9.88-21.46) ng/mL, P < 0.01]. GCS scores were related more closely to S100β than NSE (-0.595 vs. -0.337). S100β levels of 0.131 μg/L diagnosed SAE with 67.2% specificity and 85.4% sensitivity in the ROC curve, the area under the curve was 0.824 (95% confidence interval 0.750-0.898). NSE levels of 24.15 ng/mL diagnosed SAE with 82.8% specificity and 54.2% sensitivity, and the area under the curve was 0.664 (95 % confidence interval 0.561-0.767). In addition, the area under the curve for S100β for predicting hospital mortality was larger than for NSE (0.730 vs. 0.590). Serum S100β concentrations in SAE patients were significantly higher than in non-SAE patients. These may be related to the severity of SAE and may predict the outcome of sepsis. The efficacy and sensitivity of serum S100β in diagnosing SAE were high, but it had a low specificity. Moreover, compared to NSE, serum S100β was better for both diagnosing SAE and predicting the outcome of sepsis.
Collapse
Affiliation(s)
- Bo Yao
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | | | | | | |
Collapse
|
35
|
Abstract
Every year, more cases of sepsis appear in intensive care units. The most frequent complication of sepsis is septic encephalopathy (SE), which is also the essential determinant of mortality. Despite many years of research, it still is not known at which stage of sepsis the first signs of SE appear; however, it is considered the most frequent form of encephalopathy. Patients have dysfunction of cognitive abilities and consciousness, and sometimes even epileptic seizures. Despite intensive treatment, the effects of SE remain for many years and constitute an important social problem. Numerous studies indicate that changes in the brain involve free radicals, nitric oxide, increased synthesis of inflammatory factors, disturbances in cerebral circulation, microthromboses, and ischemia, which cause considerable neuronal destruction in different areas of the brain. To determine at what point during sepsis the first signs of SE appear, different experimental models are needed to detect the aforementioned changes and to select the proper therapy for this syndrome.
Collapse
Affiliation(s)
- Marek Ziaja
- Department of Histology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
36
|
Stubbs DJ, Yamamoto AK, Menon DK. Imaging in sepsis-associated encephalopathy--insights and opportunities. Nat Rev Neurol 2013; 9:551-61. [PMID: 23999468 DOI: 10.1038/nrneurol.2013.177] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sepsis-associated encephalopathy (SAE) refers to a clinical spectrum of acute neurological dysfunction that arises in the context of sepsis. Although the pathophysiology of SAE is incompletely understood, it is thought to involve endothelial activation, blood-brain barrier leakage, inflammatory cell migration, and neuronal loss with neurotransmitter imbalance. SAE is associated with a high risk of mortality. Imaging studies using MRI and CT have demonstrated changes in the brains of patients with SAE that are also seen in disorders such as stroke. Next-generation imaging techniques such as magnetic resonance spectroscopy, diffusion tensor imaging and PET, as well as experimental imaging modalities, provide options for early identification of patients with SAE, and could aid in identification of pathophysiological processes that represent possible therapeutic targets. In this Review, we explore the recent literature on imaging in SAE, relating the findings of these studies to pathological data and experimental studies to obtain insights into the pathophysiology of sepsis-associated neurological dysfunction. Furthermore, we suggest how novel imaging technologies can be used for early-stage proof-of-concept and proof-of-mechanism translational studies, which may help to improve diagnosis in SAE.
Collapse
Affiliation(s)
- Daniel J Stubbs
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | |
Collapse
|
37
|
Hopkins RO, Jackson JC. Neuroimaging after critical illness: implications for neurorehabilitation outcome. NeuroRehabilitation 2013; 31:311-8. [PMID: 23093457 DOI: 10.3233/nre-2012-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Survivors of critical illness frequently have severe and long-lasting cognitive impairments and psychiatric disorders, which adversely affect functional outcomes including return to work, and quality of life. While data regarding cognitive outcomes has increased over the last 15 years, neuroimaging data in medical and surgical critical populations is extremely limited. The abrupt development of new significant cognitive impairments after critical illness along with abnormalities on neuroimaging suggest that critical illness results in new acquired brain injury, similar to that observed in other acquired brain injuries. Abnormalities on neuroimaging including cortical and subcortical lesions, brain atrophy, and white matter hyperintensities (WMH) which occur in widely distributed brain regions. Patients admitted to neurorehabilitation who received critical care related to their primary diagnosis may have sustained neurological injury from the nonspecific effects of their critical illness and as demonstrated in this review, generalized, non-specific neuroimaging findings may be observed and quantified. Given the high prevalence rate of cognitive impairments in this population, neuroimaging is important to help elucidate neuropathology of critical illness acquired brain injury and may be beneficial in guiding rehabilitation outcomes in this population.
Collapse
Affiliation(s)
- Ramona O Hopkins
- Psychology Department, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
38
|
Yokoo H, Chiba S, Tomita K, Takashina M, Sagara H, Yagisita S, Takano Y, Hattori Y. Neurodegenerative evidence in mice brains with cecal ligation and puncture-induced sepsis: preventive effect of the free radical scavenger edaravone. PLoS One 2012; 7:e51539. [PMID: 23236515 PMCID: PMC3517559 DOI: 10.1371/journal.pone.0051539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/07/2012] [Indexed: 02/08/2023] Open
Abstract
Sepsis is a major clinical challenge and septic encephalopathy is its nasty complication. The pathogenesis and underlying mechanisms of septic encephalopathy are not well understood. This study sought to fully characterize sepsis-associated biochemical and histopathological changes in brains of mice after cecal ligation and puncture, regarded as a highly clinically relevant animal model of polymicrobial sepsis. Real-time PCR analysis showed that gene expression levels of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, were significantly up-regulated in brain tissues from septic mice, but to a much lesser extent when compared with those in peripheral tissues such as lungs. Blood-brain barrier (BBB) permeability was significantly increased in septic mice, as determined by the measurement of sodium fluorescein and Evans blue content. Sepsis resulted in increases in NADPH oxidase activity and expression of p47phox and p67phox and up-regulation of inducible nitric oxide (NO) synthase in brains, indicating that superoxide, produced by NADPH oxidase, reacts with NO to form peroxynitrite, that maybe lead to the loss of BBB integrity. Light and electron microscopic examination of septic mouse brain showed serious neuronal degeneration, as indicated by hyperchromatic, shrunken, pyknotic, and electron-dense neurons. These histopathogical changes were prevented by treatment with the free radical scavenger edaravone. Together, these results suggest that sepsis can lead to rapid neurodegenerative changes in brains via free radical species production and possibly subsequent injury to the BBB. We may also provide a potentially useful therapeutic tool for treating septic encephalopathy.
Collapse
Affiliation(s)
- Hiroki Yokoo
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Avtan SM, Kaya M, Orhan N, Arslan A, Arican N, Toklu AS, Gürses C, Elmas I, Kucuk M, Ahishali B. The effects of hyperbaric oxygen therapy on blood–brain barrier permeability in septic rats. Brain Res 2011; 1412:63-72. [DOI: 10.1016/j.brainres.2011.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 01/11/2023]
|
40
|
Encéphalopathie associée au sepsis. Rev Neurol (Paris) 2011; 167:195-204. [DOI: 10.1016/j.neurol.2010.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 04/20/2010] [Accepted: 07/07/2010] [Indexed: 02/05/2023]
|
41
|
Sato Y, Okuya M, Hagisawa S, Matsushita T, Fukushima K, Kurosawa H, Sugita K, Arisaka O. Viridans streptococcal bacteremia-related encephalopathy in childhood with malignancy. Pediatr Hematol Oncol 2011; 28:24-30. [PMID: 21247349 DOI: 10.3109/08880018.2010.489930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viridans streptococcal bacteremia is a prognostic factor in pediatric patients with malignant disease accompanied by severe neutropenia. Here the authors describe 4 patients with viridans streptococcal bacteremia-related encephalopathy who showed serious complications, which included seizures and loss of consciousness. Therapy for relief of brain edema on seizures was started quickly, and included the administration of midazolam, dexamethasone, and mannitol with antimicrobial therapy. The treatment was successfully completed without sequelae. The authors registered 28 episodes of viridans streptococcal bacteremia in their hospital. The peak of serum C-reaction protein was higher in viridans streptococcal bacteremia patients with encephalopathy than in those without encephalopathy. The authors concluded that viridans streptococcal bacteremia can induce encephalopathy in pediatric patients with malignancy and that it is crucial to establish an accurate diagnosis and initiate therapy as soon as possible.
Collapse
Affiliation(s)
- Yuya Sato
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Spapen H, Nguyen DN, Troubleyn J, Huyghens L, Schiettecatte J. Drotrecogin alfa (activated) may attenuate severe sepsis-associated encephalopathy in clinical septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R54. [PMID: 20374626 PMCID: PMC2887172 DOI: 10.1186/cc8947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/08/2010] [Accepted: 04/07/2010] [Indexed: 01/15/2023]
Abstract
Introduction Sepsis-associated encephalopathy (SAE) is a diffuse cerebral dysfunction induced by the immuno-inflammatory response to infection. Elevated levels of the brain-specific S100B protein are present in many septic patients and reflect the severity of SAE. Adjunctive treatment with drotrecogin alfa (activated) (DrotAA), the human recombinant form of activated protein C, has been shown to improve mortality in patients with severe sepsis-induced organ failure. We studied the effect of DrotAA on S100B levels in patients with acute septic shock who presented with increased baseline values of this biomarker. Methods All patients received standard goal-directed resuscitation treatment. Patients with pre-existing or acute neurological disorders were excluded. Based on the Glasgow coma scale (GCS), patients were classified into two groups: GCS ≥ 13 and GCS <13. DrotAA was given as a continuous infusion of 24 μg/kg/h for 96 h. S100B was measured before sedation and the start of DrotAA (0 h) and at 32 h, 64 h and 96 h and at corresponding time points in patients not treated with DrotAA. The lower limit of normal was < 0.5 μg/L. Results Fifty-four patients completed the study. S100B was increased in 29 (54%) patients. Twenty-four patients (9 with GCS ≥ 13 and 15 with GCS <13) received DrotAA. S100B levels in DrotAA-treated patients with a GCS <13, though higher at baseline than in untreated subjects (1.21 ± 0.22 μg/L vs. 0.95 ± 0.12 μg/L; P = 0.07), progressively and significantly decreased during infusion (0.96 ± 0.22 μg/L at 32 h, P = 0.3; 0.73 ± 0.12 μg/L at 64 h, P < 0.05; and 0.70 ± 0.13 μg/L at 96 h, P < 0.05 vs. baseline). This patient group had also significantly lower S100B values at 64 h and at 96 h than their untreated counterparts. In the patients with a GCS ≥ 13, S100B levels were not influenced by DrotAA treatment. Conclusions S100B-positivity is present in more than half of the patients with septic shock. When increased S100B levels are used as a surrogate for SAE, adjunctive DrotAA treatment seems to beneficially affect the evolution of severe SAE as discriminated by an admission GCS <13.
Collapse
Affiliation(s)
- Herbert Spapen
- Intensive Care Department, University Hospital, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels, Belgium.
| | | | | | | | | |
Collapse
|