1
|
Targeting Protein Kinase C in Glioblastoma Treatment. Biomedicines 2021; 9:biomedicines9040381. [PMID: 33916593 PMCID: PMC8067000 DOI: 10.3390/biomedicines9040381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor and is associated with a poor prognosis. Despite the use of combined treatment approaches, recurrence is almost inevitable and survival longer than 14 or 15 months after diagnosis is low. It is therefore necessary to identify new therapeutic targets to fight GBM progression and recurrence. Some publications have pointed out the role of glioma stem cells (GSCs) as the origin of GBM. These cells, with characteristics of neural stem cells (NSC) present in physiological neurogenic niches, have been proposed as being responsible for the high resistance of GBM to current treatments such as temozolomide (TMZ). The protein Kinase C (PKC) family members play an essential role in transducing signals related with cell cycle entrance, differentiation and apoptosis in NSC and participate in distinct signaling cascades that determine NSC and GSC dynamics. Thus, PKC could be a suitable druggable target to treat recurrent GBM. Clinical trials have tested the efficacy of PKCβ inhibitors, and preclinical studies have focused on other PKC isozymes. Here, we discuss the idea that other PKC isozymes may also be involved in GBM progression and that the development of a new generation of effective drugs should consider the balance between the activation of different PKC subtypes.
Collapse
|
2
|
Li X, Tan R, Hu X, Jiao Q, Rahman MS, Chen X, Zhang P, An J, Lu H, Liu Y. Neural stem cell-derived factors inhibit the growth and invasion of U87 stem-like cells in vitro. J Cell Biochem 2018; 120:5472-5479. [PMID: 30367517 DOI: 10.1002/jcb.27826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023]
Abstract
Glioma is one of the most common and aggressive tumors in the brain. Significant attention has been paid to the potential use of neural stem/progenitor cells (NSCs/NPCs) as delivery vehicles to cure gliomas. However, whether the NSCs/NPCs or the factors they produced could make a contribution still remains to be seen. In this study, we focused on the inhibitory effects of the factors produced by NSCs/NPCs on the biological behavior of the glioma stem-like cell in vitro. The human glioma cell line U87 was selected and the U87 stem-like cells were addressed. After being cultured in the NSC condition medium (NSC-CM), the viability and proliferation of U87 stem-like cells were significantly reduced. The invasion of U87 stem-like cells and the migration of U87 cells were also significantly decreased. However, no significant change was observed in regard to the astrocytic differentiation of U87 stem-like cells. These indicated that NSCs/NPCs produced some factors and had an inhibitory effect on the growth and invasion but not the terminal differentiation of U87 stem-like cells. It is worth paying attention to NSCs/NPCs as a high-potential candidate for glioma treatment.
Collapse
Affiliation(s)
- Xingxing Li
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ruolan Tan
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoxuan Hu
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qian Jiao
- Department of Physiology, Medical College of Qingdao University, Qingdao, China
| | - Md Saidur Rahman
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
3
|
Kaid C, Goulart E, Caires-Júnior LC, Araujo BHS, Soares-Schanoski A, Bueno HMS, Telles-Silva KA, Astray RM, Assoni AF, Júnior AFR, Ventini DC, Puglia ALP, Gomes RP, Zatz M, Okamoto OK. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo. Cancer Res 2018; 78:3363-3374. [PMID: 29700002 DOI: 10.1158/0008-5472.can-17-3201] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/02/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKVBR) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKVBR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKVBR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKVBR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKVBR-induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKVBR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects.Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR.
Collapse
Affiliation(s)
- Carolini Kaid
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz C Caires-Júnior
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Bruno H S Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | | | - Heloisa M S Bueno
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Kayque A Telles-Silva
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | - Amanda F Assoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - Antônio F R Júnior
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | | | | | | | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil.
| | - Oswaldo K Okamoto
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
4
|
Capdevila C, Rodríguez Vázquez L, Martí J. Glioblastoma Multiforme and Adult Neurogenesis in the Ventricular-Subventricular Zone: A Review. J Cell Physiol 2017; 232:1596-1601. [DOI: 10.1002/jcp.25502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Claudia Capdevila
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Lucía Rodríguez Vázquez
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Departament de Biologia Cel.lular; de Fisiologia i d'Immunologia, Facultad de Biociencias, Universidad Autónoma de Barcelona; Bellaterra Barcelona Spain
| |
Collapse
|
5
|
van Vuurden DG, Aronica E, Hulleman E, Wedekind LE, Biesmans D, Malekzadeh A, Bugiani M, Geerts D, Noske DP, Vandertop WP, Kaspers GJL, Cloos J, Würdinger T, van der Stoop PPM. Pre-B-cell leukemia homeobox interacting protein 1 is overexpressed in astrocytoma and promotes tumor cell growth and migration. Neuro Oncol 2015; 16:946-59. [PMID: 24470547 DOI: 10.1093/neuonc/not308] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy. METHODS In silico proteomics and genomics, immunohistochemistry, and immunofluorescence microscopy validation were performed. RNA interference was used to ascertain the functional role of the overexpressed candidate target protein. RESULTS In silico proteomics and genomics revealed pre-B-cell leukemia homeobox (PBX) interacting protein 1 (PBXIP1) overexpression in adult and childhood high-grade glioma and ependymoma compared with normal brain. PBXIP1 is a PBX-family interacting microtubule-binding protein with a putative role in migration and proliferation of cancer cells. Immunohistochemical studies in glial tumors validated PBXIP1 expression in astrocytoma and ependymoma but not in oligodendroglioma. RNAi-mediated PBXIP1-knockdown in glioblastoma cell lines strongly reduced proliferation and migration and induced morphological changes, indicating that PBXIP1 knockdown decreases glioma cell viability and motility through rearrangements of the actin cytoskeleton. Furthermore, expression of PBXIP1 was observed in radial glia and astrocytic progenitor cells in human fetal tissues, suggesting that PBXIP1 is an astroglial progenitor cell marker during human embryonic development. CONCLUSION PBXIP1 is a novel protein overexpressed in astrocytoma and ependymoma, involved in tumor cell proliferation and migration, that warrants further exploration as a novel therapeutic target in these tumors.
Collapse
|
6
|
Okemoto K, Kasai K, Wagner B, Haseley A, Meisen H, Bolyard C, Mo X, Wehr A, Lehman A, Fernandez S, Kaur B, Chiocca EA. DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas. Clin Cancer Res 2013; 19:5952-9. [PMID: 24056786 DOI: 10.1158/1078-0432.ccr-12-3588] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Oncolytic viruses (OV) based on herpes simplex virus type 1 (HSV1) are being used in clinical trials for a variety of cancers. The OV, rQNestin34.5, uses a nestin promoter/enhancer to selectively drive robust viral replication in malignant glioma cells. We have discovered that this promoter becomes extensively methylated in infected glioma cells, reducing OV efficacy. EXPERIMENTAL DESIGN We used demethylating drugs [5-azacytidine (5-Aza)], decitabine, or valproic acid (VPA) in both in vitro and in vivo malignant glioma models to determine if they improved the efficacy of rQNestin34.5 therapy. RESULTS The use of demethylating agents, such as 5-Aza, improved OV replication and tumor cell lysis in vitro and, in fact, synergized pharmacologically on Chou-Talalay analysis. In vivo, the combination of the demethylating agents, 5-Aza or decitabine, with rQNestin34.5 significantly prolonged the survivorship of athymic mice harboring intracranial human glioma xenografts over single agent alone. CONCLUSION These results, thus, provide further justification for the exploration of demethylating agents when combined with the OV, rQNestin34.5, in preclinical therapeutics and, possibly, clinical trials for malignant glioma.
Collapse
Affiliation(s)
- Kazuo Okemoto
- Authors' Affiliations: Dardinger Center for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Cancer Hospital/Solove Research Institute/Comprehensive Cancer Center and Wexner Medical Center; Center for Biostatistics, The Ohio State University, Columbus, Ohio; and Department of Neurosurgery Institute for the Neurosciences at the Brigham, Brigham and Women's/Faulkner Hospital and Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chu PM, Ma HI, Chen LH, Chen MT, Huang PI, Lin SZ, Chiou SH. Deregulated microRNAs identified in isolated glioblastoma stem cells: an overview. Cell Transplant 2012; 22:741-53. [PMID: 23127968 DOI: 10.3727/096368912x655190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, is extremely resistant to current treatment paradigms and has a high rate of tumor recurrence. Recent progress in the field of tumor-initiating cells suggests that GBM stem cells (GBMSCs) may be responsible for tumor progression, resistance to treatment, and tumor relapse. Therefore, understanding the biologically significant pathways involved in modulating GBMSC-specific characteristics offers great promise for development of novel therapeutics, which may improve therapeutic efficacy and overcome present drug resistance. In addition, targeting deregulated microRNA (miRNA) has arisen as a new therapeutic strategy in treating malignant gliomas. In GBMSCs, miRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, stemness maintenance, migration/invasion, apoptosis, and tumorigenicity. Nevertheless, the latest progress with GBMSCs and subsequent miRNA profiling is limited by the identification and isolation of GBMSCs. In this review, we thus summarize current markers and known features for isolation as well as the aberrant miRNAs that have been identified in GBM and GBMSCs.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy and Cell Biology, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
8
|
Hammoudi N, Ahmed KBR, Garcia-Prieto C, Huang P. Metabolic alterations in cancer cells and therapeutic implications. CHINESE JOURNAL OF CANCER 2012; 30:508-25. [PMID: 21801600 PMCID: PMC4013402 DOI: 10.5732/cjc.011.10267] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.
Collapse
Affiliation(s)
- Naima Hammoudi
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
9
|
Liu X, Chen L, Jiang Z, Wang J, Su Z, Li G, Yu S, Liu Z. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population. Exp Ther Med 2012; 5:65-72. [PMID: 23251243 PMCID: PMC3524257 DOI: 10.3892/etm.2012.747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/18/2012] [Indexed: 12/16/2022] Open
Abstract
Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory’s growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133+ and CD133−. The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133+ glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133− glioblastoma cells, leading to increased tumor malignancy compared with CD133− cells. The tumor formation rates of CD133+ and CD133− cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133+ glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133− cells. Flow cytometry revealed that in the CD133+ and CD133− glioblastoma cell-induced tumors, the percentage of CD133+ cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133+ or CD133− tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133+ glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133− subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.
Collapse
Affiliation(s)
- Xiaozhi Liu
- Department of Neurosurgery, Tianjin Binhai Neurological Institute
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The family of platelet-derived growth factors (PDGFs) plays a number of critical roles in normal embryonic development, cellular differentiation, and response to tissue damage. Not surprisingly, as it is a multi-faceted regulatory system, numerous pathological conditions are associated with aberrant activity of the PDGFs and their receptors. As we and others have shown, human gliomas, especially glioblastoma, express all PDGF ligands and both the two cell surface receptors, PDGFR-α and -β. The cellular distribution of these proteins in tumors indicates that glial tumor cells are stimulated via PDGF/PDGFR-α autocrine and paracrine loops, while tumor vessels are stimulated via the PDGFR-β. Here we summarize the initial discoveries on the role of PDGF and PDGF receptors in gliomas and provide a brief overview of what is known in this field.
Collapse
Affiliation(s)
- Inga Nazarenko
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Sanna-Maria Hede
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- (currently) Uppsala University, Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, SE-751 85 Uppsala, Sweden
| | - Xiaobing He
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Anna Hedrén
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - James Thompson
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Mikael S. Lindström
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:04, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
- Karolinska Healthcare Research Biobank (KHRBB), Clinical Pathology/Cytology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
11
|
Xia H, Cheung WKC, Ng SS, Jiang X, Jiang S, Sze J, Leung GKK, Lu G, Chan DTM, Bian XW, Kung HF, Poon WS, Lin MC. Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 2012; 287:9962-9971. [PMID: 22253443 DOI: 10.1074/jbc.m111.332627] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
miR-124 is a brain-enriched microRNA that plays a crucial role in neural development and has been shown to be down-regulated in glioma and medulloblastoma, suggesting its possible involvement in brain tumor progression. Here, we show that miR-124 is down-regulated in a panel of different grades of glioma tissues and in all of the human glioma cell lines we examined. By integrated bioinformatics analysis and experimental confirmation, we identified SNAI2, which is often up-regulated in glioma, as a direct functional target of miR-124. Because SNAI2 has been shown to regulate stem cell functions, we examined the roles of miR-124 and SNAI2 in glioma cell stem-like traits. The results showed that overexpression of miR-124 and knockdown of SNAI2 reduced neurosphere formation, CD133(+) cell subpopulation, and stem cell marker (BMI1, Nanog, and Nestin) expression, and these effects could be rescued by re-expression of SNAI2. Furthermore, enhanced miR-124 expression significantly inhibited glioma cell invasion in vitro. Finally, stable overexpression of miR-124 and knockdown of SNAI2 inhibited the tumorigenicity and invasion of glioma cells in vivo. These findings reveal, for the first time, that the tumor suppressor activity of miR-124 could be partly due to its inhibitory effects on glioma stem-like traits and invasiveness through SNAI2.
Collapse
Affiliation(s)
- Hongping Xia
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,; Department of Chemistry, The University of Hong Kong, Hong Kong,; Department of Surgery, Yijishan Hospital of Wannan Medical College, Sun Yat-Sen University, Guangzhou
| | | | - Samuel S Ng
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Xiaochun Jiang
- Department of Surgery, Yijishan Hospital of Wannan Medical College, Sun Yat-Sen University, Guangzhou
| | - Songshan Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou
| | - Johnny Sze
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,; Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Gilberto K K Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gang Lu
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Danny T M Chan
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China, and
| | - Hsiang-Fu Kung
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China, and; Stanley Ho Centre for Emerging Infectious Diseases and State Key Laboratory in Oncology in South China and the School of Biomedical Sciences, Faculty of Medicine and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Sang Poon
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,.
| | - Marie C Lin
- Brain Tumour Centre and Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,; Department of Chemistry, The University of Hong Kong, Hong Kong,; Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China, and.
| |
Collapse
|
12
|
Clavreul A, Etcheverry A, Chassevent A, Quillien V, Avril T, Jourdan ML, Michalak S, François P, Carré JL, Mosser J, Menei P. Isolation of a new cell population in the glioblastoma microenvironment. J Neurooncol 2011; 106:493-504. [DOI: 10.1007/s11060-011-0701-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/16/2011] [Indexed: 01/14/2023]
|
13
|
Mohseny AB, Hogendoorn PCW. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells 2011; 29:397-403. [PMID: 21425403 DOI: 10.1002/stem.596] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sarcomas are nonepithelial, nonhematopoietic malignant tumors that arise from the embryonic mesoderm. Despite their rarity, less than 10% of all cancers, sarcomas are accountable for relatively high morbidity and mortality especially in children and adolescents. Although there are some hereditary conditions predisposing sarcoma, such as the Li-Fraumeni and Retinoblastoma syndrome, the vast majority of these tumors are sporadic. Based on their histological morphology, sarcomas have been divided into a broad spectrum of subtypes recognized in the 2002 WHO classification of tumors. This wide lineage range suggests that sarcomas originate from either many committed different cell types or from a multipotent cell, subsequently driven into a certain lineage. Mesenchymal stem cells (MSCs) are able to differentiate into many cell types needed to create mature structures like vessels, muscle, and bone. These multipotent cells can be isolated from several adult human tissues and massively expanded in culture, making them both of use for research as well as potential beneficial therapeutical agents. For this reason MSCs are being extensively studied, however, concerns have raised about whether they are the putative originating cells of sarcoma and their questionable role in cancer progression. Recent accomplishments in the field have broadened our knowledge of MSCs in relation to sarcoma origin, sarcoma treatment and the safety of MSCs usage in therapeutic settings.
Collapse
Affiliation(s)
- Alexander B Mohseny
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
14
|
Eskandary H, Basiri M, Nematollahi-Mahani SN, Mehravaran S. The role of stem cells in tumor targeting and growth suppression of gliomas. Biologics 2011; 5:61-70. [PMID: 21637731 PMCID: PMC3104605 DOI: 10.2147/btt.s17838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Indexed: 01/14/2023]
Abstract
Glioma remains the most challenging solid organ tumor to treat successfully. Based on the capacity of stem cells to migrate extensively and target invading glioma cells, the transplantation of stem cells as a cell-based delivery system may provide additional tools for the treatment of gliomas. In addition to the use of modified stem cells for the delivery of therapeutic agents, unmodified stem cells have been shown to have growth-suppressing effects on tumors in vitro and in vivo. This review outlines the probable factors involved in tumor tropism and tumor growth suppression, with a specific focus on the use of unmodified stem cells in the treatment of gliomas. Based on these and further future data, clinical trials may be justified.
Collapse
|
15
|
Mori H, Yoshida Y, Hara M. Neural stem/progenitor cells damaged by reactive oxygen species evolved in photosensitizing reaction. Neurosci Lett 2011; 493:24-8. [DOI: 10.1016/j.neulet.2011.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/08/2011] [Accepted: 02/03/2011] [Indexed: 12/14/2022]
|