1
|
Age and Sex-Dependent Differences in the Neurochemical Characterization of Calcitonin Gene-Related Peptide-Like Immunoreactive (CGRP-LI) Nervous Structures in the Porcine Descending Colon. Int J Mol Sci 2019; 20:ijms20051024. [PMID: 30818742 PMCID: PMC6429317 DOI: 10.3390/ijms20051024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/26/2022] Open
Abstract
Neurons of the enteric nervous system (ENS) may undergo changes during maturation and aging, but knowledge of physiological stimuli-dependent changes in the ENS is still fragmentary. On the other hand, the frequency of many ENS-related intestinal illnesses depends on age and/or sex. The double immunofluorescence technique was used to study the influence of both of these factors on calcitonin gene-related peptide (CGRP)—positive enteric nervous structures—in the descending colon in young and adult female and castrated male pigs. The influence of age and gender on the number and neurochemical characterization (i.e., co-localization of CGRP with substance P, nitric oxide synthase, galanin, cocaine- and amphetamine-regulated transcript peptide and vesicular acetylcholine transporter) of CGRP-positive nerve structures in the colonic wall has been shown. These observations strongly suggest the participation of CGRP in adaptive processes in the ENS during GI tract maturation. Moreover, although the castration of males may mask some aspects of sex-dependent influences on the ENS, the sex-specific differences in CGRP-positive nervous structures were mainly visible in adult animals. This may suggest that the distribution and exact role of this substance in the ENS depend on the sex hormones.
Collapse
|
2
|
Szperka CL, VanderPluym J, Orr SL, Oakley CB, Qubty W, Patniyot I, Lagman-Bartolome AM, Morris C, Gautreaux J, Victorio MC, Hagler S, Narula S, Candee MS, Cleves-Bayon C, Rao R, Fryer RH, Bicknese AR, Yonker M, Hershey AD, Powers SW, Goadsby PJ, Gelfand AA. Recommendations on the Use of Anti-CGRP Monoclonal Antibodies in Children and Adolescents. Headache 2018; 58:1658-1669. [PMID: 30324723 DOI: 10.1111/head.13414] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Christina L Szperka
- Division of Neurology, Children's Hospital of Philadelphia & Departments of Neurology & Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Serena L Orr
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | - Cynthia Morris
- Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Gautreaux
- Lousiana State University Health Science Center and Children's Hospital New Orleans, New Orleans, LA, USA
| | | | | | - Sona Narula
- Division of Neurology, Children's Hospital of Philadelphia & Departments of Neurology & Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan S Candee
- University of Utah, Primary Children's Hospital, Salt Lake City, UT, USA
| | | | - Rashmi Rao
- Lousiana State University Health Science Center and Children's Hospital New Orleans, New Orleans, LA, USA
| | | | - Alma R Bicknese
- Feinberg School of Medicine at Northwestern University & Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Andrew D Hershey
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Scott W Powers
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | |
Collapse
|
3
|
Rossetti I, Zambusi L, Finardi A, Bodini A, Provini L, Furlan R, Morara S. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 323:94-104. [PMID: 30196840 DOI: 10.1016/j.jneuroim.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Activation states of immune cells (among them, the so-called pro- or anti-inflammatory states) influence the pathogenesis of multiple sclerosis (MS). The neuropeptide calcitonin gene-related peptide (CGRP) can exert a pro- or anti-inflammatory role in a context-dependent manner. In mice CGRP was found to attenuate the development of experimental autoimmune encephalomyelitis (EAE, a common MS animal model). We analyzed CGRP effects on the expression of cytokines and markers of activation states, as well as its intracellular cascade, following intrathecal administration during EAE immunization. Real Time quantitative-PCR (RT-PCR) showed that IL-1beta and IL-6 (associated to a pro-inflammatory state in EAE), but also Ym1 (also known as Chil3), Arg1 and CD163 (associated to an anti-inflammatory state in EAE) were decreased in the encephalon (devoid of cerebellum). In the cerebellum itself, IL-1beta and Ym1 were decreased. TNF-alpha (associated to a pro-inflammatory state in EAE), but also IL-10 (associated to another type of anti-inflammatory state) and BDNF were unchanged in these two regions. No changes were detected in the spinal cord. Additional tendencies toward a change (as revealed by RT-PCR) were again decreases: IL-10 in the encephalon and Arg1 in the spinal cord. CGRP decreased percentage of Ym1+/CD68+ immunoreactive cells and cell density of infiltrates in the cervical spinal cord pia mater. Instead, Ym1 in the underlying parenchyma and at thoracic and lumbar levels, as well as Arg1, were unchanged. In cultured microglia the neuropeptide decreased Ym1, but not Arg1, immunoreactivity. Inducible NOS (iNOS) was unchanged in spinal cord microglia and astrocytes. The neuropeptide increased the activation of ERK1/2 in the astrocytes of the spinal cord and in culture, but did not influence the activation of ERK1/2 or p38 in the spinal cord microglia. Finally, in areas adjacent to infiltration sites CGRP-treated microglia showed a larger ramification radius. In conclusion, CGRP-induced EAE amelioration was associated to a concomitant, context-dependent decrease in the expression of markers belonging to both pro- or anti-inflammatory activation states of immune cells. It can be hypothesized that CGRP-induced EAE attenuation is obtained through a novel mechanism that promotes down-regulation of immune cell activation that facilitates the establishment of a beneficial environment in EAE provided possibly also by other factors.
Collapse
Affiliation(s)
- Ilaria Rossetti
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Laura Zambusi
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| | - Annamaria Finardi
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Antonella Bodini
- Institute of Applied Mathematics and Information Technology "E. Magenes", National Research Council (CNR), Milano Unit, Via Bassini 15, 20133 Milano, (Italy).
| | - Luciano Provini
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, Milano 20132, Italy.
| | - Stefano Morara
- Neuroscience Institute, National Research Council (CNR), Milano Unit, Via Vanvitelli 32, Milano 20129, Italy; Department of Biotechnology and Translational Medicine, Milano University, Via Vanvitelli 32, Milano 2129, Italy.
| |
Collapse
|
4
|
Eftekhari S, Salvatore CA, Gaspar RC, Roberts R, O'Malley S, Zeng Z, Edvinsson L. Localization of CGRP receptor components, CGRP, and receptor binding sites in human and rhesus cerebellar cortex. THE CEREBELLUM 2014; 12:937-49. [PMID: 23917876 DOI: 10.1007/s12311-013-0509-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is classically considered to be mainly involved in motor processing, but studies have suggested several other functions, including pain processing. Calcitonin-gene-related peptide (CGRP) is a neuropeptide involved in migraine pathology, where there is elevated release of CGRP during migraine attacks and CGRP receptor antagonists have antimigraine efficacy. In the present study, we examined CGRP and CGRP receptor binding sites and protein expression in primate cerebellar cortex. Additionally, mRNA expression of the CGRP receptor components, calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1), was examined. In addition, expression of procalcitonin was studied. We observed high [(3)H]MK-3207 (CGRP receptor antagonist) binding densities in the molecular layer of rhesus cerebellar cortex; however, due to the limit of resolution of the autoradiographic image the exact cellular localization could not be determined. Similarly, [(125)I]CGRP binding was observed in the molecular layer and Purkinje cell layer of human cerebellum. CLR and RAMP1 mRNA was expressed within the Purkinje cell layer and some expression was found in the molecular layer. Immunofluorescence revealed expression of CGRP, CLR, and RAMP1 in the Purkinje cells and in cells in the molecular layer. Procalcitonin was found in the same localization. Recent research in the biology of cerebellum indicates that it may have a role in nociception. For the first time we have identified CGRP and CGRP receptor binding sites together with CGRP receptor expression through protein and mRNA localization in primate cerebellar cortex. These results point toward a functional role of CGRP in cerebellum. Further efforts are needed to evaluate this.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, BMC A13, Sölvegatan 17, 22184, Lund, Sweden,
| | | | | | | | | | | | | |
Collapse
|
5
|
Sardi C, Zambusi L, Finardi A, Ruffini F, Tolun AA, Dickerson IM, Righi M, Zacchetti D, Grohovaz F, Provini L, Furlan R, Morara S. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 271:18-29. [PMID: 24746422 DOI: 10.1016/j.jneuroim.2014.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/15/2023]
Abstract
Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null>heterozygote>wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing-remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocation of RCP.
Collapse
Affiliation(s)
- Claudia Sardi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Zambusi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Francesca Ruffini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Adviye A Tolun
- Dept. of Biochem. Mol. Biol., University of Miami, Miami, FL 33101, USA
| | - Ian M Dickerson
- Dept. of Neurobiol. Anatomy, University of Rochester, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Marco Righi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Daniele Zacchetti
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Luciano Provini
- Dept. of Pharmacol. Biomol. Sci., University of Milano, Via Trentacoste 2, 20133 Milano, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Morara
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
6
|
Harigai Y, Natsume M, Li F, Ohtani A, Senzaki K, Shiga T. Differential roles of calcitonin family peptides in the dendrite formation and spinogenesis of the cerebral cortex in vitro. Neuropeptides 2011; 45:263-72. [PMID: 21549427 DOI: 10.1016/j.npep.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/26/2022]
Abstract
We examined roles of calcitonin family peptides in the initial stages of dendrite formation and the maturation of dendritic spines in the rat cerebral cortex in vitro. Embryonic day 18 cortical neurons were dissociated and cultured for 2-3days in the presence of calcitonin gene-related peptide (CGRP), calcitonin, amylin or adrenomedullin. The treatment of cortical neurons with CGRP promoted the formation of primary dendrites of non-GABAergic neurons. In contrast, the treatment with amylin and adrenomedullin for 3days inhibited the dendritic elongation of non-GABAergic neurons. Calcitonin had no effect on the initial dendrite formation. Next, we examined roles of the peptides in the spine formation. Embryonic day 16 cortical neurons were cultured for 14days and then treated acutely with CGRP, amylin or adrenomedullin for 24h. The density of filopodia, puncta/stubby spines and spines were increased by the CGRP treatment, whereas decreased by amylin. Therefore, CGRP and amylin showed opposite effects on the formation of dendritic filopodia, puncta and spines. Adrenomedullin had no effects on the spine formation. In conclusion, the present study showed that calcitonin family peptides have differential effects both in the dendrite formation during the initial stages and the spine formation of cortical neurons in vitro.
Collapse
Affiliation(s)
- Yuichi Harigai
- University of Tsukuba, Graduate School of Comprehensive Human Sciences, Doctoral Program in Kansei, Behavioral and Brain Sciences, Tennodai, Japan
| | | | | | | | | | | |
Collapse
|