1
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Hepatocyte growth factor protects PC12 cells against OGD/R-induced injury by reducing iron. Biosci Rep 2021; 40:222408. [PMID: 32186328 PMCID: PMC7109004 DOI: 10.1042/bsr20200287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/20/2023] Open
Abstract
In the light of hepatocyte growth factor (HGF) the inhibiting role on the expression of hepcidin, we hypothesized that HGF might be able to reduce cell and tissue iron by increasing ferroportin 1 (Fpn1) content and Fpn1-mediated iron release from cells and tissues. The hypothesized ability of HGF to reduce iron might be one of the mechanisms associated with its neuroprotective action under the conditions of ischemia/reperfusion (I/R). Here, we investigated the effects of HGF on the expression of hepcidin as well as transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), Fpn1, ferritin and iron regulatory proteins (IRPs) in oxygen-glucose deprivation and reoxygenation (OGD/R)-treated PC12 cells by real-time PCR and Western blot analysis. We demonstrated that HGF could completely reverse the OGD/R-induced reduction in Fpn1 and IRP1 expression and increase in ferritin light chain protein and hepcidin mRNA levels in PC12 cells. It was concluded that HGF protects PC12 cells against OGD/R-induced injury mainly by reducing cell iron contents via the up-regulation of Fpn1 and increased Fpn1-mediated iron export from cells. Our findings suggested that HGF may also be able to ameliorate OGD/R or I/R-induced overloading of brain iron by promoting Fpn1 expression.
Collapse
|
3
|
Zhang YT, Li FM, Guo YZ, Jiang LR, Ma J, Ke Y, Qian ZM. (Z)-ligustilide increases ferroportin1 expression and ferritin content in ischemic SH-SY5Y cells. Eur J Pharmacol 2016; 792:48-53. [DOI: 10.1016/j.ejphar.2016.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 01/19/2023]
|
4
|
Gleixner AM, Posimo JM, Pant DB, Henderson MP, Leak RK. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury. Mol Neurobiol 2016; 53:4939-60. [PMID: 26374549 PMCID: PMC4792804 DOI: 10.1007/s12035-015-9427-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Jessica M Posimo
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Deepti B Pant
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Matthew P Henderson
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 407 Mellon Hall, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
5
|
Abstract
Although severe stress can elicit toxicity, mild stress often elicits adaptations. Here we review the literature on stress-induced adaptations versus stress sensitization in models of neurodegenerative diseases. We also describe our recent findings that chronic proteotoxic stress can elicit adaptations if the dose is low but that high-dose proteotoxic stress sensitizes cells to subsequent challenges. In these experiments, long-term, low-dose proteasome inhibition elicited protection in a superoxide dismutase-dependent manner. In contrast, acute, high-dose proteotoxic stress sensitized cells to subsequent proteotoxic challenges by eliciting catastrophic loss of glutathione. However, even in the latter model of synergistic toxicity, several defensive proteins were upregulated by severe proteotoxicity. This led us to wonder whether high-dose proteotoxic stress can elicit protection against subsequent challenges in astrocytes, a cell type well known for their resilience. In support of this new hypothesis, we found that the astrocytes that survived severe proteotoxicity became harder to kill. The adaptive mechanism was glutathione dependent. If these findings can be generalized to the human brain, similar endogenous adaptations may help explain why neurodegenerative diseases are so delayed in appearance and so slow to progress. In contrast, sensitization to severe stress may explain why defenses eventually collapse in vulnerable neurons.
Collapse
Affiliation(s)
- Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University
| |
Collapse
|
6
|
Ye ZH, Liu WW, Sun XJ. Cosmetic effect of hyperbaric oxygen. Cell Stress Chaperones 2013; 18:127-8. [PMID: 23212538 PMCID: PMC3581630 DOI: 10.1007/s12192-012-0387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Z. H. Ye
- Department of Diving Medicine, Second Military Medical University, Shanghai, 200433 China
| | - W. W. Liu
- Department of Diving Medicine, Second Military Medical University, Shanghai, 200433 China
| | - X. J. Sun
- Department of Diving Medicine, Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|
7
|
Titler AM, Posimo JM, Leak RK. Astrocyte plasticity revealed by adaptations to severe proteotoxic stress. Cell Tissue Res 2013; 352:427-43. [PMID: 23420451 DOI: 10.1007/s00441-013-1571-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/17/2013] [Indexed: 12/21/2022]
Abstract
Neurodegeneration is characterized by an accumulation of misfolded proteins in neurons. It is less well appreciated that glia often also accumulate misfolded proteins. However, glia are highly plastic and may adapt to stress readily. Endogenous adaptations to stress can be measured by challenging stressed cells with a second hit and then measuring viability. For example, subtoxic stress can elicit preconditioning or tolerance against second hits. However, it is not known if severe stress that kills half the population can elicit endogenous adaptations in the remaining survivors. Glia, with their resilient nature, offer an ideal model in which to test this new hypothesis. The present study is the first demonstration that astrocytes surviving one LC50 hit of the proteasome inhibitor MG132 were protected against a second MG132 hit. ATP loss in response to the second hit was also prevented. MG132 caused compensatory rises in stress-sensitive heat shock proteins. However, stressed astrocytes exhibited an even greater rise in ubiquitin-conjugated proteins upon the second hit, illustrating the severity of the proteotoxicity and verifying the continued impact of MG132. Despite this stress, MG132-pretreated astrocytes were completely prevented from losing glutathione with the second hit. Furthermore, inhibiting glutathione synthesis rendered astrocytes sensitive to the second hit, unmasking the cumulative impact of two hits by removal of an endogenous adaptation. These findings suggest that stressed astrocytes become progressively harder to kill by virtue of antioxidant defenses. Such plasticity may permit astrocytes under severe stress to better support neurons and help explain the protracted nature of neurodegeneration.
Collapse
Affiliation(s)
- Amanda M Titler
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
8
|
Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F, Perez-Pinzon MA, Sacco RL, Rundek T. Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 2012; 13:1741-1757. [PMID: 23171338 DOI: 10.2217/pgs.12.157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A subthreshold ischemic insult applied to an organ such as the heart and/or brain may help to reduce damage caused by subsequent ischemic episodes. This phenomenon is known as ischemic tolerance mediated by ischemic preconditioning (IPC) and represents the most powerful endogenous mechanism against ischemic injury. Various molecular pathways have been implicated in IPC, and several compounds have been proposed as activators or mediators of IPC. Recently, it has been established that the protective phenotype in response to ischemia depends on a coordinated response at the genomic, molecular, cellular and tissue levels by introducing the concept of 'genomic reprogramming' following IPC. In this article, we sought to review the genetic expression profiles found in cardiac and cerebral IPC studies, describe the differences between young and aged organs in IPC-mediated protection, and discuss the potential therapeutic application of IPC and pharmacological preconditioning based on the genomic response.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|