1
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
2
|
López-Furelos A, Leiro-Vidal JM, Salas-Sánchez AÁ, Ares-Pena FJ, López-Martín ME. Evidence of cellular stress and caspase-3 resulting from a combined two-frequency signal in the cerebrum and cerebellum of sprague-dawley rats. Oncotarget 2018; 7:64674-64689. [PMID: 27589837 PMCID: PMC5323107 DOI: 10.18632/oncotarget.11753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Multiple simultaneous exposures to electromagnetic signals induced adjustments in mammal nervous systems. In this study, we investigated the non-thermal SAR (Specific Absorption Rate) in the cerebral or cerebellar hemispheres of rats exposed in vivo to combined electromagnetic field (EMF) signals at 900 and 2450 MHz. Forty rats divided into four groups of 10 were individually exposed or not exposed to radiation in a GTEM chamber for one or two hours. After radiation, we used the Chemiluminescent Enzyme-Linked Immunosorbent Assay (ChELISA) technique to measure cellular stress levels, indicated by the presence of heat shock proteins (HSP) 90 and 70, as well as caspase-3-dependent pre-apoptotic activity in left and right cerebral and cerebellar hemispheres of Sprague Dawley rats. Twenty-four hours after exposure to combined or single radiation, significant differences were evident in HSP 90 and 70 but not in caspase 3 levels between the hemispheres of the cerebral cortex at high SAR levels. In the cerebellar hemispheres, groups exposed to a single radiofrequency (RF) and high SAR showed significant differences in HSP 90, 70 and caspase-3 levels compared to control animals. The absorbed energy and/or biological effects of combined signals were not additive, suggesting that multiple signals act on nervous tissue by a different mechanism.
Collapse
Affiliation(s)
- Alberto López-Furelos
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Manuel Leiro-Vidal
- Institute of Alimentary Analysis, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aarón Ángel Salas-Sánchez
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco José Ares-Pena
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Elena López-Martín
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Villéga F, Delpech JC, Griton M, André C, Franconi JM, Miraux S, Konsman JP. Circulating bacterial lipopolysaccharide-induced inflammation reduces flow in brain-irrigating arteries independently from cerebrovascular prostaglandin production. Neuroscience 2017; 346:160-172. [DOI: 10.1016/j.neuroscience.2017.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 12/24/2022]
|
4
|
Effect of Aqueous Extract from Morinda officinalis F. C. How on Microwave-Induced Hypothalamic-Pituitary-Testis Axis Impairment in Male Sprague-Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:360730. [PMID: 26435724 PMCID: PMC4578834 DOI: 10.1155/2015/360730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023]
Abstract
The present study aimed to assess the protective effects of aqueous extract from Morinda officinalis F. C. How on microwave-induced reproductive impairment in male rats. Microwave exposure injury was induced by exposure of 900 MHz microwaves at 218 μm/cm2radiation densities, 24 hours/day for 10 days. Male Sprague-Dawley rats were randomized to: normal control, microwave exposure model, or water layer or ethyl acetate layer of aqueous extract 40 g/kg treatment groups. After 2 weeks of treatment, sexual performance, serum levels of gonadotrophin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH) or testosterone, morphological analysis of testis and epididymis, and GnRH protein expression in the hypothalamus were measured. Pretreatment with water layer of aqueous extract 40 g/kg significantly improved sexual performance, increased serum testosterone level, and decreased LH and GnRH level compared with microwave exposed model rats (all P < 0.05). Water layer of aqueous extract treatment significantly increased seminiferous cell or sperm number in testis and epididymis. Protein expression of GnRH in the hypothalamus significantly decreased in the water layer of aqueous extract treated group (P < 0.05). Ethyl acetate layer of aqueous extract did not show obvious effects on the measured parameters. These findings suggest that water layer of aqueous extract 40 g/kg ameliorates microwave-reduced reproductive impairment.
Collapse
|
5
|
Behavioral in-effectiveness of high frequency electromagnetic field in mice. Physiol Behav 2015; 140:32-7. [PMID: 25496977 DOI: 10.1016/j.physbeh.2014.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 01/22/2023]
Abstract
The present investigation was carried out with an objective to study the influence of high frequency electromagnetic field (HF-EMF) on anxiety, obsessive compulsive disorder (OCD) and depression-like behavior. For exposure to HF-EMF, non-magnetic material was used to fabricate the housing. Mice were exposed to HF-EMF (2.45GHz), 60min/day for 7 or 30 or 60 or 90 or 120days. The exposure was carried out by switching-on inbuilt class-I BLUETOOTH device that operates on 2.45GHz frequency in file transfer mode at a peak density of 100mW. Mice were subjected to the assessment of anxiety, OCD and depression-like behavior for 7 or 30 or 60 or 90 or 120days of exposure. The anxiety-like behavior was assessed by elevated plus maze, open field test and social interaction test. OCD-like behavior was assessed by marble burying behavior, whereas depression-like behavior was assessed by forced swim test and tail suspension test. The present experiment demonstrates that up to 120days of exposure to HF-EMF does not produce anxiety, OCD and depression-like behavior in mice.
Collapse
|
6
|
Misa-Agustiño MJ, Jorge-Mora T, Jorge-Barreiro FJ, Suarez-Quintanilla J, Moreno-Piquero E, Ares-Pena FJ, López-Martín E. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90. Exp Biol Med (Maywood) 2015; 240:1123-35. [PMID: 25649190 DOI: 10.1177/1535370214567611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/21/2014] [Indexed: 11/15/2022] Open
Abstract
Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic-pituitary-thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland.
Collapse
Affiliation(s)
- Maria J Misa-Agustiño
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Jorge-Mora
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco J Jorge-Barreiro
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan Suarez-Quintanilla
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo Moreno-Piquero
- Applied Physics Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Applied Physics Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena López-Martín
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Canseven AG, Esmekaya MA, Kayhan H, Tuysuz MZ, Seyhan N. Effects of microwave exposure and Gemcitabine treatment on apoptotic activity in Burkitt's lymphoma (Raji) cells. Electromagn Biol Med 2014; 34:322-6. [PMID: 24901461 DOI: 10.3109/15368378.2014.919591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the effects of 1.8 MHz Global System for Mobile Communications (GSM)-modulated microwave (MW) radiation on apoptotic level and cell viability of Burkitt's lymphoma (Raji) cells with or without Gemcitabine, which exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase). Raji cells were exposed to 1.8 GHz GSM-modulated MW radiation at a specific absorption rate (SAR) of 0.350 W/kg in a CO2 incubator. The duration of the exposure was 24 h. The amount of apoptotic cells was analyzed using Annexin V-FITC and propidium iodide (PI) staining with flow cytometer. The apoptotic activity of MW exposed Raji cells was increased significantly. In addition, cell viability of exposed samples was significantly decreased. Combined exposure of MW and Gemcitabine increased the amount of apoptotic cells than MW radiation alone. Moreover, viability of MW + Gemcitabine exposed cells was lower than that of cells exposed only to MW. These results demonstrated that MW radiation exposure and Gemcitabine treatment have a synergistic effect on apoptotic activity of Raji cells.
Collapse
Affiliation(s)
| | | | - Handan Kayhan
- b Department of Internal Medicine, Faculty of Medicine , Gazi University , Ankara , Turkey
| | - Mehmet Zahid Tuysuz
- b Department of Internal Medicine, Faculty of Medicine , Gazi University , Ankara , Turkey
| | - Nesrin Seyhan
- a Department of Biophysics and Division of Hematology and
| |
Collapse
|
8
|
Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Li Y, Wang S, Zhao L, Wang L, Zhou H. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int J Med Sci 2014; 11:426-35. [PMID: 24688304 PMCID: PMC3970093 DOI: 10.7150/ijms.6540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
To determine whether microwave (MW) radiation induces neural cell apoptosis, differentiated PC12 cells and Wistar rats were exposed to 2.856 GHz for 5 min and 15 min, respectively, at an average power density of 30 mW/cm². JC-1 and TUNEL staining detected significant apoptotic events, such as the loss of mitochondria membrane potential and DNA fragmentation, respectively. Transmission electron microscopy and Hoechst staining were used to observe chromatin ultrastructure and apoptotic body formation. Annexin V-FITC/PI double staining was used to quantify the level of apoptosis. The expressions of Bax, Bcl-2, cytochrome c, cleaved caspase-3 and PARP were examined by immunoblotting or immunocytochemistry. Caspase-3 activity was measured using an enzyme-linked immunosorbent assay. The results showed chromatin condensation and apoptotic body formation in neural cells 6h after microwave exposure. Moreover, the mitochondria membrane potential decreased, DNA fragmentation increased, leading to an increase in the apoptotic cell percentage. Furthermore, the ratio of Bax/Bcl-2, expression of cytochrome c, cleaved caspase-3 and PARP all increased. In conclusion, microwave radiation induced neural cell apoptosis via the classical mitochondria-dependent caspase-3 pathway. This study may provide the experimental basis for further investigation of the mechanism of the neurological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Hongyan Zuo
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Tao Lin
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China; ; 2. High Magnetic Field Laboratory, Hefei Material Research Institute, Chinese Academy of Science, 350, Shushanhu Road, Shushan District, Hefei 230031, China
| | - Dewen Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Ruiyun Peng
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shuiming Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yabing Gao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Xinping Xu
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yang Li
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shaoxia Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Li Zhao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Lifeng Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Hongmei Zhou
- 3. Department of Radiation Protection and Health Physics, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
9
|
Misa Agustiño MJ, Leiro JM, Jorge Mora MT, Rodríguez-González JA, Jorge Barreiro FJ, Ares-Pena FJ, López-Martín E. Electromagnetic fields at 2.45 GHz trigger changes in heat shock proteins 90 and 70 without altering apoptotic activity in rat thyroid gland. Biol Open 2012; 1:831-8. [PMID: 23213477 PMCID: PMC3507243 DOI: 10.1242/bio.20121297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/07/2012] [Indexed: 12/17/2022] Open
Abstract
Non-ionizing radiation at 2.45 GHz may modify the expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Using the enzyme-linked immunosorbent assay (ELISA) technique, we studied levels of HSP-90 and HSP-70. We also used hematoxilin eosin to look for evidence of lesions in the gland and applied the DAPI technique of fluorescence to search for evidence of chromatin condensation and nuclear fragmentation in the thyroid cells of adult female Sprague-Dawley rats. Fifty-four rats were individually exposed for 30 min to 2.45 GHz radiation in a Gigahertz transverse electromagnetic (GTEM) cell at different levels of non-thermal specific absorption rate (SAR), which was calculated using the finite difference time domain (FDTD) technique. Ninety minutes after radiation, HSP-90 and HSP-70 had decreased significantly (P<0.01) after applying a SAR of 0.046±1.10 W/Kg or 0.104±5.10−3 W/Kg. Twenty-four hours after radiation, HSP-90 had partially recovered and HSP-70 had recovered completely. There were few indications of lesions in the glandular structure and signs of apoptosis were negative in all radiated animals. The results suggest that acute sub-thermal radiation at 2.45 GHz may alter levels of cellular stress in rat thyroid gland without initially altering their anti-apoptotic capacity.
Collapse
|