1
|
Nielsen BS, Larsen BR, Ghazal AB, Katz A, Brennan KC, Karlish SJD, MacAulay N. Glial Versus Neuronal Na +/K +-ATPase in Activity-Evoked K + Clearance and Their Sensitivity to Elevated Extracellular K . Glia 2025. [PMID: 40387502 DOI: 10.1002/glia.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Neuronal activity in the central nervous system is associated with a [K+]o transient that is swiftly cleared from the extracellular space, predominantly by the Na+/K+-ATPase. The temporal contribution of the glial (α2β2) and the neuronal (α3β1) isoform complexes remains unresolved due to the lack of an isoform-specific inhibitor. The role of the two main brain isoform complexes in spreading depression (SD) also remains unresolved, but an SD-mediated increase in [K+]o may suppress Na+/K+-ATPase activity and thereby promote SD propagation. As demonstrated here, inhibitor assays of purified recombinant human and heterologously expressed rat Na+/K+-ATPase isoforms demonstrated significant selectivity for inhibition of α2β2 compared to α3β1 isoform complexes by a cyclobutyl perhydro-1,4-oxazepine derivative of digoxin (DcB). This phenomenon was utilized to demonstrate the temporal role of α2β2 and α3β1 in [K+]o clearance in electrically stimulated rat hippocampal slices, as monitored with ion-sensitive microelectrodes. The observations demonstrate a role of α2β2 in regulating the [K+]o during electrical stimulus of hippocampal slices, whereas α3β1 serves to restore [K+]o to baseline post-stimulus. SD can be triggered by elevated [K+]o but elevated [K+]o did not reduce the activity of the Na+/K+-ATPase or the glutamate transporters in hippocampal brain slices or upon heterologous expression of individual isoforms in Xenopus oocytes. Our results demonstrate the temporal contribution of the glial and neuronal Na+/K+-ATPase isoform complexes to clearance of [K+]o but do not support the concept that direct effects of elevated [K+]o on Na+/K+-ATPase activity or glutamate transport underlie SD propagation.
Collapse
Affiliation(s)
| | | | - Afnan Bilal Ghazal
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Katz
- Department of Molecular Biosciences, Weizmann Institute of Science, Rehovot, Israel
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Steven J D Karlish
- Department of Molecular Biosciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Verkhratsky A, Semyanov A. Physiology of neuroglia of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:69-91. [PMID: 40122632 DOI: 10.1016/b978-0-443-19104-6.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
4
|
Hermanova Z, Valihrach L, Kriska J, Maheta M, Tureckova J, Kubista M, Anderova M. The deletion of AQP4 and TRPV4 affects astrocyte swelling/volume recovery in response to ischemia-mimicking pathologies. Front Cell Neurosci 2024; 18:1393751. [PMID: 38818517 PMCID: PMC11138210 DOI: 10.3389/fncel.2024.1393751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. Methods We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. Results Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. Discussion Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
Collapse
Affiliation(s)
- Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mansi Maheta
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| |
Collapse
|
5
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
6
|
Maex R. Energy optimisation predicts the capacity of ion buffering in the brain. BIOLOGICAL CYBERNETICS 2023; 117:467-484. [PMID: 38103053 DOI: 10.1007/s00422-023-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Neurons store energy in the ionic concentration gradients they build across their cell membrane. The amount of energy stored, and hence the work the ions can do by mixing, can be enhanced by the presence of ion buffers in extra- and intracellular space. Buffers act as sources and sinks of ions, however, and unless the buffering capacities for different ion species obey certain relationships, a complete mixing of the ions may be impeded by the physical conditions of charge neutrality and isotonicity. From these conditions, buffering capacities were calculated that enabled each ion species to mix completely. In all valid buffer distributions, the [Formula: see text] ions were buffered most, with a capacity exceeding that of [Formula: see text] and [Formula: see text] buffering by at least an order of magnitude. The similar magnitude of the (oppositely directed) [Formula: see text] and [Formula: see text] gradients made extracellular space behave as a [Formula: see text]-[Formula: see text] exchanger. Anions such as [Formula: see text] were buffered least. The great capacity of the extra- and intracellular [Formula: see text] buffers caused a large influx of [Formula: see text] ions as is typically observed during energy deprivation. These results explain many characteristics of the physiological buffer distributions but raise the question how the brain controls the capacity of its ion buffers. It is suggested that neurons and glial cells, by their great sensitivity to gradients of charge and osmolarity, respectively, sense deviations from electro-neutral and isotonic mixing, and use these signals to tune the chemical composition, and buffering capacity, of the extra- and intracellular matrices.
Collapse
Affiliation(s)
- Reinoud Maex
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK.
| |
Collapse
|
7
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
The Water Transport System in Astrocytes–Aquaporins. Cells 2022; 11:cells11162564. [PMID: 36010640 PMCID: PMC9406552 DOI: 10.3390/cells11162564] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Highlights (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes, including those of astrocytes. The expression and subcellular localization of AQPs in astrocytes are highly dynamic under physiological and pathological conditions. Besides their primary function in water homeostasis, AQPs participate in many ancillary functions including glutamate clearance in tripartite synapses and cell migration.
Abstract Astrocytes have distinctive morphological and functional characteristics, and are found throughout the central nervous system. Astrocytes are now known to be far more than just housekeeping cells in the brain. Their functions include contributing to the formation of the blood–brain barrier, physically and metabolically supporting and communicating with neurons, regulating the formation and functions of synapses, and maintaining water homeostasis and the microenvironment in the brain. Aquaporins (AQPs) are transmembrane proteins responsible for fast water movement across cell membranes. Various subtypes of AQPs (AQP1, AQP3, AQP4, AQP5, AQP8 and AQP9) have been reported to be expressed in astrocytes, and the expressions and subcellular localizations of AQPs in astrocytes are highly correlated with both their physiological and pathophysiological functions. This review describes and summarizes the recent advances in our understanding of astrocytes and AQPs in regard to controlling water homeostasis in the brain. Findings regarding the features of different AQP subtypes, such as their expression, subcellular localization, physiological functions, and the pathophysiological roles of astrocytes are presented, with brain edema and glioma serving as two representative AQP-associated pathological conditions. The aim is to provide a better insight into the elaborate “water distribution” system in cells, exemplified by astrocytes, under normal and pathological conditions.
Collapse
|
9
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
10
|
Juhler M, Hansen TS, Novrup HVG, MacAulay N, Munch TN. Hydrocephalus Study Design: Testing New Hypotheses in Clinical Studies and Bench-to-Bedside Research. World Neurosurg 2022; 161:424-431. [PMID: 35505563 DOI: 10.1016/j.wneu.2021.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 10/18/2022]
Abstract
In this article, we aimed to describe some of the currently most challenging problems in neurosurgical management of hydrocephalus and how these can be reasons for inspiration for and development of research. We chose 4 areas of focus: 2 dedicated to improvement of current treatments (shunt implant surgery and endoscopic hydrocephalus surgery) and 2 dedicated to emerging future treatment principles (molecular mechanisms of cerebrospinal fluid secretion and hydrocephalus genetics).
Collapse
Affiliation(s)
- Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans V G Novrup
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
11
|
Tureckova J, Kamenicka M, Kolenicova D, Filipi T, Hermanova Z, Kriska J, Meszarosova L, Pukajova B, Valihrach L, Androvic P, Zucha D, Chmelova M, Vargova L, Anderova M. Compromised Astrocyte Swelling/Volume Regulation in the Hippocampus of the Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 13:783120. [PMID: 35153718 PMCID: PMC8829436 DOI: 10.3389/fnagi.2021.783120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to disclose the impact of amyloid-β toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2β2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.
Collapse
Affiliation(s)
- Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Jana Tureckova,
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Tereza Filipi
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lenka Meszarosova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
- Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Martina Chmelova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
12
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
13
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. MICROMACHINES 2021; 12:441. [PMID: 33921018 PMCID: PMC8071412 DOI: 10.3390/mi12040441] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.
Collapse
Affiliation(s)
- Tiffany Cameron
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (E.M.R.); (M.A.); (C.L.W.)
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.C.); (T.B.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Neocortical in vivo focal and spreading potassium responses and the influence of astrocytic gap junctional coupling. Neurobiol Dis 2020; 147:105160. [PMID: 33152505 DOI: 10.1016/j.nbd.2020.105160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/21/2022] Open
Abstract
Raised extracellular potassium ion (K+) concentration is associated with several disorders including migraine, stroke, neurotrauma and epilepsy. K+ spatial buffering is a well-known mechanism for extracellular K+ regulation/distribution. Astrocytic gap junction-mediated buffering is a controversial candidate for K+ spatial buffering. To further investigate the existence of a K+ spatial buffering and to assess the involvement of astrocytic gap junctional coupling in K+ redistribution, we hypothesized that neocortical K+ and concomitant spreading depolarization (SD)-like responses are controlled by powerful local K+ buffering mechanisms and that K+ buffering/redistribution occurs partially through gap junctional coupling. Herein, we show, in vivo, that a threshold amount of focally applied KCl is required to trigger local and/or distal K+ responses, accompanied by a SD-like response. This observation indicates the presence of powerful local K+ buffering which mediates a rapid return of extracellular K+ to the baseline. Application of gap junctional blockers, carbenoxolone and Gap27, partially modulated the amplitude and shape of the K+ response and noticeably decreased the velocity of the spreading K+ and SD-like responses. Opening of gap junctions by trimethylamine, slightly decreased the amplitude of the K+ response and markedly increased the velocity of redistribution of K+ and SD-like events. We conclude that spreading K+ responses reflect powerful local K+ buffering mechanisms which are partially modulated by gap junctional communication. Gap junctional coupling mainly affected the velocity of the K+ and SD-like responses.
Collapse
|
16
|
Felix L, Delekate A, Petzold GC, Rose CR. Sodium Fluctuations in Astroglia and Their Potential Impact on Astrocyte Function. Front Physiol 2020; 11:871. [PMID: 32903427 PMCID: PMC7435049 DOI: 10.3389/fphys.2020.00871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the main cell type responsible for the regulation of brain homeostasis, including the maintenance of ion gradients and neurotransmitter clearance. These processes are tightly coupled to changes in the intracellular sodium (Na+) concentration. While activation of the sodium-potassium-ATPase (NKA) in response to an elevation of extracellular K+ may decrease intracellular Na+, the cotransport of transmitters, such as glutamate, together with Na+ results in an increase in astrocytic Na+. This increase in intracellular Na+ can modulate, for instance, metabolic downstream pathways. Thereby, astrocytes are capable to react on a fast time scale to surrounding neuronal activity via intracellular Na+ fluctuations and adjust energy production to the demand of their environment. Beside the well-documented conventional roles of Na+ signaling mainly mediated through changes in its electrochemical gradient, several recent studies have identified more atypical roles for Na+, including protein interactions leading to changes in their biochemical activity or Na+-dependent regulation of gene expression. In this review, we will address both the conventional as well as the atypical functions of astrocytic Na+ signaling, presenting the role of transporters and channels involved and their implications for physiological processes in the central nervous system (CNS). We will also discuss how these important functions are affected under pathological conditions, including stroke and migraine. We postulate that Na+ is an essential player not only in the maintenance of homeostatic processes but also as a messenger for the fast communication between neurons and astrocytes, adjusting the functional properties of various cellular interaction partners to the needs of the surrounding network.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andrea Delekate
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
17
|
Woo J, Jang MW, Lee J, Koh W, Mikoshiba K, Lee CJ. The molecular mechanism of synaptic activity-induced astrocytic volume transient. J Physiol 2020; 598:4555-4572. [PMID: 32706443 DOI: 10.1113/jp279741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Neuronal activity causes astrocytic volume change via K+ uptake through TREK-1 containing two-pore domain potassium channels. The volume transient is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel. Intense neuronal activity is synaptically coupled with a physical change in astrocytes via volume transients. ABSTRACT The brain volume changes dynamically and transiently upon intense neuronal activity through a tight regulation of ion concentrations and water movement across the plasma membrane of astrocytes. We have recently demonstrated that an intense neuronal activity and subsequent astrocytic AQP4-dependent volume transient are critical for synaptic plasticity and memory. We have also pharmacologically demonstrated a functional coupling between synaptic activity and the astrocytic volume transient. However, the precise molecular mechanisms of how intense neuronal activity and the astrocytic volume transient are coupled remain unclear. Here we utilized an intrinsic optical signal imaging technique combined with fluorescence imaging using ion sensitive dyes and molecular probes and electrophysiology to investigate the detailed molecular mechanisms in genetically modified mice. We report that a brief synaptic activity induced by a train stimulation (20 Hz, 1 s) causes a prolonged astrocytic volume transient (80 s) via K+ uptake through TREK-1 containing two-pore domain potassium (K2P) channels, but not Kir4.1 or NKCC1. This volume change is terminated by Cl- efflux through the Ca2+ -activated anion channel BEST1, but not the volume-regulated anion channel TTYH. The source of the Ca2+ required to open BEST1 appears to be the stretch-activated TRPA1 channel in astrocytes, but not IP3 R2. In summary, our study identifies several important astrocytic ion channels (AQP4, TREK-1, BEST1, TRPA1) as the key molecules leading to the neuronal activity-dependent volume transient in astrocytes. Our findings reveal new molecular and cellular mechanisms for the synaptic coupling of intense neuronal activity with a physical change in astrocytes via volume transients.
Collapse
Affiliation(s)
- Junsung Woo
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - Jaekwang Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.,Department of Neuroscience, Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Biology, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - C Justin Lee
- Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.,Department of Neuroscience, Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
18
|
Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Rep 2020; 27:3832-3843.e6. [PMID: 31242417 DOI: 10.1016/j.celrep.2019.05.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocytic differentiation is developmentally impaired in patients with childhood-onset schizophrenia (SCZ). To determine why, we used genetic gain- and loss-of-function studies to establish the contributions of differentially expressed transcriptional regulators to the defective differentiation of glial progenitor cells (GPCs) produced from SCZ patient-derived induced pluripotent cells (iPSCs). Negative regulators of the bone morphogenetic protein (BMP) pathway were upregulated in SCZ GPCs, including BAMBI, FST, and GREM1, whose overexpression retained SCZ GPCs at the progenitor stage. SMAD4 knockdown (KD) suppressed the production of these BMP inhibitors by SCZ GPCs and rescued normal astrocytic differentiation. In addition, the BMP-regulated transcriptional repressor REST was upregulated in SCZ GPCs, and its KD similarly restored normal glial differentiation. REST KD also rescued potassium-transport-associated gene expression and K+ uptake, which were otherwise deficient in SCZ glia. These data suggest that the glial differentiation defect in childhood-onset SCZ, and its attendant disruption in K+ homeostasis, may be rescued by targeting BMP/SMAD4- and REST-dependent transcription.
Collapse
|
19
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Wotton CA, Cross CD, Bekar LK. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J Neurosci Res 2020; 98:964-977. [PMID: 32067254 DOI: 10.1002/jnr.24597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 11/07/2022]
Abstract
Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.
Collapse
Affiliation(s)
- Caitlin A Wotton
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cassidy D Cross
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Walch E, Murphy TR, Cuvelier N, Aldoghmi M, Morozova C, Donohue J, Young G, Samant A, Garcia S, Alvarez C, Bilas A, Davila D, Binder DK, Fiacco TA. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na +/K + ATPase and Occurs Independently of Aquaporin 4. ASN Neuro 2020; 12:1759091420967152. [PMID: 33092407 PMCID: PMC7586494 DOI: 10.1177/1759091420967152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
Astrocytes and neurons have been shown to swell across a variety of different conditions, including increases in extracellular potassium concentration (^[K+]o). The mechanisms involved in the coupling of K+ influx to water movement into cells leading to cell swelling are not well understood and remain controversial. Here, we set out to determine the effects of ^[K+]o on rapid volume responses of hippocampal CA1 pyramidal neurons and stratum radiatum astrocytes using real-time confocal volume imaging. First, we found that elevating [K+]o within a physiological range (to 6.5 mM and 10.5 mM from a baseline of 2.5 mM), and even up to pathological levels (26 mM), produced dose-dependent increases in astrocyte volume, with absolutely no effect on neuronal volume. In the absence of compensating for addition of KCl by removal of an equal amount of NaCl, neurons actually shrank in ^[K+]o, while astrocytes continued to exhibit rapid volume increases. Astrocyte swelling in ^[K+]o was not dependent on neuronal firing, aquaporin 4, the inwardly rectifying potassium channel Kir 4.1, the sodium bicarbonate cotransporter NBCe1, , or the electroneutral cotransporter, sodium-potassium-chloride cotransporter type 1 (NKCC1), but was significantly attenuated in 1 mM barium chloride (BaCl2) and by the Na+/K+ ATPase inhibitor ouabain. Effects of 1 mM BaCl2 and ouabain applied together were not additive and, together with reports that BaCl2 can inhibit the NKA at high concentrations, suggests a prominent role for the astrocyte NKA in rapid astrocyte volume increases occurring in ^[K+]o. These findings carry important implications for understanding mechanisms of cellular edema, regulation of the brain extracellular space, and brain tissue excitability.
Collapse
Affiliation(s)
- Erin Walch
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
| | - Thomas R. Murphy
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Nicholas Cuvelier
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Murad Aldoghmi
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Cristine Morozova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Jordan Donohue
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Gaby Young
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Anuja Samant
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Stacy Garcia
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Camila Alvarez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, United States
| | - Alex Bilas
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - David Davila
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, United States
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, Riverside, Riverside, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, United States
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, United States
| |
Collapse
|
22
|
Szu JI, Chaturvedi S, Patel DD, Binder DK. Aquaporin-4 Dysregulation in a Controlled Cortical Impact Injury Model of Posttraumatic Epilepsy. Neuroscience 2019; 428:140-153. [PMID: 31866558 DOI: 10.1016/j.neuroscience.2019.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022]
Abstract
Posttraumatic epilepsy (PTE) is a long-term negative consequence of traumatic brain injury (TBI) in which recurrent spontaneous seizures occur after the initial head injury. PTE develops over an undefined period during which circuitry reorganization in the brain causes permanent hyperexcitability. The pathophysiology by which trauma leads to spontaneous seizures is unknown and clinically relevant models of PTE are key to understanding the molecular and cellular mechanisms underlying the development of PTE. In the present study, we used the controlled-cortical impact (CCI) injury model of TBI to induce PTE in mice and to characterize changes in aquaporin-4 (AQP4) expression. A moderate-severe TBI was induced in the right frontal cortex and video-electroencephalographic (vEEG) recordings were performed in the ipsilateral hippocampus to monitor for spontaneous seizures at 14, 30, 60, and 90 days post injury (dpi). The percentage of mice that developed PTE were 13%, 20%, 27%, and 14% at 14, 30, 60, and 90 dpi, respectively. We found a significant increase in AQP4 in the ipsilateral frontal cortex and hippocampus of mice that developed PTE compared to those that did not develop PTE. Interestingly, AQP4 was found to be mislocalized away from the perivascular endfeet and towards the neuropil in mice that developed PTE. Here, we report for the first time, AQP4 dysregulation in a model of PTE which may carry significant implications for epileptogenesis after TBI.
Collapse
Affiliation(s)
- Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Som Chaturvedi
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Dillon D Patel
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
23
|
Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13:1301. [PMID: 31866811 PMCID: PMC6909239 DOI: 10.3389/fnins.2019.01301] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Sina I Noor
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
24
|
Verkhratsky A, Rose CR. Na +-dependent transporters: The backbone of astroglial homeostatic function. Cell Calcium 2019; 85:102136. [PMID: 31835178 DOI: 10.1016/j.ceca.2019.102136] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
Astrocytes are the principal homeostatic cells of the central nerves system (CNS) that support the CNS function at all levels of organisation, from molecular to organ. Several fundamental homeostatic functions of astrocytes are mediated through plasmalemmal pumps and transporters; most of which are also regulated by the transplasmalemmal gradient of Na+ ions. Neuronal activity as well as mechanical or chemical stimulation of astrocytes trigger plasmalemmal Na+ fluxes, which in turn generate spatio-temporally organised transient changes in the cytosolic Na+ concentration, which represent the substrate of astroglial Na+ signalling. Astroglial Na+ signals link and coordinate neuronal activity and CNS homeostatic demands with the astroglial homeostatic response.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Kolenicova D, Tureckova J, Pukajova B, Harantova L, Kriska J, Kirdajova D, Vorisek I, Kamenicka M, Valihrach L, Androvic P, Kubista M, Vargova L, Anderova M. High potassium exposure reveals the altered ability of astrocytes to regulate their volume in the aged hippocampus of GFAP/EGFP mice. Neurobiol Aging 2019; 86:162-181. [PMID: 31757575 DOI: 10.1016/j.neurobiolaging.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/25/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
In this study, we focused on age-related changes in astrocyte functioning, predominantly on the ability of astrocytes to regulate their volume in response to a pathological stimulus, namely extracellular 50 mM K+ concentration. The aim of our project was to identify changes in the expression and function of transport proteins in the astrocytic membrane and properties of the extracellular space, triggered by aging. We used three-dimensional confocal morphometry, gene expression profiling, immunohistochemical analysis, and diffusion measurement in the hippocampal slices from 3-, 9-, 12-, and 18-month-old mice, in which astrocytes are visualized by enhanced green fluorescent protein under the control of the promoter for human glial fibrillary acidic protein. Combining a pharmacological approach and the quantification of astrocyte volume changes evoked by hyperkalemia, we found that marked diversity in the extent of astrocyte swelling in the hippocampus during aging is due to the gradually declining participation of Na+-K+-Cl- transporters, glutamate transporters (glutamate aspartate transporter and glutamate transporter 1), and volume-regulated anion channels. Interestingly, there was a redistribution of Na+-K+-Cl- cotransporter and glutamate transporters from astrocytic soma to processes. In addition, immunohistochemical analysis confirmed an age-dependent decrease in the content of Na+-K+-Cl- cotransporter in astrocytes. The overall extracellular volume changes revealed a similar age-dependent diversity during hyperkalemia as observed in astrocytes. In addition, the recovery of the extracellular space was markedly impaired in aged animals.
Collapse
Affiliation(s)
- Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Pukajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Harantova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Kamenicka
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Peter Androvic
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lydia Vargova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
26
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
27
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Toft-Bertelsen TL, Larsen BR, MacAulay N. Sensing and regulation of cell volume - we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role? Channels (Austin) 2019; 12:100-108. [PMID: 29424275 PMCID: PMC5972811 DOI: 10.1080/19336950.2018.1438009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cellular volume changes lead to initiation of cell volume regulatory events, the molecular identity of which remains unresolved. We here discuss experimental challenges associated with investigation of volume regulation during application of large, non-physiological osmotic gradients. The TRPV4 ion channel responds to volume increase irrespectively of the molecular mechanism underlying cell swelling, and is thus considered a sensor of volume changes. Evidence pointing towards the involvement of TRPV4 in subsequent volume regulatory mechanisms is intriguing, yet far from conclusive. We here present an experimental setting with astrocytic cell swelling in the absence of externally applied osmotic gradients, and the lack of evidence for involvement of TRPV4 in this regulatory volume response. Our aim with these new data and the preceding discussion is to stimulate further experimental effort in this area of research to clarify the role of TRPV4 and other channels and transporters in regulatory volume responses.
Collapse
Affiliation(s)
| | - Brian R Larsen
- a Department of Neuroscience , University of Copenhagen , Copenhagen , Denmark
| | - Nanna MacAulay
- a Department of Neuroscience , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
29
|
ECS Dynamism and Its Influence on Neuronal Excitability and Seizures. Neurochem Res 2019; 44:1020-1036. [DOI: 10.1007/s11064-019-02773-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
|
30
|
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium. J Physiol 2019; 598:1655-1670. [PMID: 30734296 DOI: 10.1113/jp277478] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are homeostatic and protective cells of the central nervous system. Astroglial homeostatic responses are tightly coordinated with neuronal activity. Astrocytes maintain neuronal excitability through regulation of extracellular ion concentrations, as well as assisting and modulating synaptic transmission by uptake and catabolism of major neurotransmitters. Moreover, they support neuronal metabolism and detoxify ammonium and reactive oxygen species. Astroglial homeostatic actions are initiated and controlled by intercellular signalling of ions, including Ca2+ , Na+ , Cl- , H+ and possibly K+ . This review summarises current knowledge on ionic signals mediated by the major monovalent ions, which occur in microdomains, as global events, or as propagating intercellular waves and thereby represent the substrate for astroglial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, UK.,Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Verena Untiet
- Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
31
|
Stenesen D, Moehlman AT, Schellinger JN, Rodan AR, Krämer H. The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. Sci Rep 2019; 9:2475. [PMID: 30792494 PMCID: PMC6385505 DOI: 10.1038/s41598-019-38850-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Drosophila Ncc69 gene encodes a Na+-K+-2Cl−-cotransporter (NKCC) that is critical for regulating intra- and extracellular ionic conditions in different tissues. Here, we show that the Ncc69 transporter is necessary for fly vision and that its expression is required non-autonomously in glia to maintain visual synaptic transmission. Flies mutant for Ncc69 exhibit normal photoreceptor depolarization in response to a light pulse but lack the ON and OFF-transients characteristic of postsynaptic responses of lamina neurons, indicating a failure in synaptic transmission. We also find that synaptic transmission requires the Ncc69 regulatory kinases WNK and Fray in glia. The ERG phenotype is associated with a defect in the recycling of the histamine neurotransmitter. Ncc69 mutants exhibit higher levels of the transport metabolite carcinine in lamina cartridges, with its accumulation most intense in the extracellular space. Our work reveals a novel role of glial NKCC transporters in synaptic transmission, possibly through regulating extracellular ionic conditions.
Collapse
Affiliation(s)
- Drew Stenesen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Andrew T Moehlman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey N Schellinger
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aylin R Rodan
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Internal Medicine, Division of Nephrology and Hypertension and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA. .,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, USA.
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
32
|
Min R, van der Knaap MS. Genetic defects disrupting glial ion and water homeostasis in the brain. Brain Pathol 2019; 28:372-387. [PMID: 29740942 PMCID: PMC8028498 DOI: 10.1111/bpa.12602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.
Collapse
Affiliation(s)
- Rogier Min
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Larsen BR, Stoica A, MacAulay N. Developmental maturation of activity-induced K + and pH transients and the associated extracellular space dynamics in the rat hippocampus. J Physiol 2019; 597:583-597. [PMID: 30357826 PMCID: PMC6332761 DOI: 10.1113/jp276768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal activity induces fluctuation in extracellular space volume, [K+ ]o and pHo , the management of which influences neuronal function The neighbour astrocytes buffer the K+ and pH and swell during the process, causing shrinkage of the extracellular space In the present study, we report the developmental rise of the homeostatic control of the extracellular space dynamics, for which regulation becomes tighter with maturation and thus is proposed to ensure efficient synaptic transmission in the mature animals The extracellular space dynamics of volume, [K+ ]o and pHo evolve independently with developmental maturation and, although all of them are inextricably tied to neuronal activity, they do not couple directly. ABSTRACT Neuronal activity in the mammalian central nervous system associates with transient extracellular space (ECS) dynamics involving elevated K+ and pH and shrinkage of the ECS. These ECS properties affect membrane potentials, neurotransmitter concentrations and protein function and are thus anticipated to be under tight regulatory control. It remains unresolved to what extent these ECS dynamics are developmentally regulated as synaptic precision arises and whether they are directly or indirectly coupled. To resolve the development of homeostatic control of [K+ ]o , pH, and ECS and their interaction, we utilized ion-sensitive microelectrodes in electrically stimulated rat hippocampal slices from rats of different developmental stages (postnatal days 3-28). With the employed stimulation paradigm, the stimulus-evoked peak [K+ ]o and pHo transients were stable across age groups, until normalized to neuronal activity (field potential amplitude), in which case the K+ and pH shifted significantly more in the younger animals. By contrast, ECS dynamics increased with age until normalized to the field potential, and thus correlated with neuronal activity. With age, the animals not only managed the peak [K+ ]o better, but also displayed swifter post-stimulus removal of [K+ ]o , in correlation with the increased expression of the α1-3 isoforms of the Na+ /K+ -ATPase, and a swifter return of ECS volume. The different ECS dynamics approached a near-identical temporal pattern in the more mature animals. In conclusion, although these phenomena are inextricably tied to neuronal activity, our data suggest that they do not couple directly.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anca Stoica
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nanna MacAulay
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
34
|
Bai R, Springer CS, Plenz D, Basser PJ. Brain active transmembrane water cycling measured by MR is associated with neuronal activity. Magn Reson Med 2018; 81:1280-1295. [PMID: 30194797 DOI: 10.1002/mrm.27473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE fMRI is widely used to study brain activity. Unfortunately, conventional fMRI methods assess neuronal activity only indirectly, through hemodynamic coupling. Here, we show that active, steady-state transmembrane water cycling (AWC) could serve as a basis for a potential fMRI mechanism for direct neuronal activity detection. METHODS AWC and neuronal actitivity in rat organotypic cortical cultures were simultaneously measured with a hybrid MR-fluorescence system. Perfusion with a paramagnetic MRI contrast agent, Gadoteridol, allows NMR determination of the kinetics of transcytolemmal water exchange. Changes in intracellular calcium concentration, [Cai 2+ ] were used as a proxy of neuronal activity and were monitored by fluorescence imaging. RESULTS When we alter neuronal activity by titrating with extracellular [K+ ] near the normal value, we see an AWC response resembling Na+ -K+ -ATPase (NKA) Michaelis-Menten behavior. When we treat with the voltage-gated sodium channel inhibitor, or with an excitatory postsynaptic inhibitor cocktail, we see AWC decrease by up to 71%. AWC was found also to be positively correlated with the basal level of spontaneous activity, which varies in different cultures. CONCLUSIONS These results suggest that AWC is associated with neuronal activity and NKA activity is a major contributor in coupling AWC to neuronal activity. Although AWC comprises steady-state, homeostatic transmembrane water exchange, our analysis also yields a simultaneous measure of the average cell volume, which reports any slower net transmembrane water transport.
Collapse
Affiliation(s)
- Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Wilson CS, Mongin AA. Cell Volume Control in Healthy Brain and Neuropathologies. CURRENT TOPICS IN MEMBRANES 2018; 81:385-455. [PMID: 30243438 DOI: 10.1016/bs.ctm.2018.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation of cellular volume is a critical homeostatic process that is intimately linked to ionic and osmotic balance in the brain tissue. Because the brain is encased in the rigid skull and has a very complex cellular architecture, even minute changes in the volume of extracellular and intracellular compartments have a very strong impact on tissue excitability and function. The failure of cell volume control is a major feature of several neuropathologies, such as hyponatremia, stroke, epilepsy, hyperammonemia, and others. There is strong evidence that such dysregulation, especially uncontrolled cell swelling, plays a major role in adverse pathological outcomes. To protect themselves, brain cells utilize a variety of mechanisms to maintain their optimal volume, primarily by releasing or taking in ions and small organic molecules through diverse volume-sensitive ion channels and transporters. In principle, the mechanisms of cell volume regulation are not unique to the brain and share many commonalities with other tissues. However, because ions and some organic osmolytes (e.g., major amino acid neurotransmitters) have a strong impact on neuronal excitability, cell volume regulation in the brain is a surprisingly treacherous process, which may cause more harm than good. This topical review covers the established and emerging information in this rapidly developing area of physiology.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
36
|
Awadová T, Pivoňková H, Heřmanová Z, Kirdajová D, Anděrová M, Malínský J. Cell volume changes as revealed by fluorescence microscopy: Global vs local approaches. J Neurosci Methods 2018; 306:38-44. [DOI: 10.1016/j.jneumeth.2018.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|
37
|
Newton AJH, McDougal RA, Hines ML, Lytton WW. Using NEURON for Reaction-Diffusion Modeling of Extracellular Dynamics. Front Neuroinform 2018; 12:41. [PMID: 30042670 PMCID: PMC6049079 DOI: 10.3389/fninf.2018.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Development of credible clinically-relevant brain simulations has been slowed due to a focus on electrophysiology in computational neuroscience, neglecting the multiscale whole-tissue modeling approach used for simulation in most other organ systems. We have now begun to extend the NEURON simulation platform in this direction by adding extracellular modeling. The extracellular medium of neural tissue is an active medium of neuromodulators, ions, inflammatory cells, oxygen, NO and other gases, with additional physiological, pharmacological and pathological agents. These extracellular agents influence, and are influenced by, cellular electrophysiology, and cellular chemophysiology-the complex internal cellular milieu of second-messenger signaling and cascades. NEURON's extracellular reaction-diffusion is supported by an intuitive Python-based where/who/what command sequence, derived from that used for intracellular reaction diffusion, to support coarse-grained macroscopic extracellular models. This simulation specification separates the expression of the conceptual model and parameters from the underlying numerical methods. In the volume-averaging approach used, the macroscopic model of tissue is characterized by free volume fraction-the proportion of space in which species are able to diffuse, and tortuosity-the average increase in path length due to obstacles. These tissue characteristics can be defined within particular spatial regions, enabling the modeler to account for regional differences, due either to intrinsic organization, particularly gray vs. white matter, or to pathology such as edema. We illustrate simulation development using spreading depression, a pathological phenomenon thought to play roles in migraine, epilepsy and stroke. Simulation results were verified against analytic results and against the extracellular portion of the simulation run under FiPy. The creation of this NEURON interface provides a pathway for interoperability that can be used to automatically export this class of models into complex intracellular/extracellular simulations and future cross-simulator standardization.
Collapse
Affiliation(s)
- Adam J. H. Newton
- Department of Neuroscience, Yale University, New Haven, CT, United States
- SUNY Downstate Medical Center, The State University of New York, New York, NY, United States
| | - Robert A. McDougal
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Center for Medical Informatics, Yale University, New Haven, CT, United States
| | - Michael L. Hines
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - William W. Lytton
- SUNY Downstate Medical Center, The State University of New York, New York, NY, United States
- Neurology, Kings County Hospital Center, Brooklyn, NY, United States
| |
Collapse
|
38
|
Dubey M, Brouwers E, Hamilton EM, Stiedl O, Bugiani M, Koch H, Kole MH, Boschert U, Wykes RC, Mansvelder HD, van der Knaap MS, Min R. Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Ann Neurol 2018; 83:636-649. [PMID: 29466841 PMCID: PMC5900999 DOI: 10.1002/ana.25190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Present address:
Current address for Mohit Dubey: Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eelke Brouwers
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Eline M.C. Hamilton
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of PathologyVU University Medical CenterAmsterdamThe Netherlands
| | - Henner Koch
- Department of NeurologyUniversity of Tübingen, Hertie Institute for Clinical Brain ResearchTübingenGermany
| | - Maarten H.P. Kole
- Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
- Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology, EMD Serono Research & Development InstituteBillericaMA
| | - Robert C. Wykes
- Department of Clinical & Experimental Epilepsy, UCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
39
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
40
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1076] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
41
|
Perkins KL, Arranz AM, Yamaguchi Y, Hrabetova S. Brain extracellular space, hyaluronan, and the prevention of epileptic seizures. Rev Neurosci 2017; 28:869-892. [PMID: 28779572 PMCID: PMC5705429 DOI: 10.1515/revneuro-2017-0017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Mutant mice deficient in hyaluronan (HA) have an epileptic phenotype. HA is one of the major constituents of the brain extracellular matrix. HA has a remarkable hydration capacity, and a lack of HA causes reduced extracellular space (ECS) volume in the brain. Reducing ECS volume can initiate or exacerbate epileptiform activity in many in vitro models of epilepsy. There is both in vitro and in vivo evidence of a positive feedback loop between reduced ECS volume and synchronous neuronal activity. Reduced ECS volume promotes epileptiform activity primarily via enhanced ephaptic interactions and increased extracellular potassium concentration; however, the epileptiform activity in many models, including the brain slices from HA synthase-3 knockout mice, may still require glutamate-mediated synaptic activity. In brain slice epilepsy models, hyperosmotic solution can effectively shrink cells and thus increase ECS volume and block epileptiform activity. However, in vivo, the intravenous administration of hyperosmotic solution shrinks both brain cells and brain ECS volume. Instead, manipulations that increase the synthesis of high-molecular-weight HA or decrease its breakdown may be used in the future to increase brain ECS volume and prevent seizures in patients with epilepsy. The prevention of epileptogenesis is also a future target of HA manipulation. Head trauma, ischemic stroke, and other brain insults that initiate epileptogenesis are known to be associated with an early decrease in high-molecular-weight HA, and preventing that decrease in HA may prevent the epileptogenesis.
Collapse
Affiliation(s)
- Katherine L. Perkins
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Amaia M. Arranz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; and KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Sabina Hrabetova
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
42
|
Helleringer R, Chever O, Daniel H, Galante M. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca 2+ Rises Mainly Mediated by K + and ATP Increases in the Extracellular Space. Front Cell Neurosci 2017; 11:349. [PMID: 29163059 PMCID: PMC5675856 DOI: 10.3389/fncel.2017.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.
Collapse
Affiliation(s)
- Romain Helleringer
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - Hervé Daniel
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| |
Collapse
|
43
|
Stoica A, Larsen BR, Assentoft M, Holm R, Holt LM, Vilhardt F, Vilsen B, Lykke-Hartmann K, Olsen ML, MacAulay N. The α2β2 isoform combination dominates the astrocytic Na + /K + -ATPase activity and is rendered nonfunctional by the α2.G301R familial hemiplegic migraine type 2-associated mutation. Glia 2017; 65:1777-1793. [PMID: 28787093 DOI: 10.1002/glia.23194] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 11/11/2022]
Abstract
Synaptic activity results in transient elevations in extracellular K+ , clearance of which is critical for sustained function of the nervous system. The K+ clearance is, in part, accomplished by the neighboring astrocytes by mechanisms involving the Na+ /K+ -ATPase. The Na+ /K+ -ATPase consists of an α and a β subunit, each with several isoforms present in the central nervous system, of which the α2β2 and α2β1 isoform combinations are kinetically geared for astrocytic K+ clearance. While transcript analysis data designate α2β2 as predominantly astrocytic, the relative quantitative protein distribution and isoform pairing remain unknown. As cultured astrocytes altered their isoform expression in vitro, we isolated a pure astrocytic fraction from rat brain by a novel immunomagnetic separation approach in order to determine the expression levels of α and β isoforms by immunoblotting. In order to compare the abundance of isoforms in astrocytic samples, semi-quantification was carried out with polyhistidine-tagged Na+ /K+ -ATPase subunit isoforms expressed in Xenopus laevis oocytes as standards to obtain an efficiency factor for each antibody. Proximity ligation assay illustrated that α2 paired efficiently with both β1 and β2 and the semi-quantification of the astrocytic fraction indicated that the astrocytic Na+ /K+ -ATPase is dominated by α2, paired with β1 or β2 (in a 1:9 ratio). We demonstrate that while the familial hemiplegic migraine-associated α2.G301R mutant was not functionally expressed at the plasma membrane in a heterologous expression system, α2+/G301R mice displayed normal protein levels of α2 and glutamate transporters and that the one functional allele suffices to manage the general K+ dynamics.
Collapse
Affiliation(s)
- Anca Stoica
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Leanne Melissa Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michelle Lynne Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nanna MacAulay
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
45
|
Murphy TR, Davila D, Cuvelier N, Young LR, Lauderdale K, Binder DK, Fiacco TA. Hippocampal and Cortical Pyramidal Neurons Swell in Parallel with Astrocytes during Acute Hypoosmolar Stress. Front Cell Neurosci 2017; 11:275. [PMID: 28979186 PMCID: PMC5611379 DOI: 10.3389/fncel.2017.00275] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
Normal nervous system function is critically dependent on the balance of water and ions in the extracellular space (ECS). Pathological reduction in brain interstitial osmolarity results in osmotically-driven flux of water into cells, causing cellular edema which reduces the ECS and increases neuronal excitability and risk of seizures. Astrocytes are widely considered to be particularly susceptible to cellular edema due to selective expression of the water channel aquaporin-4 (AQP4). The apparent resistance of pyramidal neurons to osmotic swelling has been attributed to lack of functional water channels. In this study we report rapid volume changes in CA1 pyramidal cells in hypoosmolar ACSF (hACSF) that are equivalent to volume changes in astrocytes across a variety of conditions. Astrocyte and neuronal swelling was significant within 1 min of exposure to 17 or 40% hACSF, was rapidly reversible upon return to normosmolar ACSF, and repeatable upon re-exposure to hACSF. Neuronal swelling was not an artifact of patch clamp, occurred deep in tissue, was similar at physiological vs. room temperature, and occurred in both juvenile and adult hippocampal slices. Neuronal swelling was neither inhibited by TTX, nor by antagonists of NMDA or AMPA receptors, suggesting that it was not occurring as a result of excitotoxicity. Surprisingly, genetic deletion of AQP4 did not inhibit, but rather augmented, astrocyte swelling in severe hypoosmolar conditions. Taken together, our results indicate that neurons are not osmoresistant as previously reported, and that osmotic swelling is driven by an AQP4-independent mechanism.
Collapse
Affiliation(s)
- Thomas R. Murphy
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - David Davila
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Nicholas Cuvelier
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Leslie R. Young
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| | - Kelli Lauderdale
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, RiversideRiverside, CA, United States
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California, RiversideRiverside, CA, United States
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, United States
| |
Collapse
|
46
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
47
|
Larsen BR, MacAulay N. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms. Glia 2017; 65:1668-1681. [PMID: 28744903 DOI: 10.1002/glia.23187] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 11/09/2022]
Abstract
During neuronal activity in the mammalian brain, the K+ released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na+ /K+ /2Cl- cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K+ ]o and [H+ ]o /pHo during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K+ and glutamate released into the extracellular space (the K+ /Cl- cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na+ / HCO3- cotransporter 1 (NBCe1), is activated by the K+ -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K+ transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K+ transients. Isosmotic reduction of extracellular Cl- revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K+ clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K+ -induced astrocytic depolarization and the activity-dependent metabolism.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
49
|
Turning down the volume: Astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol Dis 2017; 104:24-32. [PMID: 28438505 DOI: 10.1016/j.nbd.2017.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 1% of the global population suffers from epilepsy, a class of disorders characterized by recurrent and unpredictable seizures. Of these cases roughly one-third are refractory to current antiepileptic drugs, which typically target neuronal excitability directly. The events leading to seizure generation and epileptogenesis remain largely unknown, hindering development of new treatments. Some recent experimental models of epilepsy have provided compelling evidence that glial cells, especially astrocytes, could be central to seizure development. One of the proposed mechanisms for astrocyte involvement in seizures is astrocyte swelling, which may promote pathological neuronal firing and synchrony through reduction of the extracellular space and elevated glutamate concentrations. In this review, we discuss the common conditions under which astrocytes swell, the resultant effects on neural excitability, and how seizure development may ultimately be influenced by these effects.
Collapse
|
50
|
Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci Biobehav Rev 2017; 77:87-97. [PMID: 28279812 DOI: 10.1016/j.neubiorev.2017.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
Abstract
The human brain contains two major cell populations, neurons and glia. While neurons are electrically excitable and capable of discharging short voltage pulses known as action potentials, glial cells are not. However, astrocytes, the prevailing subtype of glia in the cortex, are highly connected and can modulate the excitability of neurons by changing the concentration of potassium ions in the extracellular environment, a process called K+ clearance. During the past decade, astrocytes have been the focus of much research, mainly due to their close association with synapses and their modulatory impact on neuronal activity. It has been shown that astrocytes play an essential role in normal brain function including: nitrosative regulation of synaptic release in the neocortex, synaptogenesis, synaptic transmission and plasticity. Here, we discuss the role of astrocytes in network modulation through their K+ clearance capabilities, a theory that was first raised 50 years ago by Orkand and Kuffler. We will discuss the functional alterations in astrocytic activity that leads to aberrant modulation of network oscillations and synchronous activity.
Collapse
|