1
|
Zhang Y, Jin Y, Zhao N, Wang T, Wang X, Li Z, Yan Y. Mechanistic insights into Suanzaoren Decoction's improvement of cardiac contractile function in anxiety-induced cardiac insufficiency. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118860. [PMID: 39341264 DOI: 10.1016/j.jep.2024.118860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine, Anxiety-induced cardiac blood insufficiency leads to palpitations and restlessness. Suanzaoren Decoction (SD) is effective in replenishing blood and promoting blood circulation. Clinical practice has shown that it has a better therapeutic effect on cardiac insufficiency. However, its mechanism of action is still unclear. AIM OF THE STUDY The study aims to determine the mechanism by which SD treats chronic restraint stress (CRS)-induced anxiety-induced cardiac insufficiency (ACI). MATERIALS AND METHODS SD was orally administered to mice with CRS-induced ACI. Firstly, we constructed an anxiety model in mice by CRS. Subsequently, SD was investigated to assess cardiac function and pathological changes through echocardiography, H&E staining, and Masson staining. Thirdly, the function of sympathetic and parasympathetic nerves was evaluated using enzyme-linked immunosorbent assay (ELISA) and enzyme activity assays. Network pharmacology and molecular docking were employed to predict potential targets for SD treatment of cardiac insufficiency. CaMKII expression was scrutinized utilizing publicly accessible databases. CaMKII was identified as a target through immunohistochemistry and Western Blot analysis in mouse hearts. Finally, the therapeutic mechanism of SD was confirmed in injured cardiomyocytes via Western Blot and quantitative PCR. RESULTS SD exerted anxiolytic effects by increasing the frequency of entries into and the duration spent in open arms while reducing the time spent in the light chamber and increasing the number of transitions between light and dark chambers. Additionally, it mitigated cardiac insufficiency, as evidenced by the enhancement of left ventricular ejection fraction (LVEF) and attenuation of cardiomyocyte damage and inflammatory infiltration. However, SD did not alleviate the elevated norepinephrine (NE) and decreased Acetylcholine (Ach) in anxiety states. To investigate the mechanism of action of SD, we constructed a Drug-Component-Target-Disease network, identifying 13 potential active compounds. Additionally, leveraging bioinformatics analysis and molecular docking targeting heart diseases characterized by clinical left ventricular ejection fraction (LVEF), we focused on the CaMKII target. The ability of SD to modulate CaMKII expression and phosphorylation in the mouse heart was investigated using immunohistochemistry and Western blotting. SD was found to alleviate NE-injured cardiomyocytes by modulating the Ca2+/CaMKII/MEF2 and GATA4 pathways. CONCLUSION SD is a potential formula for the treatment of chronic restraint stress (CRS)-induced ACI that ameliorates cardiomyocyte injury and improves cardiac function. Its efficacy is associated with the inhibition of the Ca2+/CaMKII/MEF2 and GATA4 signaling pathways.
Collapse
Affiliation(s)
- Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China; Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, 541004, China.
| | - Yue Jin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ni Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ting Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Xuanlin Wang
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
2
|
Senthilkumaran M, Koch C, Herselman MF, Bobrovskaya L. Role of the Adrenal Medulla in Hypoglycaemia-Associated Autonomic Failure-A Diabetic Perspective. Metabolites 2024; 14:100. [PMID: 38392992 PMCID: PMC10890365 DOI: 10.3390/metabo14020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoglycaemia-associated autonomic failure (HAAF) is characterised by an impairment in adrenal medullary and neurogenic symptom responses following episodes of recurrent hypoglycaemia. Here, we review the status quo of research related to the regulatory mechanisms of the adrenal medulla in its response to single and recurrent hypoglycaemia in both diabetic and non-diabetic subjects with particular focus given to catecholamine synthesis, enzymatic activity, and the impact of adrenal medullary peptides. Short-term post-transcriptional modifications, particularly phosphorylation at specific residues of tyrosine hydroxylase (TH), play a key role in the regulation of catecholamine synthesis. While the effects of recurrent hypoglycaemia on catecholamine synthetic enzymes remain inconsistent, long-term changes in TH protein expression suggest species-specific responses. Adrenomedullary peptides such as neuropeptide Y (NPY), galanin, and proenkephalin exhibit altered gene and protein expression in response to hypoglycaemia, suggesting a potential role in the modulation of catecholamine secretion. Of note is NPY, since its antagonism has been shown to prevent reductions in TH protein expression. This review highlights the need for further investigation into the molecular mechanisms involved in the adrenal medullary response to hypoglycaemia. Despite advancements in our understanding of HAAF in non-diabetic rodents, a reliable diabetic rodent model of HAAF remains a challenge.
Collapse
Affiliation(s)
- Manjula Senthilkumaran
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Coen Koch
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Khantakova JN, Bondar NP, Sapronova AA, Reshetnikov VV. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur J Neurosci 2022; 56:5931-5951. [PMID: 36156830 DOI: 10.1111/ejn.15831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
During the postnatal period, the brain is highly sensitive to stress and inflammation, which are hazardous to normal growth and development. There is increasing evidence that inflammatory processes in the early postnatal period increase the risk of psychopathologies and cognitive impairment later in life. On the other hand, there are few studies on the ability of infectious agents to cause long-term neuroinflammation, leading to changes in the hypothalamic-pituitary-adrenal axis functioning and an imbalance in the neurotransmitter system. In this review, we examine short- and long-term effects of neonatal-induced inflammation in rodents on glutamatergic, GABAergic and monoaminergic systems and on hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Julia N Khantakova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' (RIFCI), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
4
|
Nakashima A, Yamaguchi H, Kondo M, Furumura T, Kodani Y, Kaneko YS, Kawata M, Nagasaki H, Nagatsu T, Ota A. NT5DC2 affects the phosphorylation of tyrosine hydroxylase regulating its catalytic activity. J Neural Transm (Vienna) 2020; 127:1631-1640. [PMID: 32778969 DOI: 10.1007/s00702-020-02236-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
5'-Nucleotidase domain-containing protein 2 (NT5DC2) has been revealed by genome-wide association studies (GWAS) as a gene implicated in neuropsychiatric disorders related to the abnormality of dopamine (DA) activity in the brain. Based on its amino acid sequence, NT5DC2 is assumed to be a member of the family of haloacid dehalogenase-type phosphatases; although there is no information about its function and structural conformation. We recently reported that NT5DC2 binds to tyrosine hydroxylase (TH) and that the down-regulation of NT5DC2 tended to increase DA synthesis. In this study, we investigated whether NT5DC2 could regulate the catalytic activity of TH, which converts tyrosine to DOPA, because the phosphorylation level of TH, controlled by protein kinases and phosphatases, is well known to regulate its catalytic activity. The down-regulation of NT5DC2 by siRNA increased mainly DOPA synthesis by TH in PC12D cells, although this down-regulation tended to increase the conversion of DOPA to DA by aromatic L-amino acid decarboxylase. The increased DOPA synthesis should be attributed to the catalytic activity of TH controlled by its phosphorylation, because Western blot analysis revealed that the down-regulation of NT5DC2 tended to increase the level of TH phosphorylated at its Ser residues, but not that of the TH protein. Moreover, the induction of kinase activity by forskolin markedly potentiated the phosphorylation of TH at its Ser40 in PC12D cells having down-regulated NT5DC2. Immunocytochemical analysis of PC12D cells demonstrated that NT5DC2, TH protein, and TH phosphorylated at its Ser40 were predominantly localized in the cytoplasm and that the localization of NT5DC2 and TH proteins partially overlapped. Collectively, our results indicate that NT5DC2 could work to inhibit the DOPA synthesis by decreasing the phosphorylation of TH at its Ser40. We propose that NT5DC2 might decrease this phosphorylation of TH by promoting dephosphorylation or by inhibiting kinase activity.
Collapse
Affiliation(s)
- Akira Nakashima
- Department Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Hisateru Yamaguchi
- Division of Biomedical Polymer Science, Institute of Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
- Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Yokkaichi, Japan
| | - Mii Kondo
- Department Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Furumura
- Department Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Yu Kodani
- Department Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoko S Kaneko
- Department Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
- Biochemistry and Molecular Cell Biology, Faculty of Pharmacy, Gifu University of Medical Science, Seki, Japan
| | - Miho Kawata
- Department Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroshi Nagasaki
- Department Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Akira Ota
- Department Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
5
|
Matuska R, Zelena D, Könczöl K, Papp RS, Durst M, Guba D, Török B, Varnai P, Tóth ZE. Colocalized neurotransmitters in the hindbrain cooperate in adaptation to chronic hypernatremia. Brain Struct Funct 2020; 225:969-984. [PMID: 32200401 PMCID: PMC7166202 DOI: 10.1007/s00429-020-02049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
Abstract
Chronic hypernatremia activates the central osmoregulatory mechanisms and inhibits the function of the hypothalamic-pituitary-adrenal (HPA) axis. Noradrenaline (NE) release into the periventricular anteroventral third ventricle region (AV3V), the supraoptic (SON) and hypothalamic paraventricular nuclei (PVN) from efferents of the caudal ventrolateral (cVLM) and dorsomedial (cDMM) medulla has been shown to be essential for the hypernatremia-evoked responses and for the HPA response to acute restraint. Notably, the medullary NE cell groups highly coexpress prolactin-releasing peptide (PrRP) and nesfatin-1/NUCB2 (nesfatin), therefore, we assumed they contributed to the reactions to chronic hypernatremia. To investigate this, we compared two models: homozygous Brattleboro rats with hereditary diabetes insipidus (DI) and Wistar rats subjected to chronic high salt solution (HS) intake. HS rats had higher plasma osmolality than DI rats. PrRP and nesfatin mRNA levels were higher in both models, in both medullary regions compared to controls. Elevated basal tyrosine hydroxylase (TH) expression and impaired restraint-induced TH, PrRP and nesfatin expression elevations in the cVLM were, however, detected only in HS, but not in DI rats. Simultaneously, only HS rats exhibited classical signs of chronic stress and severely blunted hormonal reactions to acute restraint. Data suggest that HPA axis responsiveness to restraint depends on the type of hypernatremia, and on NE capacity in the cVLM. Additionally, NE and PrRP signalization primarily of medullary origin is increased in the SON, PVN and AV3V in HS rats. This suggests a cooperative action in the adaptation responses and designates the AV3V as a new site for PrRP's action in hypernatremia.
Collapse
Affiliation(s)
- Rita Matuska
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Katalin Könczöl
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rege Sugárka Papp
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Máté Durst
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dorina Guba
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bibiana Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Peter Varnai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna E Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Kunzler A, Garcia Sobrinho P, Smith T, Gelain DP, Moreira JCF, Dunkley PR, Dickson PW. Subcellular distribution of human tyrosine hydroxylase isoforms 1 and 4 in SH-SY5Y cells. J Cell Biochem 2019; 120:19730-19737. [PMID: 31297896 DOI: 10.1002/jcb.29279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Tyrosine hydroxylase (TH) is the key enzyme that controls the rate of synthesis of the catecholamines. SH-SY5Y cells with stable transfections of either human tyrosine hydroxylase isoform 1 (hTH1) or human tyrosine hydroxylase isoform 4 (hTH4) were used to determined the subcellular distribution of TH protein and phosphorylated TH, under basal conditions and after muscarine stimulation. Muscarine was previously shown to increase the phosphorylation of only serine 19 and serine 40 in hTH1 cells. Under basal conditions, the hTH1 and hTH4 proteins, their serine 19 phosphorylated forms and hTH1 phosphorylated at serine 40 were all similarly distributed; with ~80% in the cytosolic fraction, ~20% in the membrane fraction, and less than 1%, or not detectable, in the nuclear fraction. However, hTH4 phosphorylated at serine 71 had a significantly different distribution with ~65% cytosolic and ~35% membrane associated. Muscarine stimulation led to hTH1 being redistributed from the cytosol and nuclear fractions to the membrane fraction and hTH4 being redistributed from the cytosol to the nuclear fraction. These muscarine stimulated redistributions were not due to TH phosphorylation at serine 19, serine 40, or serine 71 and were most likely due to TH binding to proteins whose phosphorylation was increased by muscarine. This is the first study to show a difference in subcellular distribution between two human TH isoforms under basal and stimulated conditions.
Collapse
Affiliation(s)
- Alice Kunzler
- Faculty of Health and Medicine, The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia.,Departamento de Bioquímica/ICBS, Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Pedro Garcia Sobrinho
- Faculty of Health and Medicine, The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Tenele Smith
- Faculty of Health and Medicine, The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Daniel Pens Gelain
- Departamento de Bioquímica/ICBS, Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica/ICBS, Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Peter Robert Dunkley
- Faculty of Health and Medicine, The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Phillip Wesley Dickson
- Faculty of Health and Medicine, The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
7
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
8
|
Sominsky L, Ong LK, Ziko I, Dickson PW, Spencer SJ. Neonatal overfeeding increases capacity for catecholamine biosynthesis from the adrenal gland acutely and long-term in the male rat. Mol Cell Endocrinol 2018; 470:295-303. [PMID: 29183807 DOI: 10.1016/j.mce.2017.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022]
Abstract
A poor nutritional environment during early development has long been known to increase disease susceptibility later in life. We have previously shown that rats that are overfed as neonates (i.e. suckled in small litters (4 pups) relative to control conditions (12 pups)) show dysregulated hypothalamic-pituitary-adrenal axis responses to immune stress in adulthood, particularly due to an altered capacity of the adrenal to respond to an immune challenge. Here we hypothesised that neonatal overfeeding similarly affects the sympathomedullary system, testing this by investigating the biochemical function of tyrosine hydroxylase (TH), the first rate-limiting enzyme in the catecholamine synthesis. We also examined changes in adrenal expression of the leptin receptor and in mitogen-activated protein kinase (MAPK) signalling. During the neonatal period, we saw age-dependent changes in TH activity and phosphorylation, with neonatal overfeeding stimulating increased adrenal TH specific activity at postnatal days 7 and 14, along with a compensatory reduction in total TH protein levels. This increased TH activity was maintained into adulthood where neonatally overfed rats exhibited increased adrenal responsiveness 30 min after an immune challenge with lipopolysaccharide, evident in a concomitant increase in TH protein levels and specific activity. Neonatal overfeeding significantly reduced the expression of the leptin receptor in neonatal adrenals at postnatal day 7 and in adult adrenals, but did not affect MAPK signalling. These data suggest neonatal overfeeding alters the capacity of the adrenal to synthesise catecholamines, both acutely and long term, and these effects may be independent of leptin signalling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Ilvana Ziko
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Phillip W Dickson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Ong LK, Page S, Briggs GD, Guan L, Dun MD, Verrills NM, Dunkley PR, Dickson PW. Peripheral Lipopolysaccharide Challenge Induces Long-Term Changes in Tyrosine Hydroxylase Regulation in the Adrenal Medulla. J Cell Biochem 2017; 118:2096-2107. [DOI: 10.1002/jcb.25839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Scott Page
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Gabrielle D. Briggs
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Liying Guan
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Matthew D. Dun
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Nicole M. Verrills
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; University of Newcastle; Callaghan NSW 2308 Australia
| |
Collapse
|
10
|
Early life peripheral lipopolysaccharide challenge reprograms catecholaminergic neurons. Sci Rep 2017; 7:40475. [PMID: 28071709 PMCID: PMC5223129 DOI: 10.1038/srep40475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/01/2016] [Indexed: 01/15/2023] Open
Abstract
Neonatal immune challenge with the bacterial mimetic lipopolysaccharide has the capacity to generate long-term changes in the brain. Neonatal rats were intraperitoneally injected with lipopolysaccharide (0.05 mg/kg) on postnatal day (PND) 3 and again on PND 5. The activation state of tyrosine hydroxylase (TH) was measured in the locus coeruleus, ventral tegmental area and substantia nigra on PND 85. In the locus coeruleus there was an approximately four-fold increase in TH activity. This was accompanied by a significant increase in TH protein together with increased phosphorylation of all three serine residues in the N-terminal region of TH. In the ventral tegmental area, a significant increase in TH activity and increased phosphorylation of the serine 40 residue was seen. Neonatal lipopolysaccharide had no effect on TH activation in the substantia nigra. These results indicate the capacity of a neonatal immune challenge to generate long-term changes in the activation state of TH, in particular in the locus coeruleus. Overall, the current results demonstrate the enduring outcomes of a neonatal immune challenge on specific brain catecholaminergic regions associated with catecholamine synthesis. This highlights a novel mechanism for long-term physiological and behavioural alterations induced by this model.
Collapse
|
11
|
Decreased Interleukin-4 Release from the Neurons of the Locus Coeruleus in Response to Immobilization Stress. Mediators Inflamm 2016; 2016:3501905. [PMID: 26903707 PMCID: PMC4745346 DOI: 10.1155/2016/3501905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/02/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022] Open
Abstract
It has been demonstrated that immobilization (IMO) stress affects neuroimmune systems followed by alterations of physiology and behavior. Interleukin-4 (IL-4), an anti-inflammatory cytokine, is known to regulate inflammation caused by immune challenge but the effect of IMO on modulation of IL-4 expression in the brain has not been assessed yet. Here, it was demonstrated that IL-4 was produced by noradrenergic neurons in the locus coeruleus (LC) of the brain and release of IL-4 was reduced in response to IMO. It was observed that IMO groups were more anxious than nontreated groups. Acute IMO (2 h/day, once) stimulated secretion of plasma corticosterone and tyrosine hydroxylase (TH) in the LC whereas these increments were diminished in exposure to chronic stress (2 h/day, 21 consecutive days). Glucocorticoid receptor (GR), TH, and IL-4-expressing cells were localized in identical neurons of the LC, indicating that hypothalamic-pituitary-adrenal- (HPA-) axis and sympathetic-adrenal-medullary- (SAM-) axis might be involved in IL-4 secretion in the stress response. Accordingly, it was concluded that stress-induced decline of IL-4 concentration from LC neurons may be related to anxiety-like behavior and an inverse relationship exists between IL-4 secretion and HPA/SAM-axes activation.
Collapse
|
12
|
Carbajosa NAL, Corradi G, Verrilli MAL, Guil MJ, Vatta MS, Gironacci MM. Tyrosine hydroxylase is short-term regulated by the ubiquitin-proteasome system in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats: possible implications in hypertension. PLoS One 2015; 10:e0116597. [PMID: 25710381 PMCID: PMC4339701 DOI: 10.1371/journal.pone.0116597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/11/2014] [Indexed: 12/01/2022] Open
Abstract
Aberrations in the ubiquitin-proteasome system (UPS) are implicated in the pathogenesis of various diseases. Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamines biosynthesis, is involved in hypertension development. In this study we investigated whether UPS regulated TH turnover in PC12 cells and hypothalamic and brainstem neurons from spontaneously hypertensive rats (SHR) and whether this system was impaired in hypertension. PC12 cells were exposed to proteasome or lysosome inhibitors and TH protein level evaluated by Western blot. Lactacystin, a proteasome inhibitor, induced an increase of 86±15% in TH levels after 30 min of incubation, then it started to decrease up to 6 h to reach control levels and finally it rose up to 35.2±8.5% after 24 h. Bafilomycin, a lysosome inhibitor, did not alter TH protein levels during short times, but it increased TH by 92±22% above basal after 6 h treatment. Before degradation proteasome substrates are labeled by conjugation with ubiquitin. Efficacy of proteasome inhibition on TH turnover was evidenced by accumulation of ubiquitinylated TH after 30 min. Further, the inhibition of proteasome increased the quantity of TH phosphorylated at Ser40, which is essential for TH activity, by 2.7±0.3 fold above basal. TH protein level was upregulated in neurons from hypothalami and brainstem of SHR when the proteasome was inhibited during 30 min, supporting that neuronal TH is also short-term regulated by the proteasome. Since the increased TH levels reported in hypertension may result from proteasome dysfunction, we evaluate proteasme activity. Proteasome activity was significantly reduced by 67±4% in hypothalamic and brainstem neurons from SHR while its protein levels did not change. Present findings show that TH is regulated by the UPS. The impairment in proteasome activity observed in SHR neurons may be one of the causes of the increased TH protein levels reported in hypertension.
Collapse
Affiliation(s)
- Nadia A. Longo Carbajosa
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo Corradi
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María A. Lopez Verrilli
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María J. Guil
- Cátedra de Fisiología, IQUIMEFA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo S. Vatta
- Cátedra de Fisiología, IQUIMEFA-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela M. Gironacci
- Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
13
|
Quinn RK, Brown AL, Goldie BJ, Levi EM, Dickson PW, Smith DW, Cairns MJ, Dayas CV. Distinct miRNA expression in dorsal striatal subregions is associated with risk for addiction in rats. Transl Psychiatry 2015; 5:e503. [PMID: 25646592 PMCID: PMC4445746 DOI: 10.1038/tp.2014.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 11/13/2022] Open
Abstract
Recently, we published data using an animal model that allowed us to characterize animals into two groups, addiction vulnerable and addiction resilient, where we identified that addiction/relapse vulnerability was associated with deficits in synaptic plasticity-associated gene expression in the dorsal striatum (DS). Notable was the strong reduction in expression for activity-regulated cytoskeleton-associated protein (Arc) considered a master regulator of synaptic plasticity. In the present study, we confirmed that Arc messenger RNA was significantly decreased in the DS, but importantly, we identified that this reduction was restricted to the dorsomedial (DMS) and not dorsolateral striatum (DLS). There is recent evidence of microRNA (miRNA)-associated posttranscriptional suppression of Arc and animal models of addiction have identified a key role for miRNA in the regulation of addiction-relevant genes. In further support of this link, we identified several differentially expressed miRNA with the potential to influence addiction-relevant plasticity genes, including Arc. A key study recently reported that miR-212 expression is protective against compulsive cocaine-seeking. Supporting this hypothesis, we found that miR-212 expression was significantly reduced in the DMS but not DLS of addiction-vulnerable animals. Together, our data provide strong evidence that miRNA promote ongoing plasticity deficits in the DS of addiction-vulnerable animals.
Collapse
Affiliation(s)
- R K Quinn
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - A L Brown
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - B J Goldie
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - E M Levi
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - P W Dickson
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - D W Smith
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - M J Cairns
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - C V Dayas
- Neurobiology of Addiction Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia,The Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW, Australia,School of Biomedical Sciences and Pharmacy, University of Newcastle and the Hunter Medical Research Institute, Newcastle, NSW 2308, Australia. E-mail:
| |
Collapse
|
14
|
Kubesova A, Tejkalova H, Syslova K, Kacer P, Vondrousova J, Tyls F, Fujakova M, Palenicek T, Horacek J. Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology. PLoS One 2015; 10:e0115439. [PMID: 25602957 PMCID: PMC4300081 DOI: 10.1371/journal.pone.0115439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022] Open
Abstract
Perinatal immune challenge leads to neurodevelopmental dysfunction, permanent immune dysregulation and abnormal behaviour, which have been shown to have translational validity to findings in human neuropsychiatric disorders (e.g. schizophrenia, mood and anxiety disorders, autism, Parkinson’s disease and Alzheimer’s disease). The aim of this animal study was to elucidate the influence of early immune stimulation triggered by systemic postnatal lipopolysaccharide administration on biochemical, histopathological and morphological measures, which may be relevant to the neurobiology of human psychopathology. In the present study of adult male Wistar rats we examined the brain and plasma levels of monoamines (dopamine, serotonin), their metabolites, the levels of the main excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid and the levels of tryptophan and its metabolites from the kynurenine catabolic pathway. Further, we focused on histopathological and morphological markers related to pathogenesis of brain diseases - glial cell activation, neurodegeneration, hippocampal volume reduction and dopaminergic synthesis in the substantia nigra. Our results show that early immune stimulation in adult animals alters the levels of neurotransmitters and their metabolites, activates the kynurenine pathway of tryptophan metabolism and leads to astrogliosis, hippocampal volume reduction and a decrease of tyrosine hydroxylase immunoreactivity in the substantia nigra. These findings support the crucial pathophysiological role of early immune stimulation in the above mentioned neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anna Kubesova
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| | - Hana Tejkalova
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamila Syslova
- Institute of Chemical Technology, Prague, Czech Republic
| | - Petr Kacer
- Institute of Chemical Technology, Prague, Czech Republic
| | | | - Filip Tyls
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Fujakova
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Palenicek
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Horacek
- Prague Psychiatric Center, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Ong LK, Guan L, Damanhuri H, Goodchild AK, Bobrovskaya L, Dickson PW, Dunkley PR. Neurobiological consequences of acute footshock stress: effects on tyrosine hydroxylase phosphorylation and activation in the rat brain and adrenal medulla. J Neurochem 2013; 128:547-60. [DOI: 10.1111/jnc.12482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Liying Guan
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Hanafi Damanhuri
- The Australian School of Advance Medicine; Macquarie University; NSW Australia
- Biochemistry Department; Faculty of Medicine; Universiti Kebangsaan Malaysia; Kuala Lumpur Malaysia
| | - Ann K. Goodchild
- The Australian School of Advance Medicine; Macquarie University; NSW Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences; University of South Australia; SA Australia
| | - Phillip W. Dickson
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| | - Peter R. Dunkley
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute; The University of Newcastle; NSW Australia
| |
Collapse
|
16
|
Functional programming of the autonomic nervous system by early life immune exposure: implications for anxiety. PLoS One 2013; 8:e57700. [PMID: 23483921 PMCID: PMC3590226 DOI: 10.1371/journal.pone.0057700] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/23/2013] [Indexed: 12/13/2022] Open
Abstract
Neonatal exposure of rodents to an immune challenge alters a variety of behavioural and physiological parameters in adulthood. In particular, neonatal lipopolysaccharide (LPS; 0.05 mg/kg, i.p.) exposure produces robust increases in anxiety-like behaviour, accompanied by persistent changes in hypothalamic-pituitary-adrenal (HPA) axis functioning. Altered autonomic nervous system (ANS) activity is an important physiological contributor to the generation of anxiety. Here we examined the long term effects of neonatal LPS exposure on ANS function and the associated changes in neuroendocrine and behavioural indices. ANS function in Wistar rats, neonatally treated with LPS, was assessed via analysis of tyrosine hydroxylase (TH) in the adrenal glands on postnatal days (PNDs) 50 and 85, and via plethysmographic assessment of adult respiratory rate in response to mild stress (acoustic and light stimuli). Expression of genes implicated in regulation of autonomic and endocrine activity in the relevant brain areas was also examined. Neonatal LPS exposure produced an increase in TH phosphorylation and activity at both PNDs 50 and 85. In adulthood, LPS-treated rats responded with increased respiratory rates to the lower intensities of stimuli, indicative of increased autonomic arousal. These changes were associated with increases in anxiety-like behaviours and HPA axis activity, alongside altered expression of the GABA-A receptor α2 subunit, CRH receptor type 1, CRH binding protein, and glucocorticoid receptor mRNA levels in the prefrontal cortex, hippocampus and hypothalamus. The current findings suggest that in addition to the commonly reported alterations in HPA axis functioning, neonatal LPS challenge is associated with a persistent change in ANS activity, associated with, and potentially contributing to, the anxiety-like phenotype. The findings of this study reflect the importance of changes in the perinatal microbial environment on the ontogeny of physiological processes.
Collapse
|
17
|
Bobrovskaya L, Maniam J, Ong LK, Dunkley PR, Morris MJ. Early Life Stress and Post-Weaning High Fat Diet Alter Tyrosine Hydroxylase Regulation and AT1 Receptor Expression in the Adrenal Gland in a Sex Dependent Manner. Neurochem Res 2013; 38:826-33. [DOI: 10.1007/s11064-013-0985-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/26/2012] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|