1
|
Santos-Díaz AI, Solís-López J, Díaz-Torres E, Guadarrama-Olmos JC, Osorio B, Kroll T, Webb SM, Hiriart M, Jiménez-Estrada I, Missirlis F. Metal ion content of internal organs in the calorically restricted Wistar rat. J Trace Elem Med Biol 2023; 78:127182. [PMID: 37130496 DOI: 10.1016/j.jtemb.2023.127182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat. METHODS Inductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age. RESULTS Both sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord. CONCLUSION Severe caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.
Collapse
Affiliation(s)
- Alma I Santos-Díaz
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Elizabeth Díaz-Torres
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | | | - Beatriz Osorio
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Marcia Hiriart
- Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico
| | - Fanis Missirlis
- Department of Physiology, Biophysics and Neuroscience, Cinvestav, 07360 Mexico City, Mexico.
| |
Collapse
|
2
|
Piña-Leyva C, Lara-Lozano M, Rodríguez-Sánchez M, Vidal-Cantú GC, Barrientos Zavalza E, Jiménez-Estrada I, Delgado-Lezama R, Rodríguez-Sosa L, Granados-Soto V, González-Barrios JA, Florán-Garduño B. Hypothalamic A11 Nuclei Regulate the Circadian Rhythm of Spinal Mechanonociception through Dopamine Receptors and Clock Gene Expression. Life (Basel) 2022; 12:life12091411. [PMID: 36143447 PMCID: PMC9506518 DOI: 10.3390/life12091411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night–day interphase and peaking at 14.63 h. Similarly, DA and DOPAC’s spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.
Collapse
Affiliation(s)
- Celia Piña-Leyva
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Manuel Lara-Lozano
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
| | - Marina Rodríguez-Sánchez
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Guadalupe C. Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Ericka Barrientos Zavalza
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Ismael Jiménez-Estrada
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Rodolfo Delgado-Lezama
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Leonardo Rodríguez-Sosa
- Department of Physiology, Medicine Faculty, National Autonomous University of Mexico, University City, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Juan Antonio González-Barrios
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| | - Benjamín Florán-Garduño
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| |
Collapse
|
3
|
γ-Aminobutyric acid (GABA) from satellite glial cells tonically depresses the excitability of primary afferent fibers. Neurosci Res 2020; 170:50-58. [PMID: 32987088 DOI: 10.1016/j.neures.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/08/2023]
Abstract
Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.
Collapse
|
4
|
Rodríguez-Sánchez M, Escartín-Pérez RE, Leyva-Gómez G, Avalos-Fuentes JA, Paz-Bermúdez FJ, Loya-López SI, Aceves J, Erlij D, Cortés H, Florán B. Blockade of Intranigral and Systemic D3 Receptors Stimulates Motor Activity in the Rat Promoting a Reciprocal Interaction among Glutamate, Dopamine, and GABA. Biomolecules 2019; 9:E511. [PMID: 31547016 PMCID: PMC6843834 DOI: 10.3390/biom9100511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
In vivo activation of dopamine D3 receptors (D3Rs) depresses motor activity. D3Rs are widely expressed in subthalamic, striatal, and dendritic dopaminergic inputs into the substantia nigra pars reticulata (SNr). In vitro studies showed that nigral D3Rs modulate their neurotransmitter release; thus, it could be that these changes in neurotransmitter levels modify the discharge of nigro-thalamic neurons and, therefore, motor behavior. To determine how the in vitro responses correspond to the in vivo responses, we examined the effect of intra-nigral and systemic blockade of D3Rs in the interstitial content of glutamate, dopamine, and GABA within the SNr using microdialysis coupled to motor activity determinations in freely moving rats. Intranigral unilateral blockade of D3R with GR 103,691 increased glutamate, dopamine, and GABA. Increments correlated with increased ambulatory distance, non-ambulatory activity, and induced contralateral turning. Concomitant blockade of D3R with D1R by perfusion of SCH 23390 reduced the increase of glutamate; prevented the increment of GABA, but not of dopamine; and abolished behavioral effects. Glutamate stimulates dopamine release by NMDA receptors, while blockade with kynurenic acid prevented the increase in dopamine and, in turn, of GABA and glutamate. Finally, systemic administration of D3R selective antagonist U 99194A increased glutamate, dopamine, and GABA in SNr and stimulated motor activity. Blockade of intra-nigral D1R with SCH 23390 prior to systemic U 99194A diminished increases in neurotransmitter levels and locomotor activity. These data highlight the pivotal role of presynaptic nigral D3 and D1R in the control of motor activity and help to explain part of the effects of the in vivo administration of D3R agents.
Collapse
Affiliation(s)
- Marina Rodríguez-Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| | - Rodrigo Erick Escartín-Pérez
- Laboratory of Neurobiology of Eating, Universidad Nacional Autónoma de México, FES Iztacala, Ciudad de México 54090, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| | - Francisco Javier Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| | - Santiago Iván Loya-López
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| | - Jorge Aceves
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| | - David Erlij
- Department of Physiology SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.
| | - Benjamín Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| |
Collapse
|
5
|
Vázquez-Mendoza E, Rodríguez-Torres EE, López-García K, Hinojosa-Rodríguez CX, Jiménez-Estrada I. Differential effect of chronic undernutrition on the fiber type composition of fascicles in the extensor digitorum longus muscles of the rat. Acta Histochem 2017; 119:364-371. [PMID: 28372808 DOI: 10.1016/j.acthis.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023]
Abstract
Several studies have shown that chronic low food consumption alters the composition and metabolism of the extensor digitorum longus muscle (EDLm) fiber types. EDLm is constituted by four independent fascicles (F2-F5) of different sizes; their constitution and metabolism, however, as well as how chronic undernourishment affects these is virtually unknown. Thus, the aim of this study is to evaluate the relative fiber type composition and metabolism of each independent fascicle in the EDLm, using control and chronically undernourished young male rats by using the alkaline ATPase and NADH-TR histochemical techniques. Our results indicate that all control fascicles showed a higher percentage of intermediate fibers (P<0.001), except for F5, which had a higher percentage of fast fibers (P<0.001). After chronic undernutrition, the proportion of intermediate fibers decreased in F4 (P<0.05) and increased in F5 (P<0.001), whereas fast fibers decreased in F3 (P<0.05) and F5 (P<0.001). When we investigated fiber metabolism we found that F3 and F4 had a similar composition (mainly glycolytic), whereas F2 and F5 predominantly contained oxidative fibers. All fascicles of chronic undernourished rats showed a general decrease in oxidative fibers (P>0.05), except for F3, in which oxidative fibers increased (P<0.05). After determining the possible predominant metabolism expressed in intermediate fibers, we propose that chronic undernutrition induces the transformation of fast-glycolytic to intermediate-oxidative/glycolytic fibers, mainly in F3 and F5. Our observations confirm that chronic undernourishment differentially affects the fiber types of each fascicle in the EDLm, which could alter their individual physiological contractile properties.
Collapse
|
6
|
Pereyra-Venegas J, Segura-Alegría B, Guadarrama-Olmos JC, Mariscal-Tovar S, Quiróz-González S, Jiménez-Estrada I. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats. J Anim Physiol Anim Nutr (Berl) 2014; 99:974-86. [DOI: 10.1111/jpn.12274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 10/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- J. Pereyra-Venegas
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
- Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México City México
| | - B. Segura-Alegría
- Departamento de Biología; Facultad de Estudios Superiores Iztacala; Universidad Nacional Autónoma de México; Tlalnepantla de Baz Estado de México México
| | - J. C. Guadarrama-Olmos
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Mariscal-Tovar
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| | - S. Quiróz-González
- Departamento de Acupuntura y Rehabilitación; Universidad Estatal del Valle de Ecatepec; Valle de Anáhuac Ecatepec Estado de México México
| | - I. Jiménez-Estrada
- Departamento de Fisiología, Biofísica y Neurociencias; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; San Pedro Zacatenco; Del. Gustavo A. Madero. México City México
| |
Collapse
|