1
|
Islam MR, Rauf A, Akter S, Akter H, Al-Imran MIK, Islam S, Nessa M, Shompa CJ, Shuvo MNR, Khan I, Al Abdulmonem W, Aljohani ASM, Imran M, Iriti M. Epigallocatechin 3-gallate-induced neuroprotection in neurodegenerative diseases: molecular mechanisms and clinical insights. Mol Cell Biochem 2025; 480:3363-3383. [PMID: 39832108 DOI: 10.1007/s11010-025-05211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties. EGCG protects neurons in several ways, such as by lowering oxidative stress, stopping Aβ from aggregation together, changing cell signaling pathways, and decreasing inflammation. Furthermore, it promotes autophagy and improves mitochondrial activity, supporting neuronal survival. Clinical studies have demonstrated that EGCG supplementation can reduce neurodegenerative biomarkers and enhance cognitive function. This review provides insights into the molecular mechanisms and therapeutic potential of EGCG in treating various NDs. EGCG reduces oxidative stress by scavenging free radicals and enhancing antioxidant enzyme activity, aiding neuronal defense. It also protects neurons and improves cognitive abilities by inhibiting the toxicity and aggregation of Aβ peptides. It changes important cell signaling pathways like Nrf2, PI3K/Akt, and MAPK, which are necessary for cell survival, cell death, and inflammation. Additionally, it has strong anti-inflammatory properties because it inhibits microglial activation and downregulates pro-inflammatory cytokines. It improves mitochondrial function by reducing oxidative stress, increasing ATP synthesis, and promoting mitochondrial biogenesis, which promotes neurons' survival and energy metabolism. In addition, it also triggers autophagy, a cellular process that breaks down and recycles damaged proteins and organelles, eliminating neurotoxic aggregates and maintaining cellular homeostasis. Moreover, it holds significant promise as an ND treatment, but future research should focus on increasing bioavailability and understanding its long-term clinical effects. Future studies should focus on improving EGCG delivery and understanding its long-term effects in therapeutic settings. It can potentially be a therapeutic agent for managing NDs, indicating a need for further research.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Sumiya Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Happy Akter
- Padma View College of Nursing, Dhaka, Bangladesh
| | - Md Ibrahim Khalil Al-Imran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Samiul Islam
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Meherun Nessa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Chaity Jahan Shompa
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Nabil Rihan Shuvo
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imtiaz Khan
- Department of Entomology, The University of Agriculture, University of Peshawar, Peshawar, KP, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Luigi Vanvitelli 32, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121, Florence, Italy.
| |
Collapse
|
2
|
Alissa M, Alghamdi A, Alshehri MA. Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats. Tissue Cell 2025; 93:102691. [PMID: 39708392 DOI: 10.1016/j.tice.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
5
|
Azimi-Bahnamiri F, Mokhtari H, Khalilollah S, Soltanahmadi SV, Omraninava M, Disfani RA, Mirzaie MS, Ranjbaran H, Javan R, Shooraj M, Akhavan-Sigari R. Decellularized human amniotic membrane loaded with epigallocatechin-3-gallate accelerated diabetic wound healing. J Tissue Viability 2024; 33:18-26. [PMID: 38042701 DOI: 10.1016/j.jtv.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Diabetic wounds, as one of the most important complications of diabetes, face many challenges in treatment. Herein we investigated whether decellularized human amniotic membrane (dAM) loaded with epigallocatechin-3-gallate (EGCG) could promote healing in diabetic rats. Sixty diabetic rats were randomly planned into the untreated group, dAM group, EGCG group, and dAM + EGCG group. On days 7, 14, and 21, five rats from each group were sampled for stereological, molecular, and tensiometrical assessments. Our finding revealed that the wound closure rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts, blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were considerably increased in the treated groups than in the untreated group, and these changes were more obvious in the dAM + EGCG ones. Furthermore, the expression of TGF-β, bFGF, and VEGF genes were significantly upregulated in all treated groups compared to the untreated group and were greater in the dAM + EGCG group. This is while expression of TNF-α and IL-1β, as well as cell numerical densities of neutrophils and macrophages decreased more considerably in the dAM + EGCG group in comparison to the other groups. In conclusion, it was found that using both dAM transplantation and EGCG has more effect on diabetic wound healing.
Collapse
Affiliation(s)
| | - Hossein Mokhtari
- Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | | | | | - Hossein Ranjbaran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Roghayeh Javan
- Non-Comunicable Disease Risearch Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mahdi Shooraj
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Akhavan-Sigari
- University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
6
|
Raoofi A, Omraninava M, Javan R, Maghsodi D, Rustamzadeh A, Nasiry D, Ghaemi A. Protective effects of epigallocatechin gallate in the mice induced by chronic scrotal hyperthermia. Tissue Cell 2023; 84:102165. [PMID: 37480630 DOI: 10.1016/j.tice.2023.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
One of the most common complications of chronic scrotal hyperthermia (SHT) is a serious disorder in the male reproductive system. The most important factor in the occurrence of these disorders is oxidative stress. Currently, we investigated the effects of epigallocatechin gallate (EGCG), as a highly potent antioxidant, against cells and tissue disorders in mice affected by chronic SHT. Fifty-six male adult NMRI mice were allocated into seven equal groups. Except the non-treated (Control) group, six other groups were exposed to heat stress. Two treated groups including Preventive and Curative received oral administration of EGCG (50 mg/kg/day) starting immediately before heat exposure and fifteen consecutive days after the end of the heat exposure, respectively. For each treated group, two subgroups including positive control (Pre/Cur + PC groups) and vehicle (Pre/Cur + vehicle groups) were considered. At the end of the study, sperm characteristics, testosterone levels, stereological parameters, apoptosis, oxidant state, and molecular assessments were performed. We found that the sperm parameters, testosterone levels, the numerical density of spermatogonia, primary spermatocytes, spermatids, sertoli, leydig cells, and seminiferous tubules, biochemical factors (except MDA), and expression of c-kit gene were significantly higher in the Preventive and Curative groups, especially in Preventive ones, compared to other groups (P < 0.05). This is while expression of HSP72 and NF-κβ genes, MDA levels, as well as density of apoptotic cells considerably decreased in both EGCG-treated groups compared to other groups and it was more pronounced in Preventive ones (P < 0.05). Generally, EGCG attenuated cellular and molecular disorders induced by heat stress in the testis and it was more pronounced in Preventive status.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | - Roghayeh Javan
- Traditional and Complementary Medicine Research Center, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Davood Maghsodi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Ghaemi
- Department of Basic Sciences and Nutrition, Health Sciences Research Center, Faculty of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Alshahrani SH, Almajidi YQ, Hasan EK, Musad Saleh EA, Alsaab HO, Pant R, Hassan ZF, Al-Hasnawi SS, Romero-Parra RM, Mustafa YF. Hyperbaric Oxygen in Combination with Epigallocatechin-3-Gallate Synergistically Enhance Recovery from Spinal Cord Injury in Rats. Neuroscience 2023; 527:52-63. [PMID: 37499782 DOI: 10.1016/j.neuroscience.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Spinal cord injury (SCI) following trauma is a devastating neurological event that can lead to loss of sensory and motor functions. However, the most effective measures to prevent the spread of damage are treatment measures in the early stages. Currently, we investigated the combined effects of hyperbaric oxygen (HBO) along with epigallocatechin-3-gallate (EGCG) in the recovery of SCI in rats. Ninety male mature Sprague-Dawley rats were randomly planned into five equal groups (n = 18). In addition to sham group that only underwent laminectomy, SCI rats were allocated into 4 groups as follows: control group; HBO group; EGCG group; and HBO + EGCG group. Tissue samples at the lesion site were obtained for stereological, immunohistochemical, biochemical, and molecular evaluation. In addition, behavioral tests were performed to assess of neurological functions. The finding indicated that the stereological parameters, antioxidant factors (CAT, GSH, and SOD), IL-10 gene expression levels and neurological functions were considerably increased in the treatment groups in comparison with control group, and these changes were more obvious in the HBO + EGCG group (P < 0.05). On the other hand, we observed that the density of apoptotic cells and gliosis, the biochemical levels of MDA and the expression levels of inflammatory genes (TNF-α and IL-1β) in the treatment groups, especially the HBO + EGCG group, were considerably reduced in comparison with control group (P < 0.05). We conclude that co-administration of HBO and EGCG has a synergistic neuroprotective effects in animals undergoing SCI.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of Pharmacy (Pharmaceutics), Baghdad, Iraq.
| | | | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ruby Pant
- Mechanical in Department, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
8
|
Abu-Elfotuh K, Tolba AMA, Hussein FH, Hamdan AME, Rabeh MA, Alshahri SA, Ali AA, Mosaad SM, Mahmoud NA, Elsaeed MY, Abdelglil RM, El-Awady RR, Galal ERM, Kamal MM, Elsisi AMM, Darwish A, Gowifel AMH, Mahran YF. Anti-Alzheimer Activity of Combinations of Cocoa with Vinpocetine or Other Nutraceuticals in Rat Model: Modulation of Wnt3/β-Catenin/GSK-3β/Nrf2/HO-1 and PERK/CHOP/Bcl-2 Pathways. Pharmaceutics 2023; 15:2063. [PMID: 37631278 PMCID: PMC10457980 DOI: 10.3390/pharmaceutics15082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3β/β-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1β) and GSK-3β, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/β-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3β-Wnt/β-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Amina M. A. Tolba
- Anatomy Department, Faculty of Medicine, Girls Branch, Al-Azhar University, Cairo 11651, Egypt;
| | | | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saad A. Alshahri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Azza A. Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Sarah M. Mosaad
- Research Unit, Egypt Healthcare Authority, Ismailia Branch, Ismailia 41522, Egypt;
| | - Nihal A. Mahmoud
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Magdy Y. Elsaeed
- Physiology Department, Faculty of Medicine (Boys), Al-Azhar University, Demietta 34517, Egypt;
| | - Ranya M. Abdelglil
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Rehab R. El-Awady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Eman Reda M. Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Mona M. Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Ahmed M. M. Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62521, Egypt
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Yasmen F. Mahran
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
9
|
The Role of Green Tea Catechin Epigallocatechin Gallate (EGCG) and Mammalian Target of Rapamycin (mTOR) Inhibitor PP242 (Torkinib) in the Treatment of Spinal Cord Injury. Antioxidants (Basel) 2023; 12:antiox12020363. [PMID: 36829922 PMCID: PMC9952296 DOI: 10.3390/antiox12020363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that has physical and psychological consequences for patients. SCI is accompanied by scar formation and systemic inflammatory response leading to an intense degree of functional loss. The catechin, epigallocatechin gallate (EGCG), an active compound found in green tea, holds neuroprotective features and is known for its anti-inflammatory potential. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two functionally distinct complexes termed mTOR complex 1 and 2 (mTORC1; mTORC2). Inhibition of mTORC1 by rapamycin causes neuroprotection, leading to partial recovery from SCI. In this study the effects of EGCG, PP242 (an inhibitor of both complexes of mTOR), and a combination of EGCG and PP242 in SCI have been examined. It has been found that both EGCG and PP242 significantly improved sensory/motor functions following SCI. However, EGCG appeared to be more effective (BBB motor test, from 2 to 8 weeks after SCI, p = 0.019, p = 0.007, p = 0.006, p = 0.006, p = 0.05, p = 0.006, and p = 0.003, respectively). The only exception was the Von Frey test, where EGCG was ineffective, while mTOR inhibition by PP242, as well as PP242 in combination with EGCG, significantly reduced withdrawal latency starting from week three (combinatorial therapy (EGCG + PP242) vs. control at 3, 5, and 7 weeks, p = 0.011, p = 0.007, and p = 0.05, respectively). It has been found that EGCG was as effective as PP242 in suppressing mTOR signaling pathways, as evidenced by a reduction in phosphorylated S6 expression (PP242 (t-test, p < 0.0001) or EGCG (t-test, p = 0.0002)). These results demonstrate that EGCG and PP242 effectively suppress mTOR pathways, resulting in recovery from SCI in rats, and that EGCG acts via suppressing mTOR pathways.
Collapse
|
10
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
11
|
Lin MC, Liu CC, Lin YC, Hsu CW. Epigallocatechin Gallate Modulates Essential Elements, Zn/Cu Ratio, Hazardous Metal, Lipid Peroxidation, and Antioxidant Activity in the Brain Cortex during Cerebral Ischemia. Antioxidants (Basel) 2022; 11:antiox11020396. [PMID: 35204278 PMCID: PMC8868580 DOI: 10.3390/antiox11020396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Cerebral ischemia induces oxidative brain injury via increased oxidative stress. Epigallocatechin gallate (EGCG) exerts anti-oxidant, anti-inflammatory, and metal chelation effects through its active polyphenol constituent. This study investigates whether EGCG protection against cerebral ischemia-induced brain cortex injury occurs through modulating lipid peroxidation, antioxidant activity, the essential elements of selenium (Se), zinc (Zn), magnesium (Mg), copper (Cu), iron (Fe), and copper (Cu), Zn/Cu ratio, and the hazardous metal lead (Pb). Experimentally, assessment of the ligation group was performed by occlusion of the right common carotid artery and the right middle cerebral artery for 1 h. The prevention group was intraperitoneally injected with EGCG (50 mg/kg) once daily for 10 days before cerebral ischemia. The brain cortex tissues were homogenized and the supernatants were harvested for biochemical analysis. Results indicated that cerebral ischemia markedly decreased SOD, CAT, Mg, Zn, Se, and Zn/Cu ratio and increased malondialdehyde (MDA), Fe, Cu, and Pb in the ischemic brain cortex. Notably, pretreating rats with EGCG before ischemic injury significantly reversed these biochemical results. Our findings suggest that the neuroprotection of EGCG in the ischemic brain cortex during cerebral ischemia involves attenuating oxidative injury. Notably, this neuroprotective mechanism is associated with regulating lipid peroxidation, antioxidant activity, essential elements, Zn/Cu ratio, and hazardous metal Pb.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (C.-W.H.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (C.-W.H.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Yu-Chen Lin
- Department of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Ching-Wen Hsu
- Department of Pharmacy, Chung Kang Branch, Cheng Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (C.-W.H.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (C.-W.H.)
| |
Collapse
|
12
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
13
|
Letaif OB, Tavares-Júnior MC, dos Santos GB, Ferreira RJ, Marcon RM, Cristante AF, de Barros-Filho TE. Standardization of an experimental model of intradural injection after spinal cord injury in rats. Clinics (Sao Paulo) 2021; 76:e2740. [PMID: 33787659 PMCID: PMC7978664 DOI: 10.6061/clinics/2021/e2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES The intrathecal route has not yet been thoroughly standardized and evaluated in an experimental model of spinal cord injury (SCI) in Wistar rats. The objective of this study was to standardize and evaluate the effect of intradural injection in this animal model. METHOD The animals were divided into 6 groups: 1) laminectomy and intradural catheter; 2) laminectomy, intradural catheter and infusion; 3) only SCI; 4) SCI and intradural catheter; 5) SCI, intradural catheter and infusion; and 6) control (laminectomy only). Motor evaluations were performed using the Basso, Beattie and Bresnahan (BBB) scale and the horizontal ladder test; motor evoked potentials were measured for functional evaluation, and histological evaluation was performed as well. All experimental data underwent statistical analysis. RESULTS Regarding motor evoked potentials, the groups with experimental SCI had worse results than those without, but neither dural puncture nor the injection of intrathecal solution aggravated the effects of isolated SCI. Regarding histology, adverse tissue effects were observed in animals with SCI. On average, the BBB scores had the same statistical behaviour as the horizontal ladder results, and at every evaluated timepoint, the groups without SCI presented scored significantly better than those with SCI (p<0.05). The difference in performance on motor tests between rats with and without experimental SCI persisted from the first to the last test. CONCLUSIONS The present work standardizes the model of intradural injection in experimental SCI in rats. Intrathecal puncture and injection did not independently cause significant functional or histological changes.
Collapse
Affiliation(s)
- Olavo B. Letaif
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Mauro C.M. Tavares-Júnior
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gustavo B. dos Santos
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ricardo J.R. Ferreira
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Raphael M. Marcon
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alexandre F. Cristante
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Tarcísio E.P. de Barros-Filho
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
14
|
Cichon N, Saluk-Bijak J, Gorniak L, Przyslo L, Bijak M. Flavonoids as a Natural Enhancer of Neuroplasticity-An Overview of the Mechanism of Neurorestorative Action. Antioxidants (Basel) 2020; 9:antiox9111035. [PMID: 33114058 PMCID: PMC7690743 DOI: 10.3390/antiox9111035] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity is a complex physiological process occurring in the brain for its entire life. However, it is of particular importance in the case of central nervous system (CNS) disorders. Neurological recovery largely depends on the ability to reestablish the structural and functional organization of neurovascular networks, which must be pharmacologically supported. For this reason, new forms of therapy are constantly being sought. Including adjuvant therapies in standard treatment may support the enhancement of repair processes and restore impaired brain functions. The common hallmark of nerve tissue damage is increased by oxidative stress and inflammation. Thus, the studies on flavonoids with strong antioxidant and anti-inflammatory properties as a potential application in neuro intervention have been carried out for a long time. However, recent results have revealed another important property of these compounds in CNS therapy. Flavonoids possess neuroprotective activity, and promote synaptogenesis and neurogenesis, by, among other means, inhibiting oxidative stress and neuroinflammation. This paper presents an overview of the latest knowledge on the impact of flavonoids on the plasticity processes of the brain, taking into account the molecular basis of their activity.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
- Correspondence: ; Tel.: +48-42-635-43-36
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Leslaw Gorniak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Research Institute of Polish Mother’s Memorial Hospital, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Center, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (L.G.); (M.B.)
| |
Collapse
|
15
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
16
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
17
|
Pan AL, Hasalliu E, Hasalliu M, Angulo JA. Epigallocatechin Gallate Mitigates the Methamphetamine-Induced Striatal Dopamine Terminal Toxicity by Preventing Oxidative Stress in the Mouse Brain. Neurotox Res 2020; 37:883-892. [PMID: 32080803 DOI: 10.1007/s12640-020-00177-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
Methamphetamine (METH) is a popular psychostimulant due to its long-lasting effects and inexpensive production. METH intoxication is known to increase oxidative stress leading to neuronal damage. Thus, preventing the METH-induced oxidative stress can potentially mitigate neuronal damage. Previously, our laboratory found that epigallocatechin gallate (EGCG), a strong antioxidant found in green tea, can protect against the METH-induced apoptosis and dopamine terminal toxicity in the striatum of mice. In the present study, we evaluated the anti-oxidative properties of EGCG on the METH-induced oxidative stress using CD-1 mice. First, we demonstrated that mice pretreated with EGCG 30 min prior to the METH injection (30 mg/kg, ip) showed protection against the striatal METH-induced reduction of tyrosine hydroxylase without mitigating hyperthermia. In addition, injecting a single high dose of METH caused the reduction of striatal glutathione peroxidase activity at 24 h after the METH injection. Interestingly, pretreatment with EGCG 30 min prior to the METH injection prevented the METH-induced reduction of glutathione peroxidase activity. Moreover, we utilized Western blots to quantify the glutathione peroxidase 4 protein level in the striatum. The results showed that METH decreased striatal glutathione peroxidase 4 protein level, and the reduction was prevented by EGCG pretreatment. Finally, we observed that the METH-induced increase of striatal catalase and copper/zinc superoxide dismutase protein levels were also attenuated by pretreatment with EGCG. Taken together, our data indicate that EGCG is an effective agent that can be used to mitigate the METH-induced striatal toxicity in the mouse brain.
Collapse
Affiliation(s)
- Allen L Pan
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY, 10065, USA.,Biochemistry Program, the Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Ermal Hasalliu
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Manjola Hasalliu
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - Jesus A Angulo
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY, 10065, USA. .,Biochemistry Program, the Graduate Center, The City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
18
|
The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3642491. [PMID: 32676138 PMCID: PMC7336207 DOI: 10.1155/2019/3642491] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Patients with spinal cord injury (SCI) face devastating health, social, and financial consequences, as well as their families and caregivers. Reducing the levels of reactive oxygen species (ROS) and oxidative stress are essential strategies for SCI treatment. Some compounds from traditional medicine could be useful to decrease ROS generated after SCI. This review is aimed at highlighting the importance of some natural compounds with antioxidant capacity used in traditional medicine to treat traumatic SCI. An electronic search of published articles describing animal models of SCI treated with natural compounds from traditional medicine was conducted using the following terms: Spinal Cord Injuries (MeSH terms) AND Models, Animal (MeSH terms) AND [Reactive Oxygen Species (MeSH terms) AND/OR Oxidative Stress (MeSH term)] AND Medicine, Traditional (MeSH terms). Articles reported from 2010 to 2018 were included. The results were further screened by title and abstract for studies performed in rats, mice, and nonhuman primates. The effects of these natural compounds are discussed, including their antioxidant, anti-inflammatory, and antiapoptotic properties. Moreover, the antioxidant properties of natural compounds were emphasized since oxidative stress has a fundamental role in the generation and progression of several pathologies of the nervous system. The use of these compounds diminishes toxic effects due to their high antioxidant capacity. These compounds have been tested in animal models with promising results; however, no clinical studies have been conducted in humans. Further research of these natural compounds is crucial to a better understanding of their effects in patients with SCI.
Collapse
|
19
|
Rothenberg DO, Zhang L. Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients 2019; 11:E1361. [PMID: 31212946 PMCID: PMC6627400 DOI: 10.3390/nu11061361] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
This article is a comprehensive review of the literature pertaining to the antidepressant effects and mechanisms of regular tea consumption. Meta-data supplemented with recent observational studies were first analyzed to assess the association between tea consumption and depression risk. The literature reported risk ratios (RR) were 0.69 with 95% confidence intervals of 0.62-0.77. Next, we thoroughly reviewed human trials, mouse models, and in vitro experiments to determine the predominant mechanisms underlying the observed linear relationship between tea consumption and reduced risk of depression. Current theories on the neurobiology of depression were utilized to map tea-mediated mechanisms of antidepressant activity onto an integrated framework of depression pathology. The major nodes within the network framework of depression included hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, inflammation, weakened monoaminergic systems, reduced neurogenesis/neuroplasticity, and poor microbiome diversity affecting the gut-brain axis. We detailed how each node has subsystems within them, including signaling pathways, specific target proteins, or transporters that interface with compounds in tea, mediating their antidepressant effects. A major pathway was found to be the ERK/CREB/BDNF signaling pathway, up-regulated by a number of compounds in tea including teasaponin, L-theanine, EGCG and combinations of tea catechins and their metabolites. Black tea theaflavins and EGCG are potent anti-inflammatory agents via down-regulation of NF-κB signaling. Multiple compounds in tea are effective modulators of dopaminergic activity and the gut-brain axis. Taken together, our findings show that constituents found in all major tea types, predominantly L-theanine, polyphenols and polyphenol metabolites, are capable of functioning through multiple pathways simultaneously to collectively reduce the risk of depression.
Collapse
Affiliation(s)
- Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
20
|
Han X, Chen Y, Liu Y, Wang Z, Tang G, Tian W. HIF‐1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med 2018; 20:e3062. [PMID: 30414229 DOI: 10.1002/jgm.3062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoguang Han
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| | - Yong Chen
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Yajun Liu
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| | - Zhuo Wang
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Guoqing Tang
- Orthopedic CenterKunshan Hospital of Traditional Chinese Medicine Kunshan China
| | - Wei Tian
- Department of Spine SurgeryBeijing Jishuitan Hospital Beijing China
| |
Collapse
|
21
|
Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 2018; 23:281-294. [DOI: 10.1080/1028415x.2018.1500124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ali Reza Khalatbary
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emad Khademi
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. PLoS One 2018; 13:e0194476. [PMID: 29554110 PMCID: PMC5858783 DOI: 10.1371/journal.pone.0194476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26–28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes’ size. Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, has been associated with potential health benefits, both on cognition and cardiovascular phenotypes, through several mechanisms. We aimed to investigate the effects of green tea extracts on WBS-related phenotypes through a phase I clinical trial in mice. After feeding CD animals with green tea extracts dissolved in the drinking water, starting at three different time periods (prenatal, youth and adulthood), a set of behavioral tests and several anatomical, histological and molecular analyses were performed. Treatment resulted to be effective in the reduction of cardiac hypertrophy and was also able to ameliorate short-term memory deficits of CD mice. Taken together, these results suggest that EGCG might have a therapeutic and/or preventive role in the management of WBS.
Collapse
|
23
|
Gite S, Ross RP, Kirke D, Guihéneuf F, Aussant J, Stengel DB, Dinan TG, Cryan JF, Stanton C. Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr Neurosci 2018; 22:551-568. [PMID: 29378496 DOI: 10.1080/1028415x.2017.1418728] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: To search for novel compounds that will protect neuronal cells under stressed conditions that may help to restore neuronal plasticity. Methods: A model of corticosterone (CORT)-induced stress in human neuroblastoma cells (SH-SY5Y) was used to compare the efficacy of 6 crude extracts and 10 pure compounds (6 polyphenols, 2 carotenoids, 1 amino acid analogue, and 1 known antidepressant drug) to increase neuronal plasticity and to decrease cytotoxicity. Results: Astaxanthin (among pure compounds) and phlorotannin extract of Fucus vesiculosus (among crude extracts) showed a maximum increase in cell viability in the presence of excess CORT. BDNF-VI mRNA expression in SH-SY5Y cells was significantly improved by pretreatment with quercetine, astaxanthin, curcumin, fisetin, and resveratrol. Among crude extracts, xanthohumol, phlorotannin extract (Ecklonia cava), petroleum ether extract (Nannochloropsis oculata), and phlorotannin extract (F. vesiculosus) showed a significant increase in BDNF-VI mRNA expression. CREB1 mRNA expression was significantly improved by astaxanthin, β-carotene, curcumin, and fluoxetine whereas none of the crude extracts caused significant improvement. As an adjunct of fluoxetine, phlorotannin extract (F. vesiculosus), β-carotene, and xanthohumol have resulted in significant improvement in BDNF-VI mRNA expression and CREB1 mRNA expression was significantly improved by phlorotannin extract (F. vesiculosus). Significant improvement in mature BDNF protein expression by phlorotannin extract (F. vesiculosus) and β-carotene as an adjunct of fluoxetine confirm their potential to promote neuronal plasticity against CORT-induced stress. Discussion: The carotenoids, flavonoids, namely quercetine, curcumin, and low molecular weight phlorotannin-enriched extract of F. vesiculosus may serve as potential neuroprotective agents promoting neuronal plasticity in vitro. Graphical abstract: Cascade of events associated with disturbed homeostatic balance of glucocorticoids and impact of phlorotannin extract (F. vesiculosus) and β-carotene in restoring neuronal plasticity. Abbreviation: TrKB, tropomyosin receptor kinase B; P-ERK, phosphorylated extracellular signal-related kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; Ca++/CaMK, calcium/calmodulin-dependent protein kinase; pCREB, phosphorylated cAMP response element-binding protein; CRE, cAMP response elements, CORT, corticosterone; and BDNF; brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Snehal Gite
- a Food Biosciences Department , Teagasc Food Research Centre , Moorepark, Fermoy, Co. Cork , Ireland
| | | | - Dara Kirke
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland.,d Department of Food Bioscience , Teagasc Food Research Centre , Ashtown, Dublin
| | - Freddy Guihéneuf
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Justine Aussant
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Dagmar B Stengel
- c Botany and Plant Science, School of Natural Sciences, Ryan Institute for Environmental, Marine and Energy Research , National University of Ireland Galway , Ireland
| | - Timothy G Dinan
- e Department of Psychiatry , University College Cork , Ireland
| | - John F Cryan
- f Department of Anatomy and Neuroscience , University College Cork , Western Gateway Building, Ireland
| | - Catherine Stanton
- a Food Biosciences Department , Teagasc Food Research Centre , Moorepark, Fermoy, Co. Cork , Ireland
| |
Collapse
|
24
|
Zhang P, Hölscher C, Ma X. Therapeutic potential of flavonoids in spinal cord injury. Rev Neurosci 2018; 28:87-101. [PMID: 28045676 DOI: 10.1515/revneuro-2016-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) is a catastrophic event that can profoundly affect a patient's life, with far-reaching social and economic effects. A consequential sequence of SCI is the significant neurological or psychological deficit, which obviously contributes to the overall burden of this condition. To date, there is no effective treatment for SCI. Therefore, developing novel therapeutic strategies for SCI is highly prioritized. Flavonoids, one of the most numerous and ubiquitous groups of plant metabolites, are the active ingredients of traditional Chinese medicine such as Scutellaria baicalensis Georgi (Huang Qin) or Ginkgo biloba (Ying Xin). Accumulated research data show that flavonoids possess a range of key pharmacological properties such as anti-inflammatory, anti-oxidant, anti-tumor, anti-viral, anti-cardiovascular disease, immunomodulatory, and neuroprotective effects. Based on this, the flavonoids show therapeutic potential for SCI diseases. In this paper, we will review the pharmacological properties of different types of flavonoids for the treatment of SCI diseases, and potential underlying biochemical mechanisms of action will also be described.
Collapse
|
25
|
Ruzicka J, Urdzikova LM, Svobodova B, Amin AG, Karova K, Dubisova J, Zaviskova K, Kubinova S, Schmidt M, Jhanwar-Uniyal M, Jendelova P. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regen Res 2018; 13:119-127. [PMID: 29451216 PMCID: PMC5840977 DOI: 10.4103/1673-5374.224379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systematic inflammatory response after spinal cord injury (SCI) is one of the factors leading to lesion development and a profound degree of functional loss. Anti-inflammatory compounds, such as curcumin and epigallocatechin gallate (EGCG) are known for their neuroprotective effects. In this study, we investigated the effect of combined therapy of curcumin and EGCG in a rat model of acute SCI induced by balloon compression. Immediately after SCI, rats received curcumin, EGCG, curcumin + EGCG or saline [daily intraperitoneal doses (curcumin, 6 mg/kg; EGCG 17 mg/kg)] and weekly intramuscular doses (curcumin, 60 mg/kg; EGCG 17 mg/kg)] for 28 days. Rats were evaluated using behavioral tests (the Basso, Beattie, and Bresnahan (BBB) open-field locomotor test, flat beam test). Spinal cord tissue was analyzed using histological methods (Luxol Blue-cresyl violet staining) and immunohistochemistry (anti-glial fibrillary acidic protein, anti-growth associated protein 43). Cytokine levels (interleukin-1β, interleukin-4, interleukin-2, interleukin-6, macrophage inflammatory protein 1-alpha, and RANTES) were measured using Luminex assay. Quantitative polymerase chain reaction was performed to determine the relative expression of genes (Sort1, Fgf2, Irf5, Mrc1, Olig2, Casp3, Gap43, Gfap, Vegf, NfκB, Cntf) related to regenerative processes in injured spinal cord. We found that all treatments displayed significant behavioral recovery, with no obvious synergistic effect after combined therapy of curcumin and ECGC. Curcumin and EGCG alone or in combination increased axonal sprouting, decreased glial scar formation, and altered the levels of macrophage inflammatory protein 1-alpha, interleukin-1β, interleukin-4 and interleukin-6 cytokines. These results imply that although the expected synergistic response of this combined therapy was less obvious, aspects of tissue regeneration and immune responses in severe SCI were evident.
Collapse
Affiliation(s)
- Jiri Ruzicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | - Barbora Svobodova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | | | - Kristyna Karova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Jana Dubisova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Kristyna Zaviskova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská, Prague, Czech Republic
| | | | | | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
26
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
27
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
28
|
Machova Urdzikova L, Ruzicka J, Karova K, Kloudova A, Svobodova B, Amin A, Dubisova J, Schmidt M, Kubinova S, Jhanwar-Uniyal M, Jendelova P. A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology 2017; 126:213-223. [PMID: 28899730 DOI: 10.1016/j.neuropharm.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/03/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition which is characterized by an extended secondary injury due to the presence of inflammatory local milieu. Epigallocatechin gallate (EGCG) appears to possess strong neuroprotective properties. Here, we evaluated the beneficial effect of EGCG on recovery from SCI. Male Wistar rats were given either EGCG or saline directly to the injured spinal cord and thereafter a daily IP injection. Behavior recovery was monitored by BBB, plantar, rotarod and flat-beam tests. The levels of inflammatory cytokines were determined on days 1, 3, 7, 10 and 14 after SCI. Additionally, NF-κB pathway activity was evaluated. The results demonstrated that EGCG-treated rats displayed a superior behavioral performance in a flat beam test, higher axonal sprouting and positive remodelation of glial scar. Cytokine analysis revealed a reduction in IL-6, IL2, MIP1α and RANTES levels on days 1 and 3, and an upregulation of IL-4, IL-12p70 and TNFα 1 day following SCI in EGCG-treated rats. Treatment with EGCG was effective in decreasing the nuclear translocation of subunit p65 (RelA) of the NF-κB dimer, and therefore canonical NF-κB pathway attenuation. A significant increase in the gene expression of growth factors (FGF2 and VEGF), was noted in the spinal cord of EGCG-treated rats. Further, EGCG influenced expression of M1 and M2 macrophage markers. Our results have demonstrated a therapeutic value of EGCG in SCI, as observed by better behavioral performance measured by flat beam test, modulation of inflammatory cytokines and induction of higher axonal sprouting.
Collapse
Affiliation(s)
- Lucia Machova Urdzikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic.
| | - Jiri Ruzicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic.
| | - Kristyna Karova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic.
| | - Anna Kloudova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic.
| | - Barbora Svobodova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic.
| | | | - Jana Dubisova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic.
| | | | - Sarka Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic.
| | | | - Pavla Jendelova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
29
|
KOFF MARCOANTONIOEDUARDO, AJIBOYE LUKMANOLALEKAN, LISBOA NATÁLIADIEL, FALAVIGNA ASDRUBAL. SYSTEMATIC REVIEW OF RECOVERY OF SPINAL CORD INJURY WITH ANTIOXIDANT THERAPY. COLUNA/COLUMNA 2017. [DOI: 10.1590/s1808-1851201716011171639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of the paper is to analyze the frequency and efficacy of experimental studies with antioxidant therapy. A search was conducted in the pubmed.gov database using the keywords "antioxidants" AND "spinal cord injury", from January 2000 to December 2015, resulting in 686 articles. Studies of non-traumatic injuries, non-antioxidant therapies, absence of neurological and functional evaluation, and non-experimental studies were excluded, leaving a total of 43 articles. The most used therapies were melatonin (16.2%), quercetin (9.3%), epigallocatechin and edaravone (6.9%). The most frequent route of administration was intraperitoneal (72.09%). The dose and mode of administration varied greatly, with a single dose being the most commonly used (39.53%). The time elapsed from trauma to treatment was 0-15 minutes (41.8%), 15-60 minutes (30%) and over 60 minutes (10.6%). Histological analysis was performed in 32 studies (74.41%). The BBB scale was the main functional measure applied (55.8%), followed by the inclined plane test (16.2%) and the Tarlov scale (13.9%). Positive outcomes were observed in 37 studies (86.04%). The heterogeneity of antioxidant therapy, with different types, doses, and measurements observed, limits the comparison of efficacy. Standardized protocols are required to make clinical translation possible.
Collapse
|
30
|
Chen CH, Chen NF, Feng CW, Cheng SY, Hung HC, Tsui KH, Hsu CH, Sung PJ, Chen WF, Wen ZH. A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects. Mar Drugs 2016; 14:md14090160. [PMID: 27598175 PMCID: PMC5039531 DOI: 10.3390/md14090160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background: Our previous in vitro results demonstrated that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine-induced cytotoxicity and apoptosis in a human neuroblastoma cell line, SH-SY5Y, and suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 in lipopolysaccharide-stimulated macrophage cells. The neuroprotective and anti-inflammatory effects of 11-dehydrosinulariolide may be suitable for treating spinal cord injury (SCI). Methods: In the present study, Wistar rats were pretreated with 11-dehydrosinulariolide or saline through intrathecal injection after a thoracic spinal cord contusion injury induced using a New York University (NYU) impactor. The apoptotic cells were assessed using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression and localization of proinflammatory, apoptosis-associated and cell survival-related pathway proteins were examined through immunoblotting and immunohistochemistry. Results: 11-Dehydrosinulariolide attenuated SCI-induced cell apoptosis by upregulating the antiapoptotic protein Bcl-2 and cell survival-related pathway proteins p-Akt and p-ERK, 8 h after SCI. Furthermore, the transcription factor p-CREB, which regulates Bcl-2 expression, was upregulated after 11-dehydrosinulariolide treatment. On day 7 after SCI, 11-dehydrosinulariolide exhibited an anti-inflammatory effect, attenuating SCI-induced upregulation of the inflammatory proteins iNOS and tumor necrosis factor-α. 11-Dehydrosinulariolide also induced an increase in the expression of arginase-1 and CD206, markers of M2 microglia, in the injured spinal cord on day 7 after SCI. Thus, the anti-inflammatory effect of 11-dehydrosinulariolide may be related to the promotion of an alternative pathway of microglia activation. Conclusion: The results show that 11-dehydrosinulariolide exerts antiapoptotic effects at 8 h after SCI and anti-inflammatory effects at 7 days after SCI. We consider that this compound may be a promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Shu-Yu Cheng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan.
| | - Chi-Hsin Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 94450, Taiwan.
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
31
|
Fan TK, Gundimeda U, Mack WJ, Gopalakrishna R. Counteraction of Nogo-A and axonal growth inhibitors by green tea polyphenols and other natural products. Neural Regen Res 2016; 11:545-6. [PMID: 27212904 PMCID: PMC4870900 DOI: 10.4103/1673-5374.180729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tiffany K Fan
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rayudu Gopalakrishna
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Yonan JM, Binder DK. Aquaporin-4 and spinal cord injury. World J Neurol 2016; 6:1-13. [DOI: 10.5316/wjn.v6.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/25/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Edema formation is a major problem following traumatic spinal cord injury (SCI) that acts to exacerbate secondary damage. Severity of edema correlates with reduced neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid and ependyma around the central canal. Being so locally expressed at the interface between fluid and tissue allow AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. With the need to better understand the pathophysiology underlying the devastating cellular events in SCI, animal models have become an integral part of exploration. Inevitably, several injury models have been developed (contusion, compression, transection) resulting in difficult interpretation between studies with conflicting results. This is true in the case of understanding the role of AQP4 in the progression and resolution of edema following SCI, whose role is still not completely understood and is highly dependent on the type of edema present (vasogenic vs cytotoxic). Here, we discuss regulation of AQP4 in varying injury models and the effects of potential therapeutic interventions on expression, edema formation and functional recovery. Better understanding of the precise role of AQP4 following a wide range of injuries will help to understand optimal treatment timing following human SCI for prime therapeutic benefit and enhanced neurological outcome.
Collapse
|
33
|
Renno WM, Khan KM, Benov L. Is there a role for neurotrophic factors and their receptors in augmenting the neuroprotective effect of (-)-epigallocatechin-3-gallate treatment of sciatic nerve crush injury? Neuropharmacology 2015; 102:1-20. [PMID: 26514400 DOI: 10.1016/j.neuropharm.2015.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/01/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
This study analyzed and compared the effects of EGCG treatment on the expression of NTFs and NTF receptors expression in the sciatic nerve and the L3-L6 spinal cord segments at the early phase of regeneration following sciatic nerve crush injury. Analysis of BDNF, GDNF and NT3 neurotropic factors and Trk-B, Trk-C and NGFR-p75 receptors in neurons in the spinal cord of CRUSH and CRUSH + EGGC rats showed significant (p < 0.0001) decrease compared to NAÏVE and SHAM at day 1, 3, 7 and 14 after nerve injury. EGCG treatment significantly (p < 0.0001) increased the BDNF, GDN, NT3, Trk-B, Trk-C and NGFR-p75 immunostaining in the L3-L6 spinal cord compared to CRUSH animals. Also, EGCG treatment significantly increased the Trk-B protein concentration and Trk-B, NT3 and Trk-C gene expression in the spinal cords compared to CRUSH group. However, at day 1 and 3 post nerve injury, EGCG treatment significantly decreased the NGFR-p75 expression compared to CRUSH rats. In the sciatic nerve, EGCG treatment significantly (p < 0.01) increased the Trk-B and NGFR-p75 protein concentration in the controls. EGCG treatment significantly (p < 0.0001) increased the Trk-B, Trk-C and NGFR-p75 mRNA gene expressions in the sciatic nerves compared to CRUSH group. Only at day 1, CRUSH + EGCG animals displayed significant rise in the sciatic nerves NT3 gene expression compared to CRUSH group. Our data suggest that the EGCG neuroprotective effect on the spinal cord neurons may be mediated through the modulation of NTFs and NTF receptors following nerve crush injury in a rat model.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | - Khalid M Khan
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
34
|
Li Q, Zhang X. Epigallocatechin-3-gallate attenuates bone cancer pain involving decreasing spinal Tumor Necrosis Factor-α expression in a mouse model. Int Immunopharmacol 2015; 29:818-823. [PMID: 26363974 DOI: 10.1016/j.intimp.2015.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 11/30/2022]
Abstract
Tumor metastasis to bone often elicits a wide array of symptoms, in which pain is a significant factor in catastrophic complications of bone cancer. The complete understanding of bone cancer-related pain is still unknown, while several pathophysiological components have been suggested, from tumor-stimulated osteolysis, nerve compression, stimulations of ion channels, and locally generated inflammatory cytokines. In particular, it has been shown that pro-inflammatory cytokine TNFα-mediated actions are necessary for the development of bone cancer pain. As a member of catechin family in green tea extracts, EGCG (Epigallocatechin-3-gallate) can reduce excess free radicals and attenuate overactive inflammatory signaling including TNFα. In addition, EGCG or its related molecules have been used to control neuropathic pain in various preclinical settings. However, its potential use in bone cancer-caused pain has not yet been reported. Here we show that treating a mouse model of bone cancer by EGCG, results in a dramatic reduction in pain behavior and a significant decrease of TNFα expression within the spinal cord of tumor-bearing mice. Thus, this study reveals an anti-nociceptive role for EGCG in the progression of pain caused by tumor bone metastasis, and highlights a potential scheme by using anti-TNFα as a therapeutic option for osteolytic pain.
Collapse
Affiliation(s)
- Qingsong Li
- Department of Anesthesiology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan 250033, China.
| | - Xi Zhang
- Department of Anesthesiology, The Second Hospital of Shandong University, No. 247 Beiyuan Road, Jinan 250033, China
| |
Collapse
|
35
|
Xifró X, Vidal-Sancho L, Boadas-Vaello P, Turrado C, Alberch J, Puig T, Verdú E. Novel epigallocatechin-3-gallate (EGCG) derivative as a new therapeutic strategy for reducing neuropathic pain after chronic constriction nerve injury in mice. PLoS One 2015; 10:e0123122. [PMID: 25855977 PMCID: PMC4391943 DOI: 10.1371/journal.pone.0123122] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Neuropathic pain is common in peripheral nerve injury and often fails to respond to ordinary medication. Here, we investigated whether the two novel epigallocatechin-3-gallate (EGCG) polyphenolic derivatives, compound 23 and 30, reduce the neuropathic pain in mice chronic constriction nerve injury (CCI). First, we performed a dose-response study to evaluate nociceptive sensation after administration of EGCG and its derivatives 23 and 30, using the Hargreaves test at 7 and 21 days after injury (dpi). We daily administered EGCG, 23 and 30 (10 to 100 mg/Kg; i.p.) during the first week post-CCI. None of the doses of compound 23 caused significant pain diminution, whereas 50mg/kg was optimal for both EGCG and 30 to delay the latency of paw withdrawal. With 50 mg/Kg, we showed that EGCC prevented the thermal hyperalgesia from 7 to 21 dpi and compound 30 from 14 to 56 dpi. To evaluate the molecular mechanisms underpinning why EGCG and compound 30 differentially prevented the thermal hyperalgesia, we studied several biochemical parameters in the dorsal horn of the spinal cord at 14 and 56 dpi. We showed that the effect observed with EGCG and compound 30 was related to the inhibition of fatty acid synthase (FASN), a known target of these polyphenolic compounds. Additionally, we observed that EGCG and compound 30 reduced the expression of CCI-mediated inflammatory proteins and the nuclear localization of nuclear factor-kappa B at 14 dpi, but not at 56 dpi. We also strongly detected a decrease of synaptic plasma membrane levels of N-methyl-D-asparte receptor 2B in CCI-mice treated with compound 30 at 56 dpi. Altogether, compound 30 reduced the chronic thermal hyperalgesia induced by CCI better than the natural compound EGCG. Thus, our findings provide a rationale for the preclinical development of compound 30 as an agent to treat neuropathic pain.
Collapse
Affiliation(s)
- Xavier Xifró
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Vidal-Sancho
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pere Boadas-Vaello
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
| | - Carlos Turrado
- Laboratorio de Química Médica, Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jordi Alberch
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Teresa Puig
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- * E-mail: (TP); (EV)
| | - Enrique Verdú
- Grupo de Investigación de Anatomía Clínica, Embriología, Neurociencia y Oncología Molecular (NEOMA), Departamento de Ciencias Médicas, Facultad de Medicina, Universitat de Girona (UdG), Girona, Spain
- * E-mail: (TP); (EV)
| |
Collapse
|
36
|
Temporal changes of spinal subarachnoid space patency after graded spinal cord injury in rats. Injury 2015; 46:634-7. [PMID: 25616676 DOI: 10.1016/j.injury.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/03/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Disturbances in spinal subarachnoid space (SSAS) patency after SCI have been reported as an incidental finding, but there is a lack of information on its in vivo extent and time course. For substances and cells carried in the cerebrospinal fluid (CSF) to reach damaged neural tissue and promote reparative processes, CSF must be able to flow freely in SASS. OBJECTIVE To characterise the extent and time course of SSAS patency disruption in vivo in a rat model after graded SCI. MATERIALS AND METHODS Anaesthetised rats were subjected to mild or severe cord contusion at T9. Estimation of SSAS patency was carried out at 1h and 1, 3, 7, 15, 30 and 90 days postinjury, as well as in naïve rats, by quantifying the passage of superparamagnetic beads injected into the CSF at the cisterna magna and recovered at spinal level L2. CSF volume recovery was measured simultaneously. Data were analysed by the two-way ANOVA test. RESULTS Estimation of SSAS patency revealed nearly complete blockage early after contusion that was unevenly restored entering the chronic stages. Volume of CSF recovered was also significantly decreased early after injury compared to naïve rats, but was fully restored by 1 month postinjury. Overall, although modestly different from each other, changes in both parameters were more pronounced after severe rather than mild injuries for each time point examined. CONCLUSIONS SCI alters SSAS patency. Its extent is a function primarily of time elapsed after lesion and secondly of injury severity. It is reasonable to expect that disturbances in SASS patency might alter CSF dynamics and impair self-reparative mechanisms and intrathecal therapeutics, making SSAS patency blockage a key target for SCI management.
Collapse
|
37
|
Gundimeda U, McNeill TH, Barseghian BA, Tzeng WS, Rayudu DV, Cadenas E, Gopalakrishna R. Polyphenols from green tea prevent antineuritogenic action of Nogo-A via 67-kDa laminin receptor and hydrogen peroxide. J Neurochem 2015; 132:70-84. [PMID: 25314656 DOI: 10.1111/jnc.12964] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/22/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 μM) or more effectively through a steady-state generation (1-2 μM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>
Collapse
Affiliation(s)
- Usha Gundimeda
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull 2014; 110:68-75. [PMID: 25522867 DOI: 10.1016/j.brainresbull.2014.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord neurons located in laminae I-III respond to nociceptive stimuli and participate in the transmission of painful information to the brain. In the present study we evaluated if nociceptive laminae I-III neurons are affected by oxidative stress damage in a model of diabetic neuropathic pain (DNP), the streptozotocin-induced diabetic rat (STZ rat). Additionally, we evaluated the effects of a preventive antioxidant treatment with epigallocatechin-gallate (EGCG) in nociceptive neuronal activation and behavioural signs of DNP. Three days after diabetes induction, a treatment protocol of STZ rats with an aqueous solution of EGCG in the drinking water was initiated. Ten weeks after the onset of treatment, the spinal cords were immunoreacted against validated markers of oxidative stress damage (8-hydroxy-2'-deoxyguanosine; 8-OHdG) and of nociceptive neuronal activation (Fos). Mechanical hypersensitivity was assessed before and after EGCG treatment. Untreated STZ rats presented increased levels of 8-OHdG immunoreaction, higher numbers of Fos-immunoreacted neurons and high levels of co-localization of 8-OHdG and Fos in laminae I-III. Treatment with EGCG normalized the increase of the above mentioned parameters and ameliorated mechanical hypersensitivity. The present study shows that nociceptive neurons in spinal cord laminae I-III exhibit oxidative stress damage during diabetic neuropathy, which probably affects ascending pain transmission during DNP. The neurobiological mechanisms and translational perspectives of the beneficial effects of a preventive and sustained EGCG treatment in DNP need to be evaluated in the future.
Collapse
Affiliation(s)
- D Raposo
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - C Morgado
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - P Pereira-Terra
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal
| | - I Tavares
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal; IBMC, University of Porto, Portugal.
| |
Collapse
|
39
|
Renno WM, Al-Maghrebi M, Rao MS, Khraishah H. (-)-Epigallocatechin-3-gallate modulates spinal cord neuronal degeneration by enhancing growth-associated protein 43, B-cell lymphoma 2, and decreasing B-cell lymphoma 2-associated x protein expression after sciatic nerve crush injury. J Neurotrauma 2014; 32:170-84. [PMID: 25025489 DOI: 10.1089/neu.2014.3491] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Our previous studies have established that (-)-epigallocatechin-3-gallate (EGCG) has both neuroprotective and -regenerative capacity after sciatic nerve injury. Moreover, this improvement was evident on the behavioral level. The aim of this study was to investigate the central effects of ECGC on spinal cord motor neurons after sciatic nerve injury. Our study showed that administering 50 mg/kg intraperitoneally i.p. of EGCG to sciatic nerve-injured rats improved their performance on different motor functions and mechanical hyperesthesia neurobehavioral tests. Histological analysis of spinal cords of EGCG-treated sciatic nerve-injured (CRUSH+ECGC) animals showed an increase in the number of neurons in the anterior horn, when compared to the naïve, sham, and saline-treated sciatic nerve-injured (CRUSH) control groups. Additionally, immunohistochemical study of spinal cord sections revealed that EGCG reduced the expression of glial fibrillary acidic protein and increased the expression of growth-associated protein 43, a marker of regenerating axons. Finally, EGCG reduced the ratio of B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 and increased the expression of survivin gene. This study may shed some light on the future clinical use of EGCG and its constituents in the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Waleed M Renno
- 1 Department of Anatomy, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | | | | | | |
Collapse
|
40
|
Ji L, Dang X, Lan B, Song Q, Duan D, Ji Z, Zhang Y, Heng L. Same impact momentum causes different degrees of spinal cord injury. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|