1
|
Kwon K, Song JH, Park H, Kwon OY, Kim SW. Regulation of Dihydropyrimidinase-like 3 Gene Expression by MicroRNAs in PC12 Cells with Induced Ischaemia and Hypothermia. Folia Biol (Praha) 2023; 69:69-73. [PMID: 38063003 DOI: 10.14712/fb2023069020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Although hypothermic treatment has been reported to have some beneficial effects on ischaemia at the clinical level, the mechanism of ischaemia suppression by hypothermia remains unclear due to a lack of mechanism understanding and insufficient data. The aim of this study was to isolate and characterize microRNAs specifically expressed in ischaemia-hypothermia for the dihydropyrimidinase-like 3 (Dpysl3) gene. PC12 cells were induced with CoCl2 for chemical ischaemia and incubated at 32 ℃ for hypothermia. In ischaemia-hypothermia, four types of microRNAs (miR-106b-5p, miR-194-5p, miR-326-5p, and miR-497-5p) were highly related to the Dpysl3 gene based on exosomal microRNA analysis. Dpysl3 gene expression was up-regulated by miR-497-5p but down-regulated by miR-106b-5p, miR-194-5p and miR-326-5p. Our results suggest that these four microRNAs are involved in the regulation of Dpysl3 gene expression. These findings provide valuable clues that exosomal microRNAs could be used as therapeutic targets for effective treatment of ischaemia.
Collapse
Affiliation(s)
- Kisang Kwon
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, South Korea
| | - Ji-Hye Song
- Institute of Bioscience and Integrative Medicine, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Hyewon Park
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - O-Yu Kwon
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Seung-Whan Kim
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
3
|
Maggioni D, Monfrini M, Ravasi M, Tredici G, Scuteri A. Neurobasal medium toxicity on mature cortical neurons. Neuroreport 2015; 26:320-4. [PMID: 25756909 DOI: 10.1097/wnr.0000000000000343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurobasal medium (NBM) is a widely used medium for neuronal cultures, originally formulated to support survival of rat hippocampal neurons, but then optimized for several other neuronal subtypes. In the present study, the toxic effect of NBM on long-term cortical neuron cultures has been reported and investigated. A significant neuronal cell loss was observed 24 h after the total medium change performed at days in vitro 10. The neurotoxic effect was specifically because of NBM-A, a commercially derived modification of classic NBM, as neurons exposed to minimum essential medium for 24 h did not show the same mortality rate. We showed that the toxic effect was mediated by the N-methyl-D-aspartate receptor (NMDAr) as its inactivation partly prevented NBM-induced neuronal loss, and the addition of NMDAr activators, such as L-cysteine or glycine to minimum essential medium, reproduced the same toxicity rate observed in NBM. Besides the toxicity associated with NMDAr activation, the decreased antioxidative defenses also worsen (because of glutathione depletion) neuronal death, thus amplifying the effect of excitotoxic amino acids. Indeed, glutathione supplementation by the addition of its precursor N-acetyl-cysteine resulted in an increase in neuronal survival that partially prevented NBM-A toxicity. These results evidenced, on the one hand, the unsuitability of NBM-A for long-term neuronal culture, and on the other, they highlight the importance of selection of more suitable culture conditions.
Collapse
Affiliation(s)
- Daniele Maggioni
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | | | | | | | | |
Collapse
|
4
|
Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells. J Mol Neurosci 2015; 58:497-506. [PMID: 26585989 DOI: 10.1007/s12031-015-0685-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.
Collapse
|
5
|
Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 2014; 17:1491-9. [PMID: 25349915 DOI: 10.1038/nn.3829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
The immense intercellular and intracellular heterogeneity of the CNS presents major challenges for high-throughput omic analyses. Transcriptional, translational and post-translational regulatory events are localized to specific neuronal cell types or subcellular compartments, resulting in discrete patterns of protein expression and activity. A spatial and quantitative knowledge of the neuroproteome is therefore critical to understanding both normal and pathological aspects of the functional genomics and anatomy of the CNS. Improvements in mass spectrometry allow the profiling of proteins at a sufficient depth to complement results from high-throughput genomic and transcriptomic assays. However, there are challenges in integrating proteomic data with other data modalities and even greater challenges in obtaining comprehensive neuroproteomic data with cell-type specificity. Here we discuss how proteomics should be exploited to enhance high-throughput functional genomic analysis by tighter integration of data analyses. We also discuss experimental strategies to achieve finer cellular and subcellular resolution in transcriptomic and proteomic studies of neural tissues.
Collapse
|
6
|
Kuntz M, Mysiorek C, Pétrault O, Boucau MC, Aijjou R, Uzbekov R, Bérézowski V. Transient oxygen-glucose deprivation sensitizes brain capillary endothelial cells to rtPA at 4h of reoxygenation. Microvasc Res 2013; 91:44-57. [PMID: 24333620 DOI: 10.1016/j.mvr.2013.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 01/11/2023]
Abstract
Thrombolysis treatment of acute ischemic stroke is limited by the pro-edematous and hemorrhagic effects exerted by reperfusion, which disrupts the blood-brain barrier (BBB) capillary endothelium in the infarct core. Most studies of the ischemic BBB overlook the complexity of the penumbral area, where the affected brain cells are still viable following deprivation. Our present objective was to examine in vitro the kinetic impact of reoxygenation on the integrity of ischemic BBB cells after oxygen-glucose deprivation. Through the use of a co-culture of brain capillary endothelial cells and glial cells, we first showed that the transendothelial permeability increase induced by deprivation can occur with both preserved cell viability and interendothelial tight junction network. The subtle and heterogeneous alteration of the tight junctions was observable only through electron microscopy. A complete permeability recovery was then found after reoxygenation, when Vimentin and Actin networks were reordered. However, still sparse ultrastructural alterations of tight junctions suggested an acquired vulnerability. Endothelial cells were then exposed to recombinant tissue-type plasminogen activator (rtPA) to define a temporal profile for the toxic effect of this thrombolytic on transendothelial permeability. Interestingly, the reoxygenated BBB broke down with aggravated tight junction disruption when exposed to rtPA only at 4h after reoxygenation. Moreover, this breakdown was enhanced by 50% when ischemic glial cells were present during the first hours of reoxygenation. Our results suggest that post-stroke reoxygenation enables retrieval of the barrier function of brain capillary endothelium when in a non-necrotic environment, but may sensitize it to rtPA at the 4-hour time point, when both endothelial breakdown mechanisms and glial secretions could be identified and targeted in a therapeutical perspective.
Collapse
Affiliation(s)
- Mélanie Kuntz
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Caroline Mysiorek
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Olivier Pétrault
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Marie-Christine Boucau
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Rachid Aijjou
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| | - Rustem Uzbekov
- Département des Microscopies, Université François Rabelais, F-37100 Tours, France; Faculty of Bioengineering & Bioinformatics, Moscow State University, 119991 Moscow, Russia.
| | - Vincent Bérézowski
- Univ Lille Nord de France, UArtois, LBHE, EA 2465, Faculté des Sciences Jean Perrin, rue Jean Souvraz, S.P.18, F-62307 Lens cedex, France; Institut de Médecine Prédictive et de Recherche Thérapeutique, Place de Verdun, F-59045 Lille cedex, France; Institut Fédératif de Recherche 114, Place de Verdun, F-59045 Lille cedex, France.
| |
Collapse
|