1
|
Labrador-Espinosa MA, Silva-Rodriguez J, Okkels N, Muñoz-Delgado L, Horsager J, Castro-Labrador S, Franco-Rosado P, Castellano-Guerrero AM, Iglesias-Camacho E, San-Eufrasio M, Macías-García D, Jesús S, Adarmes-Gómez A, Ojeda-Lepe E, Carrillo F, Martín-Rodríguez JF, Roldan Lora F, García-Solís D, Borghammer P, Mir P, Grothe MJ. Cortical hypometabolism in Parkinson's disease is linked to cholinergic basal forebrain atrophy. Mol Psychiatry 2025; 30:2372-2380. [PMID: 39639173 DOI: 10.1038/s41380-024-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson's disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [18F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment. We further assessed the spatial correspondence of the cortical pattern of cBF-associated hypometabolism with the pattern of cholinergic denervation in PD as assessed by [18F]FEOBV-PET imaging of presynaptic cholinergic terminal density in a second cohort. Lower volume of the cortically-projecting posterior cBF, but not of the anterior cBF, was significantly associated with extensive neocortical hypometabolism [p(FDR) < 0.05], which mediated the association between cBF atrophy and cognitive impairment (mediated proportion: 43%, p < 0.001). In combined models, posterior cBF atrophy explained more variance in cortical hypometabolism (R2 = 0.26, p < 0.001) than local atrophy in the cortical areas themselves (R2 = 0.16, p = 0.01). Topographic correspondence analysis with the [18F]FEOBV-PET pattern revealed that cortical areas showing most pronounced cBF-associated hypometabolism correspond to those showing most severe cholinergic denervation in PD (Spearman's ρ = 0.57, p < 0.001). In conclusion, posterior cBF atrophy in PD is selectively associated with hypometabolism in denervated cortical target areas, which mediates the effect of cBF atrophy on cognitive impairment. These data provide first-time in-vivo evidence that cholinergic degeneration represents a principle pathological correlate of cortical hypometabolism underlying cognitive impairment in PD.
Collapse
Grants
- USE-19094-G Universidad de Sevilla (University of Seville)
- CD21/00067 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM21/00051 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI20/00613 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CP19/00031 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CVI-02526 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0210-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PI-0459-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- CTS-7685 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Regional Hospital Viborg, Viborg, Denmark
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Sandra Castro-Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Iglesias-Camacho
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Manuela San-Eufrasio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Ojeda-Lepe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Florinda Roldan Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - David García-Solís
- Unidad de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Flores A, Moyano P, Sola E, García JM, García J, Frejo MT, Guerra-Menéndez L, Labajo E, Lobo I, Abascal L, Pino JD. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. BIOLOGY 2023; 12:782. [PMID: 37372067 DOI: 10.3390/biology12060782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/β-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.
Collapse
Affiliation(s)
- Andrea Flores
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emma Sola
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jimena García
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Departamento de Fisiología, Facultad de Medicina, Universidad San Pablo CEU, 28003 Madrid, Spain
| | - Elena Labajo
- Departamento de Medicina Legal, Psiquiatría y Patología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inés Lobo
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luisa Abascal
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
4
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
6
|
Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods. Yonsei Med J 2018; 59:406-415. [PMID: 29611403 PMCID: PMC5889993 DOI: 10.3349/ymj.2018.59.3.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. MATERIALS AND METHODS Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. RESULTS Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. CONCLUSION Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Collapse
Affiliation(s)
- Jae Sung Cho
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyeon Lee
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Han Wool Kim
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jisook Moon
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
- Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Gelfo F, Cutuli D, Nobili A, De Bartolo P, D’Amelio M, Petrosini L, Caltagirone C. Chronic Lithium Treatment in a Rat Model of Basal Forebrain Cholinergic Depletion: Effects on Memory Impairment and Neurodegeneration. J Alzheimers Dis 2017; 56:1505-1518. [DOI: 10.3233/jad-160892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of TECOS, Guglielmo Marconi University, Rome, Italy
| | - Marcello D’Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Medicine, Medical School, Campus Bio-Medico University, Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systemic Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
Grothe MJ, Heinsen H, Amaro E, Grinberg LT, Teipel SJ. Cognitive Correlates of Basal Forebrain Atrophy and Associated Cortical Hypometabolism in Mild Cognitive Impairment. Cereb Cortex 2016; 26:2411-2426. [PMID: 25840425 PMCID: PMC4869802 DOI: 10.1093/cercor/bhv062] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Degeneration of basal forebrain (BF) cholinergic nuclei is associated with cognitive decline, and this effect is believed to be mediated by neuronal dysfunction in the denervated cortical areas. MRI-based measurements of BF atrophy are increasingly being used as in vivo surrogate markers for cholinergic degeneration, but the functional implications of reductions in BF volume are not well understood. We used high-resolution MRI, fluorodeoxyglucose-positron emission tomography (PET), and neuropsychological test data of 132 subjects with mild cognitive impairment (MCI) and 177 cognitively normal controls to determine associations between BF atrophy, cortical hypometabolism, and cognitive deficits. BF atrophy in MCI correlated with both impaired memory function and attentional control deficits, whereas hippocampus volume was more specifically associated with memory deficits. BF atrophy was also associated with widespread cortical hypometabolism, and path analytic models indicated that hypometabolism in domain-specific cortical networks mediated the association between BF volume and cognitive dysfunction. The presence of cortical amyloid pathology, as assessed using AV45-PET, did not significantly interact with the observed associations. These data underline the potential of multimodal imaging markers to study structure-function-cognition relationships in the living human brain and provide important in vivo evidence for an involvement of the human BF in cortical activity and cognitive function.
Collapse
Affiliation(s)
- Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Helmut Heinsen
- Laboratory of Morphological Brain Research, Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Lea T. Grinberg
- Aging Brain Study Group, LIM-22, Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- UCSF Memory and Aging Center, University of California – San Francisco, San Francisco, CA, USA
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|