1
|
Thangwong P, Tocharus C, Tocharus J. The Bidirectional Role of Hypoxia-Inducible Factor 1 Alpha in Vascular Dementia Caused by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04914-5. [PMID: 40205304 DOI: 10.1007/s12035-025-04914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Chronic cerebral hypoperfusion (CCH) is a critical indicator of cognitive impairment and dementia, especially vascular dementia. Cerebral blood flow disturbance alters the properties of neurons and glial cells as a result of a deficit in energy sources. Hypoxia-inducible factor 1 alpha (HIF- 1α) is a transcription factor that controls gene activity in response to low oxygen levels. It regulates a complex network of cellular adaptations to improve oxygenation, metabolic reprogramming, and cell survival in hypoxic situations. However, recent research suggests that HIF- 1α plays a role not only in neuroprotection but also in brain injury. It is therefore critical to fully comprehend the mechanisms behind these disorders. This review highlights the dual role of HIF- 1α in CCH-induced VaD. Initially, HIF- 1α provides a neuroprotection by promoting angiogenesis through vascular endothelial growth factor (VEGF) signaling. However, prolonged activation can detrimentally effects, including oxidative stress, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment. Evidence suggests that HIF- 1α exerts its protective effects in acute ischemic/hypoxic-induced VaD through pathways such as PI3 K/AKT/mTOR and MAPK/p-c-Jun signaling. However, its dysregulation in chronic stages of CCH contributes to cognitive decline and disease progression. Understanding the complex role of HIF- 1α and its interactions with other molecular pathways is crucial for developing effective therapeutic strategies. Therefore, an informed, in-depth discussion of its involvement in these pathologic processes is necessary, as a precise contribution of HIF- 1α to CCH-induced VaD remains to be established and requires further investigation.
Collapse
Affiliation(s)
- Phakkawat Thangwong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Ningning Y, Ying X, Xiang L, Yue S, Zhongda W, Ruoyu J, Hanwen S, Weiwei T, Yafeng Z, Junjie M, Xiaolan C. Danggui-Shaoyao San alleviates cognitive impairment via enhancing HIF-1α/EPO axis in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118306. [PMID: 38723920 DOI: 10.1016/j.jep.2024.118306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Invigorating blood circulation to remove blood stasis is a primary strategy in TCM for treating vascular dementia (VaD). Danggui-Shaoyao San (DSS), as a traditional prescription for neuroprotective activity, has been proved to be effective in VaD treatment. However, its precise molecular mechanisms remain incompletely understood. AIM OF THE STUDY The specific mechanism underlying the therapeutic effects of DSS on VaD was explored by employing network pharmacology as well as in vivo and in viro experiment validation. MATERIALS AND METHODS We downloaded components of DSS from the BATMAN-TCM database for target prediction. The intersection between the components of DSS and targets, PPI network, as well as GO and KEGG enrichment analysis were then performed. Subsequently, the potential mechanism of DSS predicted by network pharmacology was assessed and validated through VaD rat model induced by 2VO operation and CoCl2-treated PC12 cells. Briefly, the DSS extract were first quantified by HPLC. Secondly, the effect of DSS on VaD was studied using MWM test, HE staining and TUNEL assay. Finally, the molecular mechanism of DSS against VaD was validated by Western blot and RT-QPCR experiments. RESULTS Through network analysis, 137 active ingredients were obtained from DSS, and 67 potential targets associated with DSS and VaD were identified. GO and KEGG analysis indicated that the action of DSS on VaD primarily involves hypoxic terms and HIF-1 pathway. In vivo validation, cognitive impairment and neuron mortality were markedly ameliorated by DSS. Additionally, DSS significantly reduced the expression of proteins related to synaptic plasticity and neuron apoptosis including PSD-95, SYP, Caspase-3 and BCL-2. Mechanistically, we confirmed DSS positively modulated the expression of HIF-1α and its downstream proteins including EPO, p-EPOR, STAT5, EPOR, and AKT1 in the hippocampus of VaD rats as well as CoCl2-induced PC12 cells. HIF-1 inhibitor YC-1 significantly diminished the protection of DSS on CoCl2-induced PC12 cell damage, with decreased HIF-1α, EPO, EPOR expression. CONCLUSION Our results initially demonstrated DSS could exert neuroprotective effects in VaD. The pharmacological mechanism of DSS may be related to its positive regulation on HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Yuan Ningning
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Ying
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Xiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Su Yue
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wang Zhongda
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Ruoyu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shi Hanwen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Weiwei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang Yafeng
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Ma Junjie
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Cheng Xiaolan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Jearjaroen P, Thangwong P, Tocharus C, Lungkaphin A, Chaichompoo W, Srijun J, Suksamrarn A, Tocharus J. Hexahydrocurcumin Attenuates Neuronal Injury and Modulates Synaptic Plasticity in Chronic Cerebral Hypoperfusion in Rats. Mol Neurobiol 2024; 61:4304-4317. [PMID: 38087168 DOI: 10.1007/s12035-023-03821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 07/11/2024]
Abstract
Dementia is the most common age-related problem due predominantly to Alzheimer's disease (AD) and vascular dementia (VaD). It has been shown that these contributors are associated with a high amount of oxidative stress that leads to changes in neurological function and cognitive impairment. The aim of study was to explore the mechanism by which hexahydrocurcumin (HHC) attenuates oxidative stress, amyloidogenesis, phosphorylated Tau (pTau) expression, neuron synaptic function, and cognitive impairment and also the potential mechanisms involved in induced permanent occlusion of bilateral common carotid arteries occlusion (BCCAO) or 2-vessel occlusion (2VO) in rats. After surgery, rats were treated with HHC (40 mg/kg) or piracetam (600 mg/kg) by oral gavage daily for 4 weeks. The results showed that HHC or piracetam attenuated oxidative stress by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) activity, and alleviated expression of synaptic proteins (pre- and post-synaptic proteins) mediated by the Wingless/Integrated (Wnt)/β-catenin signaling pathway. Moreover, HHC or piracetam also improved synaptic plasticity via the brain-derived neurotrophic factor (BDNF)/Tyrosine receptor kinase B (TrkB)/cAMP responsive element binding protein (CREB) signaling pathway. In addition, HHC reduced amyloid beta (Aβ) production and pTau expression and improved memory impairment as evidenced by the Morris water maze. In conclusion, HHC exerted remarkable improvement in cognitive function in the 2VO rats possibly via the attenuation of oxidative stress, improvement in synaptic function, attenuation of amyloidogenesis, pTau, and neuronal injury, thereby improving cognitive performance.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jaranwit Srijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
He JB, Zhang H, Zheng HX, Jia JX, Zhang YC, Yan XS, Li XX, Wei KW, Mao J, Chen H, Li J, Wang H, Zhang M, Zhao ZY. Effects of schisandrin B on hypoxia-related cognitive function and protein expression in vascular dementia rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:421-427. [PMID: 38551405 DOI: 10.1080/15287394.2024.2334247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented β-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.
Collapse
Affiliation(s)
- Jing-Bo He
- Department of Pharmacy, Baotou Medical College, Inner Mongolia, China
| | - He Zhang
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Hong-Xia Zheng
- Faculty of Foreign Languages, Baotou Teachers' College, Inner Mongolia, China
| | - Jian-Xin Jia
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Yi-Chi Zhang
- Class15, Senior two, Baotou No.9 High School, Inner Mongolia, China
| | - Xu-Sheng Yan
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Xiao-Xu Li
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Kai-Wen Wei
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Jun Mao
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Hong Chen
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Jing Li
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
- Department of Anesthesia, The Fourth Hospital of Inner Mongolia Autonomous Region, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Ming Zhang
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Zhi-Ying Zhao
- Institute of Neuroscience, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| |
Collapse
|
5
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Wang Y, Cheng W, Chen X, Cheng C, Zhang L, Huang W. Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:597-616. [PMID: 37978153 DOI: 10.1007/s11064-023-04050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague-Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
7
|
Hu Y, Zhang M, Liu B, Tang Y, Wang Z, Wang T, Zheng J, Zhang J. Honokiol prevents chronic cerebral hypoperfusion induced astrocyte A1 polarization to alleviate neurotoxicity by targeting SIRT3-STAT3 axis. Free Radic Biol Med 2023; 202:62-75. [PMID: 36997099 DOI: 10.1016/j.freeradbiomed.2023.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
Alzheimer's Dementia (AD) and Vascular Dementia (VaD) are two main types of dementias for which no specific treatment is available. Chronic Cerebral Hypoperfusion (CCH) is a pathogenesis underlying AD and VaD that promotes neuroinflammatory responses and oxidative stress. Honokiol (HNK) is a natural compound isolated from magnolia leaves that can easily cross blood brain barrier and has anti-inflammatory and antioxidant effects. In the present study, the effects of HNK on astrocyte polarization and neurological damage in in vivo and in vitro models of chronic cerebral hypoperfusion were explored. We found that HNK was able to inhibit the phosphorylation and nuclear translocation of STAT3, A1 polarization, and reduce conditioned medium's neuronal toxicity of astrocyte under chronic hypoxia induced by cobalt chloride; STAT3 phosphorylation inhibitor C188-9 was able to mimic the above effects of HNK, suggesting that HNK may inhibit chronic hypoxia-induced A1 polarization in astrocytes via STAT3. SIRT3 inhibitor 3-TYP reversed, while Sirt3 overexpression mimicked the inhibitory effects of HNK on oxidative stress, STAT3 phosphorylation and nuclear translocation, A1 polarization and neuronal toxicity of astrocyte under chronic hypoxic conditions. For in vivo research, continuous intraperitoneal injection of HNK (1mg/kg) for 21 days ameliorated the decrease in SIRT3 activity and oxidative stress, inhibited astrocytic STAT3 nuclear translocation and A1 polarization, and prevented neuron and synaptic loss in the hippocampal of CCH rats. Besides, HNK application improved the spatial memory impairment of CCH rats, as assessed with Morris Water Maze. In conclusion, these results suggest that the phytochemical HNK can inhibit astrocyte A1 polarization via regulating SIRT3-STAT3 axis, thus improving CCH-induced neurological damage. These results highlight HNK as novel treatment for dementia with underlying vascular mechanisms.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China.
| | - Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Bihan Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Yingying Tang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Tao Wang
- Department of Neurology, First Clinical Medical College of China Three Gorges University, Yichang, Hubei, 443003, China
| | - Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road No. 169, Wuhan, 430071, China.
| |
Collapse
|
8
|
Maresin 1 improves cognitive decline and ameliorates inflammation and blood-brain barrier damage in rats with chronic cerebral hypoperfusion. Brain Res 2022; 1788:147936. [DOI: 10.1016/j.brainres.2022.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022]
|
9
|
Li Y, Zheng W, Lu Y, Zheng Y, Pan L, Wu X, Yuan Y, Shen Z, Ma S, Zhang X, Wu J, Chen Z, Zhang X. BNIP3L/NIX-mediated mitophagy: molecular mechanisms and implications for human disease. Cell Death Dis 2021; 13:14. [PMID: 34930907 PMCID: PMC8688453 DOI: 10.1038/s41419-021-04469-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Mitophagy is a highly conserved cellular process that maintains the mitochondrial quantity by eliminating dysfunctional or superfluous mitochondria through autophagy machinery. The mitochondrial outer membrane protein BNIP3L/Nix serves as a mitophagy receptor by recognizing autophagosomes. BNIP3L is initially known to clear the mitochondria during the development of reticulocytes. Recent studies indicated it also engages in a variety of physiological and pathological processes. In this review, we provide an overview of how BNIP3L induces mitophagy and discuss the biological functions of BNIP3L and its regulation at the molecular level. We further discuss current evidence indicating the involvement of BNIP3L-mediated mitophagy in human disease, particularly in cancer and neurological disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Wanqing Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yanrong Zheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Pan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xiaoli Wu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yang Yuan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Shijia Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Xingxian Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Jiaying Wu
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmacology Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Hei Y, Zhang X, Chen R, Zhou Y, Gao D, Liu W. High-Mobility Group Box 1 Neutralization Prevents Chronic Cerebral Hypoperfusion-Induced Optic Tract Injuries in the White Matter Associated with Down-regulation of Inflammatory Responses. Cell Mol Neurobiol 2019; 39:1051-1060. [PMID: 31197745 PMCID: PMC11457824 DOI: 10.1007/s10571-019-00702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs) are region-specific with the optic tract (OT) displaying the most severe damages and leading to visual-based behavioral impairment. Previously we have demonstrated that anti-high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) prevents CCH-induced hippocampal damages via inhibition of neuroinflammation. Here we tested the protective role of the Ab on CCH-induced OT injuries. Rats were treated with permanent occlusion of common carotid arteries (2-VO) or a sham surgery, and then administered with PBS, anti-HMGB1 Ab, or paired control Ab. Pupillary light reflex examination, visual water maze, and tapered beam-walking were performed 28 days post-surgery to investigate the behavioral deficits. Meanwhile, WMLs were measured by Klüver-Barrera (KB) and H&E staining, and glial activation was further assessed to evaluate inflammatory responses in OT. Results revealed that anti-HMGB1 Ab ameliorated the morphological damages (grade scores, vacuoles, and thickness) in OT area and preserved visual abilities. Additionally, the increased levels of inflammatory responses and expressions of TLR4 and NF-κB p65 and phosphorylated NF-κB p65 (p-p65) in OT area were partly down-regulated after anti-HMGB1 treatment. Taken together, these findings suggested that HMGB1 neutralization could ease OT injuries and visual-guided behavioral deficits via suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
11
|
Hei Y, Chen R, Mao X, Wang J, Long Q, Liu W. Neuregulin1 attenuates cognitive deficits and hippocampal CA1 neuronal apoptosis partly via ErbB4 receptor in a rat model of chronic cerebral hypoperfusion. Behav Brain Res 2019; 365:141-149. [PMID: 30826297 DOI: 10.1016/j.bbr.2019.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
Abstract
Neuregulin1 (NRG1) is an effective neuroprotectant. Previously we demonstrated that the expression of hippocampal NRG1/ErbB4 gradually decreased and correlates with neuronal apoptosis during chronic cerebral hypoperfusion (CCH). Here we aimed to further investigate the protective role of NRG1 in CCH. AG1478, an ErbB4 inhibitor, was used to explore the involvement of ErbB4 receptors in NRG1's action. Permanent bilateral common carotid artery occlusion (2VO) or sham operation was performed in Sprague-Dawley rats. NRG1 (100 μM) and AG1478 (50 mM) was administered intraventricularly. Eight weeks post-surgery, cognitive impairment was analyzed using Morris water maze (MWM) and radial arm water maze (RAWM) tests, followed by histological assessment of the survival and apoptosis of hippocampal CA1 neurons using NeuN and TUNEL immunostaining respectively. Expression of apoptosis-related proteins and ErbB4 activation (pErbB4/ErbB4) was evaluated by Western blotting. The results showed that NRG1 significantly improved the performances in MWM (spatial learning and memory) and RAWM (spatial working and reference memory), attenuated hippocampal CA1 neuronal loss and apoptosis, upregulated the expression of pErbB4/ErbB4 and the anti-apoptotic protein Bcl-2, and downregulated the expression of pro-apoptotic proteins of Cleaved (Cl)-caspase3 and Bax. In addition, the protective effects of NRG1 could be partly abolished by AG1478. Taken together, our study suggested that NRG1 ameliorates cognitive impairment and neuronal apoptosis partly via ErbB4 receptors in rats with CCH.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Xingang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Qianfa Long
- Department of Neurosurgery, Institute of Mini-invasive Neurosurgery and Translational Medicine, Xi'an Central Hospital, No. 185 Houzai Gate of North Street, Xi'an, 710003, PR China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China.
| |
Collapse
|
12
|
Kim MS, Choi BR, Lee YW, Kim DH, Han YS, Jeon WK, Han JS. Chronic Cerebral Hypoperfusion Induces Alterations of Matrix Metalloproteinase-9 and Angiopoietin-2 Levels in the Rat Hippocampus. Exp Neurobiol 2018; 27:299-308. [PMID: 30181692 PMCID: PMC6120965 DOI: 10.5607/en.2018.27.4.299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022] Open
Abstract
Angiogenic factors contribute to cerebral angiogenesis following cerebral hypoperfusion, and understanding these temporal changes is essential to developing effective treatments. The present study examined temporal alterations in angiogenesis-related matrix metalloproteinase-9 (MMP-9) and angiopoietin-2 (ANG-2) expression in the hippocampus following bilateral common carotid artery occlusion (BCCAo). Male Wistar rats (12 weeks of age) were randomly assigned to sham-operated control or experimental groups, and expression levels of MMP-9 and ANG-2 were assessed after BCCAo (1 week, 4 weeks, and 8 weeks), using western blotting. Protein expression increased 1 week after BCCAo and returned to control levels at 4 and 8 weeks. In addition, immunofluorescence staining demonstrated that the MMP-9- and ANG-2-positive signals were primarily observed in the NeuN-positive neurons with very little labeling in non-neuronal cells and no labeling in endothelial cells. In addition, these cellular locations of MMP-9- and ANG-2-positive signals were not altered over time following BCCAo. Other angiogenic factors such as vascular endothelial growth factor and hypoxia-inducible factor did not differ from controls at 1 week; however, expression of both factors increased at 4 and 8 weeks in the BCCAo group compared to the control group. Our findings increase understanding of alterations in angiogenic factors during the progression of cerebral angiogenesis and are relevant to developing effective temporally based therapeutic strategies for chronic cerebral hypoperfusion-associated neurological disorders such as vascular dementia.
Collapse
Affiliation(s)
- Min-Soo Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea.,Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yong Woo Lee
- Department of Biomedical Sciences and Pathobiology, School of Biomedical Engineering and Sciences, Virginia Tech, Virginia 24061, USA
| | - Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
13
|
Hei Y, Chen R, Yi X, Wei L, Long Q, Liu W. The Expression of Hippocampal NRG1/ErbB4 Correlates With Neuronal Apoptosis, but Not With Glial Activation During Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2018; 10:149. [PMID: 29875654 PMCID: PMC5974051 DOI: 10.3389/fnagi.2018.00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Permanent bilateral common carotid occlusion (2VO) is well-established to investigate the chronic cerebral hypoperfusion (CCH)-induced cognitive deficits. Besides, previous studies suggested that disturbance of Neuregulin1 (NRG1)/ErbB4 signaling is associated with cognitive impairments, as well as neuronal apoptosis and neuroinflammation in CNS. However, the expression pattern of hippocampal NRG1/ErbB4 has not been systematically investigated during CCH. Here, we aim to investigate the temporal changes of hippocampal NRG1/ErbB4 during CCH and their possible relationship with neuronal apoptosis and glial activation. Morris water maze (MWM) and Radial arm water maze (RAWM) tests were used to analyze cognitive impairment in 2VO rats at 28 days post-surgery, and Enzyme-Linked Immunosorbent Assay (ELISA), western blotting and immunostaining were performed at different time points (24 h, 7 days, 14 days, 28 days) to detect the expression pattern of NRG1/ErbB4 and the distribution of ErbB4. Neuronal nuclei (NeuN), NeuN/TUNEL, Iba1 and GFAP immunostaining and caspase activity in hippocampal CA1 subarea were assessed during CCH as well. We found that the expression of NRG1 and phosphorylated ErbB4 (pErbB4)/ErbB4 changed in a time-dependent manner (up-regulated in the acute phase and then decreased in the chronic phase of CCH). Besides, ErbB4-expressed neurons and selective types of GABAergic cells decreased after CCH, but the distribution pattern of ErbB4 remained unchanged. In addition, the expression of hippocampal NRG1/ErbB4 positively correlated with the level of neuronal apoptosis (both NeuN/TUNEL immunostaining and caspase-3 activity), but not with glial activation according to Pearson’s correlation. These findings indicated that hippocampal NRG1/ErbB4 may be involved in the pathogenesis of CCH, especially neuronal apoptosis during CCH.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xicai Yi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lizhou Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianfa Long
- Department of Neurosurgery, Institute of Mini-invasive Neurosurgery and Translational Medicine, Xi'an Central Hospital, Xi'an, China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Zhang Y, Yang K, Wang T, Li W, Jin X, Liu W. Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein. Front Cell Neurosci 2017; 11:293. [PMID: 28979191 PMCID: PMC5611384 DOI: 10.3389/fncel.2017.00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022] Open
Abstract
Neuregulin receptor degradation protein-1 (Nrdp1) is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12) cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD) treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO) and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8) in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.
Collapse
Affiliation(s)
- Yuan Zhang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Department of Pathophysiology, Baotou Medical CollegeBaotou, China
| | - Ke Yang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Ting Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China
| | - Weiping Li
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai UniversityYantai, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, Graduate School of Guangzhou Medical UniversityShenzhen, China.,Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhen, China
| |
Collapse
|
15
|
Li C, Zhang T, Yu K, Xie H, Bai Y, Zhang L, Wu Y, Wang N. Neuroprotective effect of electroacupuncture and upregulation of hypoxia-inducible factor-1α during acute ischaemic stroke in rats. Acupunct Med 2017; 35:360-365. [PMID: 28536255 DOI: 10.1136/acupmed-2016-011148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acupuncture is a traditional method that has been widely used in various fields of medicine with therapeutic effect. However, evidence of effectiveness to support the application of electroacupuncture (EA) during the process of ischaemia is scarce. OBJECTIVES To investigate dynamic changes in hypoxia-inducible factor (HIF)-1α expression as well as its association with neurological status in rats subjected to acute ischaemic stroke and EA intervention. METHODS Forty adult male rats were randomly divided into three groups that received sham surgery (Control group, n=10) or underwent middle cerebral artery occlusion and EA (MCAO+EA group, n=15) or minimal acupuncture as a control treatment (MCAO+MA group, n=15). The rats in the MCAO+EA and MCAO+MA groups received EA or acupuncture without any electrical current, respectively, during 90 min of ischaemia. Rats in the Control group received the same surgical procedure but without MCAO. EA involved electrical stimulation of needles inserted into the quadriceps at 50 Hz frequency and 3 mA current intensity. Neurological status was evaluated on postoperative day 1, and cerebral infarction volume (IV) and HIF-1α expression 24 hours later. RESULTS Neurological scores were improved and cerebral IV was decreased in the MCAO+EA group compared to the MCAO+MA group (both p<0.05). Moreover, HIF-1α expression was higher in the MCAO+EA group versus the MCAO+MA group (p<0.05). CONCLUSIONS EA enhanced recovery of neurological function, decreased cerebral IV and increased HIF-1α expression in ischaemic rats. Further research is needed to determine whether EA is effective for stroke treatment through the stimulation of muscle contraction.
Collapse
Affiliation(s)
- Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Tingting Zhang
- Acupuncture and Tuina College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| |
Collapse
|
16
|
Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion. Int J Mol Sci 2017; 18:ijms18010003. [PMID: 28106731 PMCID: PMC5297638 DOI: 10.3390/ijms18010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/16/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH) triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs), were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.
Collapse
|
17
|
Yue Y, Jiang H, Yin Y, Zhang Y, Liang J, Li S, Wang J, Lu J, Geng D, Wu A, Yuan Y. The Role of Neuropeptide Y mRNA Expression Level in Distinguishing Different Types of Depression. Front Aging Neurosci 2016; 8:323. [PMID: 28082897 PMCID: PMC5186760 DOI: 10.3389/fnagi.2016.00323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/13/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies demonstrate that the protein of neuropeptide Y (NPY) is abnormal in depression patients, but the changes of NPY in different types of depression are unclear. This study was aimed to examine protein and mRNA expression levels of NPY in 159 cases with four groups including post-stroke depression (PSD) group, stroke without depression (Non-PSD) group, major depressive disorder (MDD) group and normal control (NC) group. The protein and gene expression analysis were performed by enzyme-linked immunosorbent assay (ELISA) and quantitative polymerase chain reaction-based methods. One way analysis of variance (ANOVA), chi-square tests and nonparametric test were used to evaluate general characteristics, clinical and biological materials. In order to explore the role of NPY in different types of depression, the partial correlations, binary logistic regression analysis and receiver operating characteristic (ROC) curve were calculated for PSD and MDD groups. There are significant differences of NPY protein (Fdf(3) = 5.167, P = 0.002) and mRNA expression levels (χKruskal2-Wallis, df(3) = 20.541, P < 0.001) among four groups. Bonferroni multiple comparisons found that the NPY protein was significantly decreased in PSD (FBonferroni = −7.133, P = 0.002) and Non-PSD group (FBonferroni = −5.612, P = 0.018) compared with NC group. However, contrasted with MDD group, the mRNA expression was increased in PSD and Non-PSD group by nonparametric test (all P < 0.05). In binary logistic analyses, NPY mRNA expression was independent predictors of PSD (odds ratio: 1.452, 95% CI, 1.081–1.951, P = 0.013). The ROC curve showed NPY mRNA had a general prognostic accuracy (area under the curve: 0.766, 95% CI, 0.656–0.876, P < 0.001). This is the first study to explore the distinguishing function of NPY in different types of depression. It will provide help in the identification of different subtypes of depression.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Yuqun Zhang
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Jinfeng Liang
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Shenghua Li
- Department of Neurology, Jiangning Nanjing Hospital Nanjing, China
| | - Jun Wang
- Department of Neurology, The Affiliated Nanjing Hospital of Nanjing Medical University Nanjing, China
| | - Jianxin Lu
- Department of Neurology, Gaochun County People's Hospital Nanjing, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College Xuzhou, China
| | - Aiqin Wu
- Department of Psychosomatics, The First Affiliated Hospital of Suzhou University Suzhou, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatic Medicine, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| |
Collapse
|
18
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
19
|
Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 2016; 95:943-972. [PMID: 27350397 DOI: 10.1002/jnr.23777] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
Abstract
Aging, hypertension, diabetes, hypoxia/obstructive sleep apnea (OSA), obesity, vitamin B12/folate deficiency, depression, and traumatic brain injury synergistically promote diverse pathological mechanisms including cerebral hypoperfusion and glucose hypometabolism. These risk factors trigger neuroinflammation and oxidative-nitrosative stress that in turn decrease nitric oxide and enhance endothelin, Amyloid-β deposition, cerebral amyloid angiopathy, and blood-brain barrier disruption. Proinflammatory cytokines, endothelin-1, and oxidative-nitrosative stress trigger several pathological feedforward and feedback loops. These upstream factors persist in the brain for decades, upregulating amyloid and tau, before the cognitive decline. These cascades lead to neuronal Ca2+ increase, neurodegeneration, cognitive/memory decline, and Alzheimer's disease (AD). However, strategies are available to attenuate cerebral hypoperfusion and glucose hypometabolism and ameliorate cognitive decline. AD is the leading cause of dementia among the elderly. There is significant evidence that pathways involving inflammation and oxidative-nitrosative stress (ONS) play a key pathophysiological role in promoting cognitive dysfunction. Aging and several comorbid conditions mentioned above promote diverse pathologies. These include inflammation, ONS, hypoperfusion, and hypometabolism in the brain. In AD, chronic cerebral hypoperfusion and glucose hypometabolism precede decades before the cognitive decline. These comorbid disease conditions may share and synergistically activate these pathophysiological pathways. Inflammation upregulates cerebrovascular pathology through proinflammatory cytokines, endothelin-1, and nitric oxide (NO). Inflammation-triggered ONS promotes long-term damage involving fatty acids, proteins, DNA, and mitochondria; these amplify and perpetuate several feedforward and feedback pathological loops. The latter includes dysfunctional energy metabolism (compromised mitochondrial ATP production), amyloid-β generation, endothelial dysfunction, and blood-brain-barrier disruption. These lead to decreased cerebral blood flow and chronic cerebral hypoperfusion- that would modulate metabolic dysfunction and neurodegeneration. In essence, hypoperfusion deprives the brain from its two paramount trophic substances, viz., oxygen and nutrients. Consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, leading to both gray and white matter atrophy, cognitive dysfunction, and AD. This Review underscores the importance of treating the above-mentioned comorbid disease conditions to attenuate inflammation and ONS and ameliorate decreased cerebral blood flow and hypometabolism. Additionally, several strategies are described here to control chronic hypoperfusion of the brain and enhance cognition. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE Dept/MSE, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Yang Y, Zhang J, Xiong L, Deng M, Wang J, Xin J, Liu H. Cognitive Improvement Induced by Environment Enrichment in Chronic Cerebral Hypoperfusion Rats: a Result of Upregulated Endogenous Neuroprotection? J Mol Neurosci 2015; 56:278-89. [PMID: 25725787 DOI: 10.1007/s12031-015-0529-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Environment enrichment (EE) has been demonstrated to improve the cognitive impairment that is induced by chronic cerebral hypoperfusion (CCH), but the underlying mechanism has not yet been elucidated. This study aimed to investigate the role of endogenous neuroprotection in EE-induced cognitive improvement in rats with CCH. Permanent bilateral common carotid artery occlusions (2-vessel occlusions (2VOs)) were performed to induce CCH in male adult Wistar rats. Four weeks after the surgeries, the rats were exposed to enriched environments for 4 weeks (6 h/day). Subsequently, we assessed the effects of EE on cognitive function, brain histone acetylation levels, neuroprotection-related transcription factors (i.e., cAMP response element-binding protein (CREB), phospho-CREB (p-CREB), hypoxia-inducible factor 1 (HIF-1) α, and nuclear regulatory factor 2 (Nrf2)), and oxidative stress and histological changes in the brain. After 2VO, the rats exposed to the EE treatment exhibited increased acetylation of histone 4 and increased p-CREB and Nrf2 protein levels in the brain. HIF-1α levels were increased after 2VO and reduced after EE treatment. The oxidative damage, histopathological changes in the brain, and spatial learning and memory impairments induced by 2VO were subsequently restored after EE treatment. These data indicate that EE promotes the acetylation of histone 4, regulates some neuroprotection-related transcription factors, attenuates oxidative damage, and protects against the histopathological damage to the brain induced by CCH. Together, the effects of EE in CCH rats might contribute to the recovery of spatial learning and memory.
Collapse
Affiliation(s)
- Ying Yang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, Wuhan, 430071, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Hou X, Liang X, Chen JF, Zheng J. Ecto-5'-nucleotidase (CD73) is involved in chronic cerebral hypoperfusion-induced white matter lesions and cognitive impairment by regulating glial cell activation and pro-inflammatory cytokines. Neuroscience 2015; 297:118-26. [PMID: 25805696 DOI: 10.1016/j.neuroscience.2015.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 01/27/2023]
Abstract
Recent studies have demonstrated that inflammatory and immune mechanisms play important roles in the progression of chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs). As an endogenous neuromodulator in the brain, the extracellular levels of adenosine represent a critical endogenous mechanism for the regulation of immune and inflammatory responses. Ecto-5'-nucleotidase (CD73), which dephosphorylates AMP to adenosine, is considered to catalyze the rate-limiting step in the generation of extracellular adenosine. However, the role of CD73 in the development of CCH-induced WMLs remains unclear. In the present study, we investigated the expression and activity of CD73 using immunohistochemistry, Western blot analysis and measurements of the rate of AMP hydrolysis in a mouse model of CCH via bilateral common carotid artery stenosis (BCAS) surgery. Moreover, C57BL/6-CD73 knockout (KO) and their wild-type littermates were subjected to BCAS surgery to further investigate the functional roles of CD73 in the WMLs. White matter (WM) changes, astrocyte and microglia proliferation, proinflammatory cytokine levels in the corpus callosum and cognitive function were assessed on the 30th day after BCAS. The results indicated that CD73 expression and activities significantly increased in the corpus callosum on the 30th day after BCAS. Moreover, CD73 deficiency exacerbated CCH-induced WMLs and cognitive impairment. More reactive astrocytes and microglia were observed in the corpus callosum in CD73-KO mice. CD73 deficiency significantly increased the levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the BCAS model of CCH. These findings suggest that CD73 plays a protective role in the development of CCH-induced WMLs and cognitive impairment via the regulation of glial cell activation and proinflammatory cytokine expression.
Collapse
Affiliation(s)
- X Hou
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - X Liang
- Department of Cardiology, Kunming General Hospital of Chengdu Military Command, Yunnan, China
| | - J-F Chen
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, C329, Boston, MA 02118, USA.
| | - J Zheng
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
22
|
Bag MJ, Sáez T, Varas J, Vallejos H, Meléndez D, Salas S, Quiroga Y, Villagrán F, Montedonico S. Surgical acquired aganglionosis: myth or reality? Pediatr Surg Int 2014; 30:797-802. [PMID: 25023942 DOI: 10.1007/s00383-014-3539-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE A number of patients operated on for Hirschsprung disease continue to have constipation and abdominal distension for years after surgery. Some authors have proposed that ischemia during surgery may induce secondary aganglionosis. The aim of the present study was to study the effects of ischemia on the enteric nervous system of sigmoid colon in an animal model. METHODS A surgical model of colonic ischemia was created. 34 adult Sprague-Dawley rats underwent a laparotomy where the marginal arterioles of the sigmoid colon were ligated. After that, a section in the middle segment of the sigmoid colon was performed followed by an anastomosis. The presence of ischemia was assessed by measurement of visible light spectroscopy tissue oximetry and histological examination. Colonic function was assessed by evaluation of stool weight. Rats were killed at 1, 8 and 12 weeks after the operation. 12 rats were sham-operated. Enteric nervous system was evaluated by means of immunohistochemistry with NGFR p75. Quantitative analysis of the number of ganglia and ganglion cells in the myenteric plexus was performed. RESULTS The surgical model of colonic ischemia significantly decreased tissue oxygenation (pre-surgical = 54.69 ± 7.32 %; post-surgical = 27.37 ± 9.2 %; p < 0.001). There was no disturbance in body-weight gaining in experimental groups and daily stool output did not vary after surgery (pre-surgical = 4.24 ± 0.94 g; post-surgical = 3.82 ± 1 g; p = 0.09). All experimental groups showed persistent ganglia. However, there was a significant decrease in the number of ganglia in all the experimental groups compared to control (1w: 45.91 ± 7.66; 8w: 44.17 ± 10.56; 12w: 36.17 ± 15.06 vs control: 56.88 ± 8.66; p < 0.01). The number of total ganglion cells was significantly reduced only in the experimental group killed at week 12 compared to control (1w: 539 ± 167.58; 8w: 488.58 ± 154.41; 12w: 343.94 ± 161.91 vs control: 513.96 ± 126.97; p < 0.01). The rate of ganglion cells per ganglia was significantly higher in the groups killed at week 1 and 8 versus control group (1w: 11.63 ± 2.53; 8w: 11.11 ± 2.56; 12w: 9.34 ± 1.16 vs control: 9.02 ± 1.81; p < 0.05). CONCLUSION Long-term follow-up after surgically induced colonic ischemia in the rat showed a decreased number of ganglion cells and ganglia. Nevertheless, it did not produce aganglionosis.
Collapse
Affiliation(s)
- M J Bag
- Departamento de Ciencias Biomédicas, Edificio Bruno Günther, Escuela de Medicina, Universidad de Valparaíso, Hontaneda, 2664, Valparaiso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|