1
|
Giatti S, Cioffi L, Diviccaro S, Chrostek G, Piazza R, Melcangi RC. Transcriptomic Profile of the Male Rat Hypothalamus and Nucleus Accumbens After Paroxetine Treatment and Withdrawal: Possible Causes of Sexual Dysfunction. Mol Neurobiol 2025; 62:4935-4951. [PMID: 39495228 DOI: 10.1007/s12035-024-04592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Paroxetine, a selective serotonin reuptake inhibitor (SSRI), may induce sexual dysfunction during treatment and upon discontinuation. The mechanisms involved have been poorly explored so far. We have analyzed, by RNA sequencing, the whole transcriptomic profile in the hypothalamus and nucleus accumbens (NAc) (two brain regions involved in sexual behavior) of male rats daily treated for 2 weeks with paroxetine (T0) and at 1 month of withdrawal (T1). Data here reported show seven differentially expressed genes (DEGs) at T0 and 1 at T1 in the hypothalamus and 245 at T0 and 6 at T1 in the NAc. In addition, Gene-Set Enrichment, Gene Ontology, and Reactome analyses confirm that inflammatory signature and immune system activation were present at T0 in both brain areas. Considering that inflammation is generally associated with depression and that no paradigms inducing the pathology were here applied, these SSRI pro-depressive effects should be considered in patients without a clear indication of depression. Moreover, DEGs related to neurotransmitters with a role in sexual behavior and the reward system, such as dopamine (e.g., sialyltransferase 8B-ST8SIA3), glutamate (e.g., glutamate receptor ionotropic delta-2-GRID2) and GABA (e.g., glutamate decarboxylase type 2-GAD2) or associated with neurexin and neuroligin pathways and brain-derived neurotrophic factor (BDNF) signaling, were reported to be dysregulated in the NAc, further confirming dysfunction in this brain area. Interestingly, the analysis of DEGs altered at T1 in the NAc confirms the persistence of some of these side effects providing further information for post-SSRI sexual dysfunction (PSSD) etiopathogenesis.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Lucia Cioffi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Gabriela Chrostek
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Rocco Piazza
- Dipartimento Di Medicina E Chirurgia, Università Di Milano-Bicocca, Milan, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, "Rodolfo Paoletti", Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
2
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Sun Y, Peng Z, Wei X, Zhang N, Huang CS, Wallner M, Mody I, Houser CR. Virally-induced expression of GABAA receptor δ subunits following their pathological loss reveals their role in regulating GABAA receptor assembly. Prog Neurobiol 2022; 218:102337. [PMID: 35934131 PMCID: PMC10091858 DOI: 10.1016/j.pneurobio.2022.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022]
Abstract
Decreased expression of the δ subunit of the GABAA receptor (GABAAR) has been found in the dentate gyrus in several animal models of epilepsy and other disorders with increased excitability and is associated with altered modulation of tonic inhibition in dentate granule cells (GCs). In contrast, other GABAAR subunits, including α4 and γ2 subunits, are increased, but the relationship between these changes is unclear. The goals of this study were to determine if viral transfection of δ subunits in dentate GCs could increase δ subunit expression, alter expression of potentially-related GABAAR subunits, and restore more normal network excitability in the dentate gyrus in a mouse model of epilepsy. Pilocarpine-induced seizures were elicited in DOCK10-Cre mice that express Cre selectively in dentate GCs, and two weeks later the mice were injected unilaterally with a Cre-dependent δ-GABAAR viral vector. At 4-6 weeks following transfection, δ subunit immunolabeling was substantially increased in dentate GCs on the transfected side compared to the nontransfected side. Importantly, α4 and γ2 subunit labeling was downregulated on the transfected side. Electrophysiological studies revealed enhanced tonic inhibition, decreased network excitability, and increased neurosteroid sensitivity in slices from the δ subunit-transfected side compared to those from the nontransfected side of the same pilocarpine-treated animal, consistent with the formation of δ subunit-containing GABAARs. No differences were observed between sides of eYFP-transfected animals. These findings are consistent with the idea that altering expression of key subunits, such as the δ subunit, regulates GABAAR subunit assemblies, resulting in substantial effects on network excitability.
Collapse
|
4
|
Rudolph S, Guo C, Pashkovski SL, Osorno T, Gillis WF, Krauss JM, Nyitrai H, Flaquer I, El-Rifai M, Datta SR, Regehr WG. Cerebellum-Specific Deletion of the GABA A Receptor δ Subunit Leads to Sex-Specific Disruption of Behavior. Cell Rep 2021; 33:108338. [PMID: 33147470 PMCID: PMC7700496 DOI: 10.1016/j.celrep.2020.108338] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias. Rudolph et al. show that deletion of the neuromodulator and hormone-sensitive δGABAA receptor subunit from cerebellar granule cells results in anxiety-like behaviors and female-specific deficits in social behavior and maternal care. δGABAA deletion is associated with hyperexcitability of the cerebellar input layer and altered activation of many stress-related brain regions.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Osorno
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Winthrop F Gillis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy M Krauss
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajnalka Nyitrai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Monesson-Olson B, McClain JJ, Case AE, Dorman HE, Turkewitz DR, Steiner AB, Downes GB. Expression of the eight GABAA receptor α subunits in the developing zebrafish central nervous system. PLoS One 2018; 13:e0196083. [PMID: 29702678 PMCID: PMC5922542 DOI: 10.1371/journal.pone.0196083] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/05/2018] [Indexed: 11/26/2022] Open
Abstract
GABA is a robust regulator of both developing and mature neural networks. It exerts many of its effects through GABAA receptors, which are heteropentamers assembled from a large array of subunits encoded by distinct genes. In mammals, there are 19 different GABAA subunit types, which are divided into the α, β, γ, δ, ε, π, θ and ρ subfamilies. The immense diversity of GABAA receptors is not fully understood. However, it is known that specific isoforms, with their distinct biophysical properties and expression profiles, tune responses to GABA. Although larval zebrafish are well-established as a model system for neural circuit analysis, little is known about GABAA receptors diversity and expression in this system. Here, using database analysis, we show that the zebrafish genome contains at least 23 subunits. All but the mammalian θ and ε subunits have at least one zebrafish ortholog, while five mammalian GABAA receptor subunits have two zebrafish orthologs. Zebrafish contain one subunit, β4, which does not have a clear mammalian ortholog. Similar to mammalian GABAA receptors, the zebrafish α subfamily is the largest and most diverse of the subfamilies. In zebrafish there are eight α subunits, and RNA in situ hybridization across early zebrafish development revealed that they demonstrate distinct patterns of expression in the brain, spinal cord, and retina. Some subunits were very broadly distributed, whereas others were restricted to small populations of cells. Subunit-specific expression patterns in zebrafish resembled were those found in frogs and rodents, which suggests that the roles of different GABAA receptor isoforms are largely conserved among vertebrates. This study provides a platform to examine isoform specific roles of GABAA receptors within zebrafish neural circuits and it highlights the potential of this system to better understand the remarkable heterogeneity of GABAA receptors.
Collapse
Affiliation(s)
- Bryan Monesson-Olson
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, United States of America
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Jon J. McClain
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Abigail E. Case
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Hanna E. Dorman
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Daniel R. Turkewitz
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY, United States of America
| | - Aaron B. Steiner
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY, United States of America
| | - Gerald B. Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA, United States of America
- Biology Department, University of Massachusetts, Amherst, MA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chen YW, Actor-Engel H, Aoki C. α4-GABA A receptors of hippocampal pyramidal neurons are associated with resilience against activity-based anorexia for adolescent female mice but not for males. Mol Cell Neurosci 2018; 90:33-48. [PMID: 29684457 PMCID: PMC6197931 DOI: 10.1016/j.mcn.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022] Open
Abstract
Activity-based anorexia (ABA) is an animal model of anorexia nervosa, a mental illness with highest mortality and with onset that is most frequently during adolescence. We questioned whether vulnerability of adolescent mice to ABA differs between sexes and whether individual differences in resilience are causally linked to α4βδ-GABAAR expression. C57BL6/J WT and α4-KO adolescent male and female mice underwent ABA induction by combining wheel access with food restriction. ABA vulnerability was measured as the extent of food restriction-evoked hyperactivity on a running wheel and body weight losses. α4βδ-GABAAR levels at plasma membranes of pyramidal cells in dorsal hippocampus were assessed by electron microscopic immunocytochemistry. Temporal patterns and extent of weight loss during ABA induction were similar between sexes. Both sexes also exhibited individual differences in ABA vulnerability. Correlation analyses revealed that, for both sexes, body weight changes precede and thus are likely to drive suppression of wheel running. However, the suppression was during the food-anticipatory hours for males, while for females, suppression was delayed by a day and during food-access hours. Correspondingly, only females adaptively increased food intake. ABA induced up-regulation of α4βδ-GABAARs at plasma membranes of dorsal hippocampal pyramidal cells of females, and especially those females exhibiting resilience. Conversely, α4-KO females exhibited greater food restriction-evoked hyperactivity than WT females. In contrast, ABA males did not up-regulate α4βδ-GABAARs, did not exhibit genotype differences in vulnerability, and exhibited no correlation between plasmalemmal α4βδ-GABAARs and ABA resilience. Thus, food restriction-evoked hyperactivity is driven by anxiety but can be suppressed through upregulation of hippocampal α4βδ-GABAARs for females but not for males. This knowledge of sex-related differences in the underlying mechanisms of resilience to ABA indicates that drugs targeting α4βδ-GABAARs may be helpful for treating stress-induced anxiety and anorexia nervosa of females but not males.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Hannah Actor-Engel
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY 10003, United States; Neuroscience Institute, Langone Medical Center, New York University, New York, NY, 10016, United States.
| |
Collapse
|
7
|
Pan M, Zhou Y, Wang Y, Li L, Song Y, Hou L, Zhao J. Screening and Identification of the Host Proteins Interacting with Toxoplasma gondii Rhoptry Protein ROP16. Front Microbiol 2017; 8:2408. [PMID: 29255456 PMCID: PMC5722834 DOI: 10.3389/fmicb.2017.02408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Toxoplasma gondii, as a zoonotic protozoan parasite, develops sophisticated strategies to manipulate hosts for efficient intracellular survival. After successful invasion, T. gondii injects many effector proteins into host cells for various purposes. TgROP16 (T. gondii rhoptry protein 16), which is secreted from rhoptries into host cells, can activate the host STAT (signal transducer and activator of transcription) signaling pathway through phosphorylation of STAT3 and STAT6. However, whether there are other host proteins modulated by TgROP16 is currently unknown. In this study, yeast two-hybrid (Y2H) screen was used to look for additional host proteins interacting with TgROP16. Yeast cells expressing a mouse cDNA library cloned into the prey vector were used to mate with yeasts expressing ROP16 without signal peptide. Two mouse proteins, Dnaja1 (DnaJ heat shock protein family member A1) and Gabra4 (gamma-aminobutyric acid A receptor, subunit alpha 4) were identified to interact with ROP16 from this screen. Further analysis suggested that the Predomain of ROP16 played key roles in mediating interactions with these host proteins, whereas the contribution from the Kinase domain was minor. The interactions between Dnaja1 and different parts of ROP16 were also estimated in vivo by co-immunoprecipitation. The results showed that the Predomain of ROP16 was the major region to interact with Dnaja1, which is consistent with the Y2H results. Based on the gene ontology analysis, Dnaja1 is predicted to participate in stress response while Gabra4 is involved in the system development process. The discovery of new host proteins that interact with ROP16 of T. gondii will help us to further investigate the functions of this effector proteins during T. gondii infection.
Collapse
Affiliation(s)
- Ming Pan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Longjiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongle Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lun Hou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory for Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
8
|
Decreased surface expression of the δ subunit of the GABA A receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome. Exp Neurol 2017; 297:168-178. [PMID: 28822839 DOI: 10.1016/j.expneurol.2017.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
Abstract
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABAA receptors (GABAARs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABAAR, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABAARs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABAAR could be a novel approach to treatment of hyperexcitability-related alterations in FXS.
Collapse
|
9
|
Afroz S, Shen H, Smith SS. α4βδ GABA A receptors reduce dendritic spine density in CA1 hippocampus and impair relearning ability of adolescent female mice: Effects of a GABA agonist and a stress steroid. Neuroscience 2017; 347:22-35. [PMID: 28189613 DOI: 10.1016/j.neuroscience.2017.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/22/2017] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
Abstract
Synaptic pruning underlies the transition from an immature to an adult CNS through refinements of neuronal circuits. Our recent study indicates that pubertal synaptic pruning is triggered by the inhibition generated by extrasynaptic α4βδ GABAA receptors (GABARs) which are increased for 10 d on dendritic spines of CA1 pyramidal cells at the onset of puberty (PND 35-44) in the female mouse, suggesting α4βδ GABARs as a novel target for the regulation of adolescent synaptic pruning. In the present study we used a pharmacological approach to further examine the role of these receptors in altering spine density during puberty of female mice and the impact of these changes on spatial learning, assessed in adulthood. Two drugs were chronically administered during the pubertal period (PND 35-44): the GABA agonist gaboxadol (GBX, 0.1mg/kg, i.p.), to enhance current gated by α4βδ GABARs and the neurosteroid/stress steroid THP (3α-OH-5β-pregnan-20-one, 10mg/kg, i.p.) to decrease expression of α4βδ. Spine density was determined on PND 56 with Golgi staining. Spatial learning and relearning were assessed using the multiple object relocation task and an active place avoidance task on PND 56. Pubertal GBX decreased spine density post-pubertally by 70% (P<0.05), while decreasing α4βδ expression with THP increased spine density by twofold (P<0.05), in both cases, with greatest effects on the mushroom spines. Adult relearning ability was compromised in both hippocampus-dependent tasks after pubertal administration of either drug. These findings suggest that an optimal spine density produced by α4βδ GABARs is necessary for optimal cognition in adults.
Collapse
Affiliation(s)
- Sonia Afroz
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
10
|
Shen H, Sabaliauskas N, Yang L, Aoki C, Smith SS. Role of α4-containing GABA A receptors in limiting synaptic plasticity and spatial learning of female mice during the pubertal period. Brain Res 2016; 1654:116-122. [PMID: 26826007 DOI: 10.1016/j.brainres.2016.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
Expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty on dendritic spines of CA1 hippocampal pyramidal cells. These receptors reduce activation of NMDA receptors (NMDARs), impair induction of long-term potentiation (LTP) and reduce hippocampal-dependent spatial learning. These effects are not seen in the δ-/- mouse, implicating α4βδ GABARs. Here we show that knock-out of α4 also restores synaptic plasticity and spatial learning in female mice at the onset of puberty (verified by vaginal opening). To this end, field excitatory post-synaptic potentials (fEPSPs) were recorded from the stratum radiatum of CA1 hippocampus in the slice from +/+ and α4-/- pubertal mice (PND 35-44). Induction of LTP, in response to stimulation of the Schaffer collaterals with theta burst stimulation (TBS), was unsuccessful in the +/+ hippocampus, but reinstated by α4 knock-out (~65% potentiation) but not by blockade of α5-GABARs with L-655,708 (50nM). In order to compare spatial learning in the two groups of mice, animals were trained in an active place avoidance task where the latency to first enter a shock zone is a measure of learning. α4-/- mice had significantly longer latencies by the third learning trial, suggesting better spatial learning, compared to +/+ animals, who did not reach the criterion for learning (120s latency). These findings suggest that knock-out of the GABAR α4 subunit restores synaptic plasticity and spatial learning at puberty and is consistent with the concept that the dendritic α4βδ GABARs which emerge at puberty selectively impair CNS plasticity. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070 China; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Nicole Sabaliauskas
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Lie Yang
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| |
Collapse
|
11
|
Werner DF, Porcu P, Boyd KN, O'Buckley TK, Carter JM, Kumar S, Morrow AL. Ethanol-induced GABAA receptor alpha4 subunit plasticity involves phosphorylation and neuroactive steroids. Mol Cell Neurosci 2016; 72:1-8. [PMID: 26805653 DOI: 10.1016/j.mcn.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022] Open
Abstract
GABAA receptors containing α4 subunits are widely implicated in acute ethanol sensitivity, and their spatial and temporal regulation prominently contributes to ethanol-induced neuroplasticity in hippocampus and cortex. However, it is unknown if α4-containing GABAA receptors in the thalamus, an area of high α4 expression, display similar regulatory patterns following ethanol administration, and if so, by which molecular mechanisms. In the current study, thalamic GABAA receptor α4 subunit levels were increased following a 6-week-, but not a 2-week chronic ethanol diet. Following acute high-dose ethanol administration, thalamic GABAA receptor α4 subunit levels were regulated in a temporal fashion, as a decrease was observed at 2h followed by a delayed transient increase. PKCγ and PKCδ levels paralleled α4 temporal expression patterns following ethanol exposure. Initial decreases in α4 subunit expression were associated with reduced serine phosphorylation. Delayed increases in expression were not associated with a change in phosphorylation state, but were prevented by inhibiting neuroactive steroid production with the 5α-reductase inhibitor finasteride. Overall, these studies indicate that thalamic GABAA receptor α4 subunit expression following acute and chronic ethanol administration exhibits similar regulatory patterns as other regions and that transient expression patterns following acute exposure in vivo are likely dependent on both subunit phosphorylation state and neuroactive steroids.
Collapse
Affiliation(s)
- David F Werner
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA.
| | - Patrizia Porcu
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Kevin N Boyd
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA
| | - Jenna M Carter
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, NY 13902, USA
| | - Sandeep Kumar
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
12
|
Kuver A, Smith SS. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Res Bull 2015; 120:131-43. [PMID: 26592470 DOI: 10.1016/j.brainresbull.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.
Collapse
Affiliation(s)
- Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|
13
|
Mathews MA, Murray A, Wijesinghe R, Cullen K, Tung VWK, Camp AJ. Efferent Vestibular Neurons Show Homogenous Discharge Output But Heterogeneous Synaptic Input Profile In Vitro. PLoS One 2015; 10:e0139548. [PMID: 26422206 PMCID: PMC4589407 DOI: 10.1371/journal.pone.0139548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of our sense of balance we still know remarkably little about the central control of the peripheral balance system. While previous work has shown that activation of the efferent vestibular system results in modulation of afferent vestibular neuron discharge, the intrinsic and synaptic properties of efferent neurons themselves are largely unknown. Here we substantiate the location of the efferent vestibular nucleus (EVN) in the mouse, before characterizing the input and output properties of EVN neurons in vitro. We made transverse serial sections through the brainstem of 4-week-old mice, and performed immunohistochemistry for calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT), both expressed in the EVN of other species. We also injected fluorogold into the posterior canal and retrogradely labelled neurons in the EVN of ChAT:: tdTomato mice expressing tdTomato in all cholinergic neurons. As expected the EVN lies dorsolateral to the genu of the facial nerve (CNVII). We then made whole-cell current-, and voltage-clamp recordings from visually identified EVN neurons. In current-clamp, EVN neurons display a homogeneous discharge pattern. This is characterized by a high frequency burst of action potentials at the onset of a depolarizing stimulus and the offset of a hyperpolarizing stimulus that is mediated by T-type calcium channels. In voltage-clamp, EVN neurons receive either exclusively excitatory or inhibitory inputs, or a combination of both. Despite this heterogeneous mixture of inputs, we show that synaptic inputs onto EVN neurons are predominantly excitatory. Together these findings suggest that the inputs onto EVN neurons, and more specifically the origin of these inputs may underlie EVN neuron function.
Collapse
Affiliation(s)
- Miranda A. Mathews
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Murray
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States of America
| | - Rajiv Wijesinghe
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen Cullen
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria W. K. Tung
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Aaron J. Camp
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|