1
|
Zhang N, Bo N, Wang Y, Bai W, Sun W, Zhao Z, Zhang Y, Zhang Y, Lei L, Zhou J, Zhang W. Maternal benzo[a]pyrene exposure during critical gestational periods impairs offspring neurological development in rats: a mechanistic study of the Wnt/β-catenin signaling pathway. Front Behav Neurosci 2025; 19:1571122. [PMID: 40343177 PMCID: PMC12058798 DOI: 10.3389/fnbeh.2025.1571122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Mid-gestation is a critical period for the development of the nervous system. Exposure to exogenous harmful chemicals during this period may lead to longterm neurological developmental abnormalities in offspring. Benzo[a]pyrene (B[a]P) is a commonly occurring neurotoxic environmental pollutant that can pass through the placental barrier and blood-brain barrier (BBB), thereby affecting placental nerve development. Methods To investigate the neurotoxic mechanism of B[a]P on offspring exposed in mid-gestation, pregnant rats were exposed to B[a]P (25 mg/kg) from gestation days 8 to 14. Meanwhile, as an agonist of Wnt/β-catenin signaling pathway, lithium chloride (LiCl) was administered to observe the intervention effects. Results The results showed that in rats exposed to B[a]P in mid-gestation, the developmental nodes of the offspring were delayed, and the neurosensory sensitivity of the offspring was reduced. These offspring also had cognitive impairments in adulthood. Subsequent morphological and protein experiments showed that the exposed offspring had reduced neuronal complexity in the CA1 region of the hippocampus, decreased β-catenin expression, and increased GSK-3β expression in the hippocampal tissue. However, all these indexes can be reversed by LiCl. Discussion These results suggest that B[a]P exposed in mid-gestation pregnancy may lead to neurological damage in the offspring by downregulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Nan Bo
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yuanhao Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wenlin Bai
- Department of Children and Adolescences Health, School of Public Health, Taiyuan, China
| | - Wen Sun
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell and Regenerative Medicine, Shenzhen, China
| | - Yuanbao Zhang
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, China
| | - Yingying Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenping Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
- Research Centre of Environmental Pollution and Major Chronic Diseases Epidemiology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Physiology, Taiyuan, China
| |
Collapse
|
2
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
3
|
Guan Z, Weng X, Zhang L, Feng P. Association between polycyclic aromatic hydrocarbon exposure and cognitive performance in older adults: a cross-sectional study from NHANES 2011-2014. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1348-1359. [PMID: 38954438 DOI: 10.1039/d4em00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Background: polycyclic aromatic hydrocarbons (PAHs) are classified as neurotoxins, but the relationship between exposure to PAHs and cognition in adults is unclear, and their non-linear and mixed exposure association hasn't been explored. Objective: to evaluate the non-linear and joint association between co-exposure to PAHs and multiple cognitive tests in U.S. older people. Methods: restricted cubic spline (RCS) and Bayesian kernel machine regression (BKMR) were conducted to evaluate the non-linear and mixed exposure association, based on the cross-sectional data from NHANES 2011-2014: 772 participants over 60 years old, 4 cognitive test scores, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution test (DSST), and 5 urinary PAH metabolites. Results: a V-shaped nonlinear relationship was found between 3-hydroxyfluorene (3-FLUO), 2-hydroxyfluorene (2-FLUO), and DRT. Negative trends between mixed PAH exposure and IRT, DRT, and DSST scores were observed. 2-FLUO contributed the most to the negative association of multiple PAHs with IRT and DRT scores and 2-hydroxynaphthalene (2-NAP) played the most important role in the decreasing relationship between mixed PAH exposure and DSST scores. Conclusion: our study suggested that PAH exposure in the U.S. elderly might be related to their poor performances in IRT, DRT and DSST. Further prospective studies are needed to validate the association.
Collapse
Affiliation(s)
- Zerong Guan
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xueqiong Weng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ligang Zhang
- School of Medicine, Foshan University, Foshan 528225, China
| | - Peiran Feng
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
4
|
Goal A, Raj K, Singh S, Arora R. Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100122. [PMID: 38616958 PMCID: PMC11015058 DOI: 10.1016/j.crneur.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 04/16/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects the neurons in the hippocampus, resulting in cognitive and memory impairment. The most prominent clinical characteristics of AD are the production of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuroinflammation in neurons. It has been proven that embelin (Emb) possesses antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, we assessed the therapeutic potential of Emb in Benzo [α]pyrene (BaP)-induced cognitive impairment in experimental mice. BaP (5 mg/kg, i. p) was given to mice daily for 28 days, and Emb (2.5, 5, and 10 mg/kg, i. p) was given from 14 to 28 days of a protocol. In addition, locomotor activity was evaluated using open-field and spatial working, and non-spatial memory was evaluated using novel object recognition tasks (NORT), Morris water maze (MWM), and Y- maze. At the end of the study, the animal tissue homogenate was used to check biochemicals, neuroinflammation, and neurotransmitter changes. BaP-treated mice showed a significant decline in locomotor activity, learning and memory deficits and augmented oxidative stress (lipid peroxidation, nitrite, and GSH). Further, BaP promoted the release of inflammatory tissue markers, decreased acetylcholine, dopamine, GABA, serotonin, and norepinephrine, and increased glutamate concentration. However, treatment with Emb at dose-dependently prevented biochemical changes, improved antioxidant levels, reduced neuroinflammation, restored neurotransmitter concentration, and inhibited the NF-κB pathway. The current study's finding suggested that Emb improved cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms and inhibition of acetylcholinesterase (AChE) enzyme activities and Aβ-42 accumulation.
Collapse
Affiliation(s)
- Akansh Goal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| |
Collapse
|
5
|
Naby WSHAE, Zong C, Fergany A, Ekuban FA, Ahmed S, Reda Y, Sato H, Ichihara S, Kubota N, Yanagita S, Ichihara G. Exposure to Benzo[a]pyrene Decreases Noradrenergic and Serotonergic Axons in Hippocampus of Mouse Brain. Int J Mol Sci 2023; 24:9895. [PMID: 37373040 PMCID: PMC10297856 DOI: 10.3390/ijms24129895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Epidemiological studies showed the association between air pollution and dementia. A soluble fraction of particulate matters including polycyclic aromatic hydrocarbons (PAHs) is suspected to be involved with the adverse effects of air pollution on the central nervous system of humans. It is also reported that exposure to benzopyrene (B[a]P), which is one of the PAHs, caused deterioration of neurobehavioral performance in workers. The present study investigated the effect of B[a]P on noradrenergic and serotonergic axons in mouse brains. In total, 48 wild-type male mice (10 weeks of age) were allocated into 4 groups and exposed to B[a]P at 0, 2.88, 8.67 or 26.00 µg/mice, which is approximately equivalent to 0.12, 0.37 and 1.12 mg/kg bw, respectively, by pharyngeal aspiration once/week for 4 weeks. The density of noradrenergic and serotonergic axons was evaluated by immunohistochemistry in the hippocampal CA1 and CA3 areas. Exposure to B[a]P at 2.88 µg/mice or more decreased the density of noradrenergic or serotonergic axons in the CA1 area and the density of noradrenergic axons in the CA3 area in the hippocampus of mice. Furthermore, exposure to B[a]P dose-dependently upregulated Tnfα at 8.67 µg/mice or more, as well as upregulating Il-1β at 26 µg/mice, Il-18 at 2.88 and 26 µg/mice and Nlrp3 at 2.88 µg/mice. The results demonstrate that exposure to B[a]P induces degeneration of noradrenergic or serotonergic axons and suggest the involvement of proinflammatory or inflammation-related genes with B[a]P-induced neurodegeneration.
Collapse
Affiliation(s)
- Walaa Slouma Hamouda Abd El Naby
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Alzahraa Fergany
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Saleh Ahmed
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yousra Reda
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Harue Sato
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Natsuko Kubota
- Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Shinya Yanagita
- Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
6
|
Zhang H, Cao J, Liu A, Gao Q, Nie J, Zhou X, Huang J, Sun C, Wang T. Association of polycyclic aromatic hydrocarbon metabolite concentration in urine and occupational stress in underground coal miners in China: propensity score and bayesian kernel machine regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27321-6. [PMID: 37147546 DOI: 10.1007/s11356-023-27321-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
This study intends to examine the association of urinary monohydroxyl PAHs (OH-PAHs) concentration and occupational stress in coal miners. We sampled 671 underground coal miners from Datong, China, assessed their occupational stress using the Occupational Stress Inventory-Revised edition (OSI-R), and categorized them into the high stress miners and controls based on that. We determined urinary OH-PAHs concentration using ultrahigh performance liquid chromatography-tandem mass spectrometry, and analyzed its association with occupational stress using multiple linear regression, covariate balancing generalized propensity score (CBGPS), and Bayesian kernel machine regression (BKMR). The low molecular weight (LMW) OH-PAHs in quartile or homologue was significantly positively associated with Occupational Role Questionnaire (ORQ) and Personal Strain Questionnaire (PSQ) score, but was not associated with Personal Resources Questionnaire (PRQ) score. The OH-PAHs concentration was positively associated with ORQ and PSQ scores in coal miners, particularly the LMW OH-PAHs. Non-association was found in the OH-PAHs with PRQ score.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Qian Gao
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jisheng Nie
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Occupational Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoling Zhou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jianjun Huang
- Department of Neurosurgery, General Hospital of Datong Coal Mining Group, Datong, 7 Xinpingwangwei 1 Ave, Datong, Shanxi, 037003, People's Republic of China
| | - Chenming Sun
- Department of Urology, General Hospital of Datong Coal Mining Group, 7 Xinpingwangwei 1 Ave, Datong, Shanxi, 037003, People's Republic of China
| | - Tong Wang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China.
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
7
|
Costa-Valle MT, Gomes JF, De Oliveira CR, Scherer A, Franco De Oliveira SCWDSE, Menezes RCR, Leal MB, Romão PRT, Dallegrave E. Energy drinks and alcohol in a binge drinking protocol in Wistar rats: Male and female behavioral and reproductive effects. Pharmacol Biochem Behav 2022; 221:173487. [PMID: 36341912 DOI: 10.1016/j.pbb.2022.173487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The consumption of energy drinks is common among adolescents and young adults. The possible effects (mainly behavioral and reproductive) of ingestion in this population remain unknown. For this reason, this study aimed to evaluate the behavioral and reproductive effects of energy drinks and their main constituents (caffeine and taurine), as well as their combinations with alcohol, via a binge drinking protocol in male and female Wistar rats during puberty. In this study, 100 male and 100 female rats were treated with a binge drinking protocol 3 days a week over 4 weeks from postnatal day (PND) 28 to PND 60, which included 10 mL/kg by oral gavage of distilled water, energy drink, caffeine (3.2 mg/kg), taurine (40 mg/kg), and their combinations with alcohol (2 g/kg). The animals were evaluated by behavioral tests from PND 56 to PND 60 (open field, plus maze and object recognition) and reproductive parameters (estrous cycle regularity, weight of sexual organs, oocyte quality, spermatid and sperm count, sperm morphology and testosterone level). Locomotor activity was increased in females in the groups combined with alcohol (except alcohol + caffeine) and in the caffeine group. Long-term memory was increased in males in the caffeine and taurine groups even when combined with alcohol. The combination of energy drinks and alcohol did not have significant effects on the reproductive parameters of either sex of rats during puberty. We concluded that energy drinks (and their main constituents) and alcohol combinations did not cause alterations in reproductive profiles, and locomotor activity and long-term memory were increased in females and males, respectively.
Collapse
Affiliation(s)
- Marina Tuerlinckx Costa-Valle
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Pesquisa em Toxicologia (LAPETOX), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Fank Gomes
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Pesquisa em Toxicologia (LAPETOX), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Rodrigues De Oliveira
- Laboratório de Pesquisa em Toxicologia (LAPETOX), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa Scherer
- Laboratório de Pesquisa em Toxicologia (LAPETOX), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Rafaella Câmara Rocha Menezes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirna Bainy Leal
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Roosevelt Torres Romão
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Pesquisa em Toxicologia (LAPETOX), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Zhang Y, Du L, Yan J, Bai Q, Niu Q, Mo Y, Zhang Q, Nie J. Prenatal benzo[a]pyrene exposure impairs hippocampal synaptic plasticity and cognitive function in SD rat offspring during adolescence and adulthood via HDAC2-mediated histone deacetylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114180. [PMID: 36265406 DOI: 10.1016/j.ecoenv.2022.114180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a widespread carcinogenic pollutant in the environment. Although previous studies have demonstrated the neurodevelopmental toxicity of B[a]P, the precise mechanisms underlying the neurotoxic effects induced by prenatal B[a]P exposure remain largely unknown. In the present study, pregnant Sprague-Dawley (SD) rats were injected intraperitoneally with 0, 10, 20, or 40 mg/kg-bw of B[a]P for three consecutive days on embryonic days 17-19. The learning and memory abilities of offspring were determined by Morris Water Maze (MWM) test, while the number of dendritic branches and the density of dendritic spines in hippocampal CA1 and DG regions were evaluated by Golgi-Cox staining at PND 45 and PND 75. The mRNA expression of BDNF, PSD-95, and SYP in offspring hippocampus were detected by qRT-PCR, and the protein expression of BDNF, PSD-95, SYP, HDAC2, acH3K9, and acH3K14 were measured by Western blotting or immunohistochemistry. CHIP-PCR was performed to further detect the levels of acH3K9 and acH3K14 in the promoter regions of BDNF and PSD-95 genes. Our results showed that rats prenatally exposed to B[a]P exhibited impaired spatial learning and memory abilities and the number of dendritic branches and the density of dendritic spines in the hippocampal CA1 and DG regions were significantly reduced during adolescence and adulthood. The expression of HDAC2 protein was significantly upregulated, while acH3K9, acH3K14, BDNF, PSD-95, and SYP protein levels were significantly downregulated in the hippocampus of B[a]P- exposed rats. In addition, CHIP results showed that prenatal B[a]P exposure markedly decreased the level of acH3K9 and acH3K14 in the promoter region of BDNF and PSD-95 gene in the hippocampus of PND 45 and PND 75 offspring. All of the results suggest that prenatal B[a]P exposure impairs cognitive function and hippocampal synaptic plasticity of offspring in adolescence and adulthood, and HDAC2-mediated histone deacetylation plays a crucial role in these deficits.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; Shanxi Health Commission Key Laboratory of Nervous System Disease Prevention and Treatment, Datong, Shanxi 037003, PR China
| | - Linhu Du
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jinhua Yan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qianxiang Bai
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, University of Louisville, Louisville, KY 40209, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, University of Louisville, Louisville, KY 40209, USA
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
9
|
Tonietto BD, Laurentino AOM, Costa-Valle MT, Cestonaro LV, Antunes BP, Sates C, Dos Santos NG, Dallegrave E, Garcia SC, Leal MB, Arbo MD. Imidacloprid-based commercial pesticide causes behavioral, biochemical, and hematological impairments in Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103924. [PMID: 35787953 DOI: 10.1016/j.etap.2022.103924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid (IMI) is a neonicotinoid insecticide employed worldwide for crop protection. IMI's mode of action occurs through the agonism of postsynaptic nicotinic acetylcholine receptors (nAChRs), with high specificity for insect nAChRs although there are reports of mammals' toxicity. Studies on IMI's neurotoxicity are not conclusive; therefore, the aim of this study was to evaluate the subchronic toxic effects of an IMI based commercial pesticide on rats. Adult male Wistar rats received an IMI suspension via the oral route at doses of 1.5, 5, and 15 mg/kg for 45 consecutive days. IMI caused an increase in rearing and time spent at the periphery in the locomotor activity test and a decrease in time spent to finish the OX maze task (p < 0.05; ANOVA/Bonferroni). In blood, there was a decrease in mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration (p < 0.05; ANOVA/Bonferroni) and an increase in serum butyrylcholinesterase activity (p < 0.001; ANOVA/Bonferroni). Therefore, subchronic administration of an IMI-based-pesticide caused behavioral and systemic impairments in rats.
Collapse
Affiliation(s)
- Bruna Ducatti Tonietto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana Olívia Martins Laurentino
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Tuerlinckx Costa-Valle
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bibiana Pereira Antunes
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleofas Sates
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Nícolas Guimarães Dos Santos
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mirna Bainy Leal
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Honaker A, Kyntchev A, Foster E, Clough K, Hawk G, Asiedu E, Berling K, DeBurger E, Feltner M, Ferguson V, Forrest PT, Jenkins K, Massie L, Mullaguru J, Niang MD, Perry C, Sene Y, Towell A, Curran CP. The behavioral effects of gestational and lactational benzo[a]pyrene exposure vary by sex and genotype in mice with differences at the Ahr and Cyp1a2 loci. Neurotoxicol Teratol 2022; 89:107056. [PMID: 34890772 PMCID: PMC8763354 DOI: 10.1016/j.ntt.2021.107056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) and known carcinogen in the Top 10 on the United States' list of priority pollutants. Humans are exposed through a variety of sources including tobacco smoke, grilled foods and fossil fuel combustion. Recent studies of children exposed to higher levels of PAHs during pregnancy and early life have identified numerous adverse effects on the brain and behavior that persist into school age and adolescence. Our studies were designed to look for genotype and sex differences in susceptibility to gestational and lactational exposure to BaP using a mouse model with allelic differences in the aryl hydrocarbon receptor and the xenobiotic metabolizing enzyme CYP1A2. Pregnant dams were exposed to 10 mg/kg/day of BaP in corn oil-soaked cereal or the corn oil vehicle alone from gestational day 10 until weaning at postnatal day 25. Neurobehavioral testing began at P60 using one male and one female per litter. We found main effects of sex, genotype and treatment as well as significant gene x treatment and sex x treatment interactions. BaP-treated female mice had shorter latencies to fall in the Rotarod test. BaP-treated high-affinity AhrbCyp1a2(-/-) mice had greater impairments in Morris water maze. Interestingly, poor-affinity AhrdCyp1a2(-/-) mice also had deficits in spatial learning and memory regardless of treatment. We believe our findings provide future directions in identifying human populations at highest risk of early life BaP exposure, because our model mimics known human variation in our genes of interest. Our studies also highlight the value of testing both males and females in all neurobehavioral studies.
Collapse
Affiliation(s)
- Amanda Honaker
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Angela Kyntchev
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma Foster
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Katelyn Clough
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Greg Hawk
- University of Kentucky Applied Statistics Laboratory, Department of Statistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA
| | - Emmanuella Asiedu
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kevin Berling
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Emma DeBurger
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mackenzie Feltner
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Victoria Ferguson
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Philip Tyler Forrest
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Kayla Jenkins
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Lisa Massie
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Jayasree Mullaguru
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Mame Diarra Niang
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Connor Perry
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Yvonne Sene
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Aria Towell
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA
| | - Christine Perdan Curran
- Department of Biological Sciences, Northern Kentucky University, 100 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
11
|
Laurentino AOM, Solómon J, Tonietto BD, Cestonaro LV, Dos Santos NG, Piton YV, Izolan L, Marques D, Costa-Valle MT, Garcia SC, Sebben V, Dallegrave E, Schaefer PG, Barros EJ, Arbo MD, Leal MB. Levamisole, a cocaine cutting agent, induces acute and subchronic systemic alterations in Wistar rats. Toxicol Appl Pharmacol 2021; 426:115649. [PMID: 34273407 DOI: 10.1016/j.taap.2021.115649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022]
Abstract
The use of the anthelmintic levamisole as a cocaine adulterant has been increasing worldwide. Complications caused by this association include systemic vasculitis, agranulocytosis, neutropenia, tissue necrosis, pulmonary hemorrhage, and renal injury. Data about toxicity of levamisole are scarce, therefore the aim of this study was to evaluate the acute and subchronic toxic effects of levamisole in rats. Male Wistar rats received saline or levamisole by intraperitoneal route at the doses of 12, 24 and 36 mg/kg in the acute toxicity test; and at 3, 6 and 12 mg/kg in the subchronic toxicity test. Toxicity was evaluated using behavioral, cognitive, renal, hematological, biochemical and histopathological parameters. Acute administration of levamisole caused behavioral and histopathological alterations. Subchronic administration caused behavioral, cognitive and hematological alterations (p < 0.0001 and p < 0.05, respectively), impairment of liver and kidney functions (p < 0.05), and changes of antioxidant defenses (p ≤ 0.0001). Both administrations produced toxic effects of clinical relevance, which make levamisole a dangerous cutting agent. Furthermore, the knowledge of these effects can contribute to the correct diagnosis and treatment of cocaine dependents with unusual systemic alterations.
Collapse
Affiliation(s)
- Ana Olívia Martins Laurentino
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína Solómon
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Ducatti Tonietto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/1° andar, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Larissa Vivan Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/1° andar, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Nícolas Guimarães Dos Santos
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Yasmin Vendruscolo Piton
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Izolan
- Programa de Pós-Graduação em Ciências Biológicas: Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/209, 90046-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Douglas Marques
- Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/209, 90046-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Tuerlinckx Costa-Valle
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/1° andar, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Viviane Sebben
- Centro de Informação Toxicológica, Av. Ipiranga, 5400, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Guilherme Schaefer
- Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), R. Ramiro Barcelos, 2350, 90035-007 Porto Alegre, Rio Grande do Sul, Brazil
| | - Elvino José Barros
- Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), R. Ramiro Barcelos, 2350, 90035-007 Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia - Anexo I, Universidade Federal do Rio Grande do Sul (UFRGS), Rua São Luis, 150/3° andar, 90620-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752/1° andar, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Mirna Bainy Leal
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil; Laboratório de Farmacologia e Toxicologia Neurocomportamental, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/305, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500/209, 90046-900 Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Holloway Z, Hawkey A, Asrat H, Boinapally N, Levin ED. The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development. Neurotoxicology 2021; 86:78-84. [PMID: 34273383 DOI: 10.1016/j.neuro.2021.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants created by incomplete combustion. Benzo(a)pyrene (BaP), the prototypic PAH, is known to exert toxicity through oxidative stress which is thought to occur through inhibition of antioxidant scavenging systems. The use of agents that reduce oxidative stress may be a valuable route for ameliorating the adverse effects of PAHs on neural development and behavior. This study was conducted to determine if tocofersolan (a synthetic water-soluble analog of vitamin E) supplementation can prevent or reduce neurobehavioral deficits in zebrafish embryos exposed to BaP during early development. Newly hatched zebrafish were assessed on locomotor activity and light responsivity. Zebrafish embryos were exposed to vehicle (DMSO), tocofersolan (0.3 μM-3 μM), and/or BaP (5 μM) from 5-120 hours post-fertilization. This concentration range was below the threshold for producing overt dysmorphogenesis or decreased survival. One day after the end of exposure the larval fish were tested for locomotor activity under alternating light and dark 10 min periods, BaP (5 μM) was found to cause locomotor hypoactivity in larval fish. Co-exposure of tocofersolan (1 μM) restored control-like locomotor function. Based on the findings of this study, this model can be expanded to assess the outcome of vitamin E supplementation on other potential environmental neurotoxicants, and lead to determination if this rescue persists into adulthood.
Collapse
Affiliation(s)
- Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Andrew Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Helina Asrat
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Nidhi Boinapally
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA.
| |
Collapse
|
13
|
Dos Reis Izolan L, da Silva DM, Oliveira HBL, de Oliveira Salomon JL, Peruzzi CP, Garcia SC, Dallegrave E, Zanotto C, Elisabetsky E, Gonçalves CA, Arbo MD, Konrath EL, Leal MB. Sintocalmy, a Passiflora incarnata Based Herbal, Attenuates Morphine Withdrawal in Mice. Neurochem Res 2021; 46:1092-1100. [PMID: 33544325 DOI: 10.1007/s11064-021-03237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
Chronic opioid use changes brain chemistry in areas related to reward processes, memory, decision-making, and addiction. Both neurons and astrocytes are affected, ultimately leading to dependence. Passiflora incarnata L. (Passifloraceae) is the basis of frequently used herbals to manage anxiety and insomnia, with proven central nervous system depressant effects. Anti-addiction properties of P. incarnata have been reported. The aim of this study was to investigate the effect of a commercial extract of Passiflora incarnata (Sintocalmy®, Aché Laboratory) in the naloxone-induced jumping mice model of morphine withdrawal. In addition, glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) levels were assessed in the frontal cortex and hippocampus, and DNA damage was verified on blood cells. In order to improve solubilization a Sintocalmy methanol extract (SME) was used. SME is mainly composed by flavonoids isovitexin and vitexin. The effects of SME 50, 100 and 200 mg/kg (i.p.) were evaluated in the naloxone-induced withdrawal syndrome in mice. SME 50 and SME 100 mg/kg decreased naloxone-induced jumping in morphine-dependent mice without reducing locomotor activity. No alterations were found in GFAP levels, however SME 50 mg/kg prevented the S100B increase in the frontal cortex and DNA damage. This study shows anti-addiction effects for a commercial standardized extract of P. incarnata and suggests the relevance of proper clinical assessment.
Collapse
Affiliation(s)
- Lucas Dos Reis Izolan
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Douglas Marques da Silva
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helena Beatriz Larrosa Oliveira
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína Lucas de Oliveira Salomon
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Portela Peruzzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Solange C Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Zanotto
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Marcelo Dutra Arbo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Luis Konrath
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirna Bainy Leal
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
14
|
Lyu Y, Ren XK, Zhang HF, Tian FJ, Mu JB, Zheng JP. Sub-chronic administration of benzo[a]pyrene disrupts hippocampal long-term potentiation via inhibiting CaMK II/PKC/PKA-ERK-CREB signaling in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:961-970. [PMID: 32255272 DOI: 10.1002/tox.22932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (B[a]P) is recognized as a neurotoxic pollutant to mammals, which could impair learning and memory function. Although there is some evidence to suggest that N-methyl-d-aspartate receptor (NMDAR), a glutamate receptor and ion channel protein in nerve cells, is involved into the B[a]P induced neurotoxicity, the exact molecular mechanisms remain to be elucidated, particularly the effects of B[a]P on the NMDAR downstream signaling transduction pathways. In the present study, we examined the neurotoxicity of sub-chronic administrated B[a]P on male Sprague-Dawley rats. Our data suggested that B[a]P exposure caused significant deficits in learning and memory function and the impairment of hippocampal LTP in rats. Further mechanistic studies indicate that B[a]P-induced learning and memory deficits are associated with the inhibition of NMDAR NR1 subunit transcription and protein phosphorylation. More importantly, the inactivation of CaMK II/PKC/PKA-ERK-CREB signaling pathways in hippocampus was detected at both the 2.5 and 6.25 mg/kg B[a]P-treated groups, indicating that multiple targets in NMDAR and downstream signaling pathways are involved in the B[a]P-induced neurotoxicity.
Collapse
Affiliation(s)
- Yi Lyu
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xue-Ke Ren
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hui-Fang Zhang
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jian-Bing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Jin-Ping Zheng
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| |
Collapse
|
15
|
Liu D, Zhao Y, Qi Y, Gao Y, Tu D, Wang Y, Gao HM, Zhou H. Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice. J Neuroinflammation 2020; 17:258. [PMID: 32867800 PMCID: PMC7461337 DOI: 10.1186/s12974-020-01925-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Exposure to benzo(a)pyrene (BaP) was associated with cognitive impairments and some Alzheimer’s disease (AD)-like pathological changes. However, it is largely unknown whether BaP exposure participates in the disease progression of AD. Objectives To investigate the effect of BaP exposure on AD progression and its underlying mechanisms. Methods BaP or vehicle was administered to 4-month-old APPswe/PS1dE9 transgenic (APP/PS1) mice and wildtype (WT) mice for 2 months. Learning and memory ability and exploratory behaviors were evaluated 1 month after the initiation/termination of BaP exposure. AD-like pathological and biochemical alterations were examined 1 month after 2-month BaP exposure. Levels of soluble beta-amyloid (Aβ) oligomers and the number of Aβ plaques in the cortex and the hippocampus were quantified. Gene expression profiling was used to evaluate alternation of genes/pathways associated with AD onset and progression. Immunohistochemistry and Western blot were used to demonstrate neuronal loss and neuroinflammation in the cortex and the hippocampus. Treatment of primary neuron-glia cultures with aged Aβ (a mixture of monomers, oligomers, and fibrils) and/or BaP was used to investigate mechanisms by which BaP enhanced Aβ-induced neurodegeneration. Results BaP exposure induced progressive decline in spatial learning/memory and exploratory behaviors in APP/PS1 mice and WT mice, and APP/PS1 mice showed severer behavioral deficits than WT mice. Moreover, BaP exposure promoted neuronal loss, Aβ burden and Aβ plaque formation in APP/PS1 mice, but not in WT mice. Gene expression profiling showed most robust alteration in genes and pathways related to inflammation and immunoregulatory process, Aβ secretion and degradation, and synaptic formation in WT and APP/PS1 mice after BaP exposure. Consistently, the cortex and the hippocampus of WT and APP/PS1 mice displayed activation of microglia and astroglia and upregulation of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and NADPH oxidase (three widely used neuroinflammatory markers) after BaP exposure. Furthermore, BaP exposure aggravated neurodegeneration induced by aged Aβ peptide in primary neuron-glia cultures through enhancing NADPH oxidase-derived oxidative stress. Conclusion Our study showed that chronic exposure to environmental pollutant BaP induced, accelerated, and exacerbated the progression of AD, in which elevated neuroinflammation and NADPH oxidase-derived oxidative insults were key pathogenic events.
Collapse
Affiliation(s)
- Dan Liu
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.,Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yujia Zhao
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yun Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Dezhen Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China
| | - Yinxi Wang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Institute for Brain Sciences, Nanjing University, 12 Xuefu Road, Nanjing, 210061, Jiangsu Province, China.
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Saha S, Mahapatra KK, Mishra SR, Mallick S, Negi VD, Sarangi I, Patil S, Patra SK, Bhutia SK. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in human astrocytes. Food Chem Toxicol 2020; 141:111367. [PMID: 32335210 DOI: 10.1016/j.fct.2020.111367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a potent neurotoxic agent that is responsible for impaired neuronal development and is associated with aging. Here, it was demonstrated that extracts of Bacopa monnieri (BM), a traditional Ayurvedic medicine, diminished the B[a]P-induced apoptosis and senescence in human astrocytes. BM was demonstrated to protect the immortalized primary fetal astrocytes (IMPHFA) from B[a]P-induced apoptosis and senescence by reducing the damaged mitochondria that produced reactive oxygen species (ROS). Furthermore, it was shown that B[a]P-triggered G2 arrest could be altered by BM, thus indicating that BM could reverse the cell cycle arrest and mediate a normal cell cycle in IMPHFA cells. In addition, the lifespan of Caenorhabditis elegans was assessed, which confirmed these effects in the presence of BM, compared to the B[a]P-treated group. Furthermore, the anti-senescence and anti-apoptotic activities of BM were observed to be mediated through the protective effect of mitophagy, and inhibition of mitophagy could not protect the astrocytes from mitochondrial ROS-induced apoptosis and senescence in BM-treated cells. Moreover, it was revealed that BM induced Parkin-dependent mitophagy to exert its cytoprotective activity in IMPHFA cells. In conclusion, the anti-senescence and anti-apoptotic effects of BM in astrocytes could combat pollution and aging-related neurological disorders.
Collapse
Affiliation(s)
- Sarbari Saha
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | | | - Swarupa Mallick
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Vidya Devi Negi
- Department of Life Science, National Institute of Technology Rourkela, India
| | | | - Sankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Saudi Arabia
| | - Samir Kumar Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| |
Collapse
|
17
|
Yang K, Jiang X, Cheng S, Bai L, Xia Y, Chen C, Meng P, Wang J, Li C, Tang Q, Cao X, Tu B. Synaptic dopamine release is positively regulated by SNAP-25 that involves in benzo[a]pyrene-induced neurotoxicity. CHEMOSPHERE 2019; 237:124378. [PMID: 31376700 DOI: 10.1016/j.chemosphere.2019.124378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a ubiquitous neurotoxic pollutant that widely distributes in the natural environment. However, the exact mechanism of B[a]P-induced neurotoxicity has not been well established. As one key synaptic protein, SNAP-25 plays an important role in the regulation of neurotransmitter release, including synaptic dopamine release. In this study, we demonstrated that, after intragastric administration of B[a]P in rats aged postnatal day 5 for 7 weeks, B[a]P significantly increased the level of dopamine and the expression of SNAP-25, dopamine receptor 1 (DRD1) and DRD 3. Moreover, treatment of B[a]P also caused the ultra-structural pathological changes in the cerebral cortex of rats. To further reveal the potential role of SNAP-25 in the regulation of DRDs, we treated the dopaminergic PC-12 cells with 20 μM B[a]P for 24 h. A significant cytotoxicity and apoptosis were observed, and more importantly, we found that SNAP-25, DRD 1 and DRD 3 co-localized in the cells, and down-regulation of SNAP-25 by CRISPR-Cas9 plasmid remarkably reduced the expression of DRD1 and DRD3. Together, our findings suggest that, synaptic dopamine release may be positively regulated by SNAP-25 via its receptors, and thus affecting the neurotoxicity induced by B[a]P.
Collapse
Affiliation(s)
- Kai Yang
- Emergency and Business Management Office, Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunlin Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Wang J, Li CL, Tu BJ, Yang K, Mo TT, Zhang RY, Cheng SQ, Chen CZ, Jiang XJ, Han TL, Peng B, Baker PN, Xia YY. Integrated Epigenetics, Transcriptomics, and Metabolomics to Analyze the Mechanisms of Benzo[a]pyrene Neurotoxicity in the Hippocampus. Toxicol Sci 2019; 166:65-81. [PMID: 30085273 DOI: 10.1093/toxsci/kfy192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is a common environmental pollutant that is neurotoxic to mammals, which can cause changes to hippocampal function and result in cognitive disorders. The mechanisms of B[a]P-induced impairments are complex .To date there have been no studies on the association of epigenetic, transcriptomic, and metabolomic changes with neurotoxicity after B[a]P exposure. In the present study, we investigated the global effect of B[a]P on DNA methylation patterns, noncoding RNAs (ncRNAs) expression, coding RNAs expression, and metabolites in the rat hippocampus. Male Sprague Dawley rats (SD rats) received daily gavage of B[a]P (2.0 mg/kg body weight [BW]) or corn oil for 7 weeks. Learning and memory ability was analyzed using the Morris water maze (MWM) test and change to cellular ultrastructure in the hippocampus was analyzed using electron microscope observation. Integrated analysis of epigenetics, transcriptomics, and metabolomics was conducted to investigate the effect of B[a]P exposure on the signaling and metabolic pathways. Our results suggest that B[a]P could lead to learning and memory deficits, likely as a result of epigenetic and transcriptomic changes that further affected the expression of CACNA1C, Tpo, etc. The changes in expression ultimately affecting LTP, tyrosine metabolism, and other important metabolic pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Chun-Lin Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Bai-Jie Tu
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Chengdu Center for Disease Control & Prevention, Chengdu, China
| | - Ting-Ting Mo
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Rui-Yuan Zhang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Shu-Qun Cheng
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Cheng-Zhi Chen
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xue-Jun Jiang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester LE1 9HN, UK
| | - Yin-Yin Xia
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Valle MTC, Couto-Pereira NS, Lampert C, Arcego DM, Toniazzo AP, Limberger RP, Dallegrave E, Dalmaz C, Arbo MD, Leal MB. Energy drinks and their component modulate attention, memory, and antioxidant defences in rats. Eur J Nutr 2017; 57:2501-2511. [DOI: 10.1007/s00394-017-1522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
20
|
Mortamais M, Pujol J, van Drooge BL, Macià D, Martínez-Vilavella G, Reynes C, Sabatier R, Rivas I, Grimalt J, Forns J, Alvarez-Pedrerol M, Querol X, Sunyer J. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. ENVIRONMENT INTERNATIONAL 2017; 105:12-19. [PMID: 28482185 DOI: 10.1016/j.envint.2017.04.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have been proposed as environmental risk factors for attention deficit hyperactivity disorder (ADHD). The effects of these pollutants on brain structures potentially involved in the pathophysiology of ADHD are unknown. OBJECTIVE The aim of this study was to investigate the effects of PAHs on basal ganglia volumes and ADHD symptoms in school children. METHODS We conducted an imaging study in 242 children aged 8-12years, recruited through a set of representative schools of the city of Barcelona, Spain. Indoor and outdoor PAHs and benzo[a]pyrene (BPA) levels were assessed in the school environment, one year before the MRI assessment. Whole-brain volumes and basal ganglia volumes (caudate nucleus, globus pallidus, putamen) were derived from structural MRI scans using automated tissue segmentation. ADHD symptoms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by teachers, and inattentiveness was evaluated with standard error of hit reaction time in the attention network computer-based test. RESULTS Total PAHs and BPA were associated with caudate nucleus volume (CNV) (i.e., an interquartile range increase in BPA outdoor level (67pg/m3) and indoor level (76pg/m3) was significantly linked to a decrease in CNV (mm3) (β=-150.6, 95% CI [-259.1, -42.1], p=0.007, and β=-122.4, 95% CI [-232.9, -11.8], p=0.030 respectively) independently of intracranial volume, age, sex, maternal education and socioeconomic vulnerability index at home). ADHD symptoms and inattentiveness increased in children with higher exposure to BPA, but these associations were not statistically significant. CONCLUSIONS Exposure to PAHs, and in particular to BPA, is associated with subclinical changes on the caudate nucleus, even below the legislated annual target levels established in the European Union. The behavioral consequences of this induced brain change were not identified in this study, but given the caudate nucleus involvement in many crucial cognitive and behavior processes, this volume reduction is concerning for the children's neurodevelopment.
Collapse
Affiliation(s)
- Marion Mortamais
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Jesus Pujol
- MRI Research Unit, Hospital del Mar, Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | | | - Didac Macià
- MRI Research Unit, Hospital del Mar, Barcelona, Spain
| | | | - Christelle Reynes
- University of Montpellier, , Montpellier, France; 3 EA 2415, Faculté de Pharmacie, Montpellier, France
| | - Robert Sabatier
- University of Montpellier, , Montpellier, France; 3 EA 2415, Faculté de Pharmacie, Montpellier, France
| | - Ioar Rivas
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Joan Grimalt
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Joan Forns
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mar Alvarez-Pedrerol
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Jordi Sunyer
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institut Hospital del Mar d'Investigacions Mèdiques-Parc de Salut Mar, Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Yang K, Jiang X, Su Q, Wang J, Li C, Xia Y, Cheng S, Qin Q, Cao X, Chen C, Tu B. Disruption of glutamate neurotransmitter transmission is modulated by SNAP-25 in benzo[a]pyrene-induced neurotoxic effects. Toxicology 2017; 384:11-22. [DOI: 10.1016/j.tox.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/28/2022]
|
22
|
Das SK, Patri M. Neuropeptide Y expression confers benzo[a]pyrene induced anxiolytic like behavioral response during early adolescence period of male Wistar rats. Neuropeptides 2017; 61:23-30. [PMID: 27402563 DOI: 10.1016/j.npep.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022]
Abstract
Environmental neurotoxicant like benzo[a]pyrene (B[a]P) is known to induce neurobehavioral changes. Our previous reports address the adverse effect of B[a]P on the neurobehavioral responses and neuromorphology of sensitive brain regions in adolescent rats. Present study was conducted on male Wistar rat neonates at postnatal day 5 (PND5) to ascertain B[a]P induced anxiolytic like behavioral response could be an outcome of neuropeptide Y (NPY) overexpression in brain. Single intracisternal administration of B[a]P was carried out at PND5 to elucidate the role of NPY on neurobehavioral responses at PND30. The behavioral studies showed anxiolytic like effect of B[a]P in both light and dark box and elevated plus maze tests. Antioxidant assay involving glutathione peroxidase activity was significantly decreased where as lipid peroxidation was significantly augmented in both hippocampus and hypothalamus of B[a]P treated group as compared to naive and control. The neurotransmitter estimation by HPLC-ECD showed significant increase in 5-HT level in both hippocampus and hypothalamus of B[a]P treated group. Significant elevation in NPY expression was observed in both hippocampus and hypothalamus of B[a]P group. Intracellular Ca2+ estimation using Fura-2AM by fluorometry showed that B[a]P induced increase in Ca2+ influx was associated with augmented NPY expression in brain. As NPY has orexigenic effect, our result revealed that there was a significant increase in body weight at PND30 following B[a]P administration to rat neonates at PND5. These findings suggested that NPY overexpression in brain regions might be associated with anxiolytic like behavioral response and orexigenic effect in rats following single intracisternal B[a]P administration. Future research directing towards understanding the signaling cascades of B[a]P induced biochemical and neuromorphological alteration might address the independent pathway which induce neurodegeneration despite NPY overexpression in brain regions of adolescent rats.
Collapse
Affiliation(s)
- Saroj Kumar Das
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India
| | - Manorama Patri
- Neurobiology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Odisha, India.
| |
Collapse
|
23
|
Peiffer J, Grova N, Hidalgo S, Salquèbre G, Rychen G, Bisson JF, Appenzeller BM, Schroeder H. Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose–response study. Neurotoxicology 2016; 53:321-333. [DOI: 10.1016/j.neuro.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
|
24
|
Neurotoxic Effect of Benzo[a]pyrene and Its Possible Association with 6-Hydroxydopamine Induced Neurobehavioral Changes during Early Adolescence Period in Rats. J Toxicol 2016; 2016:8606410. [PMID: 27034665 PMCID: PMC4789478 DOI: 10.1155/2016/8606410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Exposure to persistent genotoxicants like benzo[a]pyrene (B[a]P) during postnatal days causes neurobehavioral changes in animal models. However, neurotoxic potential of B[a]P and its association with 6-hydroxydopamine (6-OHDA) induced neurobehavioral changes are yet to be explored. The growth of rat brain peaks at the first week of birth and continues up to one month with the attainment of adolescence. Hence, the present study was conducted on male Wistar rats at postnatal day 5 (PND 5) following single intracisternal administration of B[a]P to compare with neurobehavioral and neurotransmitter changes induced by 6-OHDA at PND 30. Spontaneous motor activity was significantly increased by 6-OHDA showing similar trend following B[a]P administration. Total distance travelled in novel open field arena and elevated plus maze was significantly increased following B[a]P and 6-OHDA administration. Neurotransmitter estimation showed significant alleviation of dopamine in striatum following B[a]P and 6-OHDA administration. Histopathological studies of striatum by hematoxylin and eosin (H&E) staining revealed the neurodegenerative potential of B[a]P and 6-OHDA. Our results indicate that B[a]P-induced spontaneous motor hyperactivity in rats showed symptomatic similarities with 6-OHDA. In conclusion, early postnatal exposure to B[a]P in rats causing neurobehavioral changes may lead to serious neurodegenerative consequences during adolescence.
Collapse
|
25
|
Zhang W, Tian F, Zheng J, Li S, Qiang M. Chronic Administration of Benzo(a)pyrene Induces Memory Impairment and Anxiety-Like Behavior and Increases of NR2B DNA Methylation. PLoS One 2016; 11:e0149574. [PMID: 26901155 PMCID: PMC4768874 DOI: 10.1371/journal.pone.0149574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Recently, an increasing number of human and animal studies have reported that exposure to benzo(a)pyrene (BaP) induces neurological abnormalities and is also associated with adverse effects, such as tumor formation, immunosuppression, teratogenicity, and hormonal disorders. However, the exact mechanisms underlying BaP-induced impairment of neurological function remain unclear. The aim of this study was to examine the regulating mechanisms underlying the impact of chronic BaP exposure on neurobehavioral performance. METHODS C57BL mice received either BaP in different doses (1.0, 2.5, 6.25 mg/kg) or olive oil twice a week for 90 days. Memory and emotional behaviors were evaluated using Y-maze and open-field tests, respectively. Furthermore, levels of mRNA expression were measured by using qPCR, and DNA methylation of NMDA receptor 2B subunit (NR2B) was examined using bisulfate pyrosequencing in the prefrontal cortex and hippocampus. RESULTS Compared to controls, mice that received BaP (2.5, 6.25 mg/kg) showed deficits in short-term memory and an anxiety-like behavior. These behavioral alterations were associated with a down-regulation of the NR2B gene and a concomitant increase in the level of DNA methylation in the NR2B promoter in the two brain regions. CONCLUSIONS Chronic BaP exposure induces an increase in DNA methylation in the NR2B gene promoter and down-regulates NR2B expression, which may contribute to its neurotoxic effects on behavioral performance. The results suggest that NR2B vulnerability represents a target for environmental toxicants in the brain.
Collapse
Affiliation(s)
- Wenping Zhang
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Fengjie Tian
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Jinping Zheng
- Department of Neurotoxicology, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| | - Senlin Li
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Mei Qiang
- Department of Children and Adolescences, School of Public Health, Shanxi Medical University, Shanxi, Taiyuan, 030001, China
| |
Collapse
|