1
|
Shi Y, Chen Y, Pan Y, Chen G, Xiao Z, Chen X, Wang M, Liang D. Minocycline prevents photoreceptor degeneration in Retinitis pigmentosa through modulating mitochondrial homeostasis. Int Immunopharmacol 2024; 139:112703. [PMID: 39018687 DOI: 10.1016/j.intimp.2024.112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Minocycline, a broad-spectrum tetracycline antibiotic, has been shown to possess anti-inflammatory and antioxidative effects in various neurodegenerative diseases. However, its specific effects on retinitis pigmentosa (RP) have not been thoroughly investigated. Therefore, the objective of this study was to explore the potential role of minocycline in treating RP. In this investigation, we used rd1 to explore the antioxidant effect of minocycline in RP. Minocycline therapy effectively restored retinal function and structure in rd1 mice at 14 days postnatal. Additionally, minocycline inhibited the activation of microglia. Moreover, RNA sequencing analysis revealed a significant downregulation in the expression of mitochondrial genes within the retina of rd1 mice. Further KEGG and GO pathway analysis indicated impaired oxidative phosphorylation and electron transport chain processes. TEM confirmed the presence of damaged mitochondria in photoreceptors, while JC-1 staining demonstrated a decrease in mitochondrial membrane potential, accompanied by an increase in mitochondrial reactive oxygen species (ROS) levels. However, treatment with minocycline successfully reversed the abnormal expression of mitochondrial genes and reduced the levels of mitochondrial ROS, thereby providing protection against photoreceptor degeneration. Collectively, minocycline demonstrated the ability to rescue photoreceptor cells in RP by effectively modulating mitochondrial homeostasis and subsequently inflammation. These findings hold significant implications for the development of potential therapeutic strategies for RP.
Collapse
Affiliation(s)
- Yuxun Shi
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuxi Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuan Pan
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Guanyu Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zhiqiang Xiao
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xiaoqing Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minzhen Wang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Dan Liang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
2
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
3
|
Pankau C, Cooper RL. Molecular physiology of manganese in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100886. [PMID: 35278758 DOI: 10.1016/j.cois.2022.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Manganese is an essential element for maintaining life. Overexposure to the metal, however, can be toxic to organisms. Given the significant function of manganese in insects, agriculture, and human disease, as well as in the healthy ecology of the planet, the biological activities of manganese in insects needs consideration. Because of the role of manganese as a cofactor for essential enzymes present in different organelles, both over and underexposure to manganese has a multifaceted effect on organisms. At the physiological level, the effects of insect exposure to the metal on enzymatic activities and consequent alteration of insect behaviors are best explained through the metal's role in modulating the dopaminergic system. Despite numerous examples that alterations in manganese homeostasis have profound effects on insects, the cellular mechanisms that ensure homeostasis of this essential metal remain presently unknown, calling for further research in this area.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
4
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
5
|
Rok J, Rzepka Z, Maszczyk M, Beberok A, Wrześniok D. Minocycline Impact on Redox Homeostasis of Normal Human Melanocytes HEMn-LP Exposed to UVA Radiation and Hydrogen Peroxide. Int J Mol Sci 2021; 22:ijms22041642. [PMID: 33561995 PMCID: PMC7914767 DOI: 10.3390/ijms22041642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Minocycline is a semisynthetic tetracycline antibiotic. In addition to its antibacterial activity, minocycline shows many non-antibiotic, beneficial effects, including antioxidative action. The property is responsible, e.g., for anti-inflammatory, neuroprotective, and cardioprotective effects of the drug. However, long-term pharmacotherapy with minocycline may lead to hyperpigmentation of the skin. The reasons for the pigmentation disorders include the deposition of the drug and its metabolites in melanin-containing cells and the stimulation of melanogenesis. The adverse drug reaction raises a question about the influence of the drug on melanocyte homeostasis. The study aimed to assess the effect of minocycline on redox balance in human normal melanocytes HEMn-LP exposed to hydrogen peroxide and UVA radiation. The obtained results indicate that minocycline induced oxidative stress in epidermal human melanocytes. The drug inhibited cell proliferation, decreased the level of reduced thiols, and stimulated the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The described changes were accompanied by an increase in the intracellular level of ROS. On the other hand, pretreatment with minocycline at the same concentrations increased cell viability and significantly attenuated the oxidative stress in melanocytes exposed to hydrogen peroxide and UVA radiation. Moreover, the molecular docking analysis revealed that the different influence of minocycline and other tetracyclines on CAT activity can be related to the location of the binding site.
Collapse
Affiliation(s)
- Jakub Rok
- Correspondence: ; Tel.: +48-32-364-10-50
| | | | | | | | | |
Collapse
|
6
|
Effect of Alkaloid Extract from African Jointfir ( Gnetum africanum) Leaves on Manganese-Induced Toxicity in Drosophila melanogaster. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8952646. [PMID: 30693067 PMCID: PMC6332884 DOI: 10.1155/2018/8952646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022]
Abstract
Metal-induced toxicity in fruit fly (Drosophila melanogaster) is one of the established models for studying neurotoxicity and neurodegenerative diseases. Phytochemicals, especially alkaloids, have been reported to exhibit neuroprotection. Here, we assessed the protective effect of alkaloid extract from African Jointfir (Gnetum africanum) leaf on manganese- (Mn-) induced toxicity in wild type fruit fly. Flies were exposed to 10 mM Mn, the alkaloid extract and cotreatment of Mn plus extract, respectively. The survival rate and locomotor performance of the flies were assessed 5 days posttreatment, at which point the flies were homogenized and assayed for acetylcholinesterase (AChE) activity, nitric oxide (NO), and reactive oxygen species (ROS) levels. Results showed that the extract significantly reverted Mn-induced reduction in the survival rate and locomotor performance of the flies. Furthermore, the extract counteracted the Mn-induced elevation in AChE activity, NO, and ROS levels. The alkaloid extract of the African Jointfir leaf may hence be a source of useful phytochemicals for the development of novel therapies for the management of neurodegeneration.
Collapse
|
7
|
Mn Inhibits GSH Synthesis via Downregulation of Neuronal EAAC1 and Astrocytic xCT to Cause Oxidative Damage in the Striatum of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4235695. [PMID: 30228854 PMCID: PMC6136513 DOI: 10.1155/2018/4235695] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.
Collapse
|
8
|
Pardo-Peña K, Lorea-Hernández JJ, Camacho-Hernández NP, Ordaz B, Villasana-Salazar B, Morales-Villagrán A, Peña-Ortega F. Hydrogen peroxide extracellular concentration in the ventrolateral medulla and its increase in response to hypoxia in vitro: Possible role of microglia. Brain Res 2018; 1692:87-99. [DOI: 10.1016/j.brainres.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/31/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
9
|
Amini-Khoei H, Kordjazy N, Haj-Mirzaian A, Amiri S, Haj-Mirzaian A, Shirzadian A, Hasanvand A, Balali-Dehkordi S, Hassanipour M, Dehpour AR. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-d-aspartate receptor. Can J Physiol Pharmacol 2018; 96:742-750. [DOI: 10.1139/cjpp-2017-0673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole-induced seizures in mouse considering the possible role of the nitric oxide/N-methyl-d-aspartate (NMDA) pathway. We induced seizure using intravenous administration of pentylenetetrazole. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of subeffective doses of the nonselective nitric oxide synthase (NOS) inhibitor NG-l-arginine methyl ester (10 mg/kg) and the neuronal NOS inhibitor 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of subeffective doses of minocycline (40 mg/kg). We found that inducible NOS inhibitor aminoguanidine (100 mg/kg) had no effect on the antiseizure effect of minocycline. Moreover, l-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with the NMDA receptor antagonists ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of subeffective doses of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of a neuronal NOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to a decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hasanvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shima Balali-Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mahsa Hassanipour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
11
|
Perkhulyn NV, Rovenko BM, Lushchak OV, Storey JM, Storey KB, Lushchak VI. Exposure to sodium molybdate results in mild oxidative stress in Drosophila melanogaster. Redox Rep 2017; 22:137-146. [PMID: 28245708 PMCID: PMC6837345 DOI: 10.1080/13510002.2017.1295898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES The study was conducted to assess the redox status of Drosophila flies upon oral intake of insulin-mimetic salt, sodium molybdate (Na2MoO4). METHODS Oxidative stress parameters and activities of antioxidant and associated enzymes were analyzed in two-day-old D. melanogaster insects after exposure of larvae and newly eclosed adults to three molybdate levels (0.025, 0.5, or 10 mM) in the food. RESULTS Molybdate increased content of low molecular mass thiols and activities of catalase, superoxide dismutase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase in males. The activities of these enzymes were not affected in females. Males exposed to molybdate demonstrated lower carbonyl protein levels than the control cohort, whereas females at the same conditions had higher carbonyl protein content and catalase activity than ones in the control cohort. The exposure to 10 mM sodium molybdate decreased the content of protein thiols in adult flies of both sexes. Sodium molybdate did not affect the activities of NADP-dependent malate dehydrogenase and thioredoxin reductase in males or NADP-dependent isocitrate dehydrogenase in either sex at any concentration. DISCUSSION Enhanced antioxidant capacity in upon Drosophila flies low molybdate levels in the food suggests that molybdate can be potentially useful for the treatment of certain pathologies associated with oxidative stress.
Collapse
Affiliation(s)
- Natalia V. Perkhulyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Bohdana M. Rovenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh V. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
12
|
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism. Neurotoxicology 2017; 60:42-53. [PMID: 28284907 DOI: 10.1016/j.neuro.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Autosomal recessive Juvenile Parkinsonism (AR-JP) is a chronic, progressive neurodegenerative disorder caused by mutation in the PARKIN gene, and invariably associated with dopaminergic (DAergic) neuronal loss and brain iron accumulation. Since current medical therapy is symptomatic and lacks significant disease-modifying effects, other treatment approaches are urgently needed it. In the present work, we investigate the role of minocycline (MC) in paraquat (PQ)/iron-induced neurotoxicity in the Drosophila TH>parkin-RNAi/+ (w[*]; UAS-parkin-RNAi; TH-GAL4) fly and have shown the following: (i) MC increased life span and restored the locomotor activity of knockdown (KD) transgenic parkin flies in comparison with the control (vehicle) group; (ii) MC at low (0.1 and 0.3mM) and middle (0.5mM) concentrations protected, rescued and prevented KD parkin Drosophila against PQ toxicity. However, MC at high (1mM) concentration aggravated the toxic effect of PQ; (iii) MC protected and rescued DAergic neurons against the PQ toxic effect according to tyrosine hydroxylase (TH)>green-fluorescent protein (GFP) reporter protein microscopy and anti-TH Western blotting analysis; (iv) MC protected DAergic neurons against PQ/iron toxicity; (v) MC significantly abridged lipid peroxidation (LPO) in the protection, rescue and prevention treatment in TH>parkin-RNAi/+ flies against PQ or iron alone or combined (PQ/iron)-induced neuronal oxidative stress (OS). Our results suggest that MC exerts neuroprotection against PQ/iron-induced OS in DAergic neurons most probably by the scavenging activity of reactive oxygen species (ROS), and by chelating iron. Therefore, MC might be a potential therapeutic drug to delay, revert, or prevent AR-JP.
Collapse
Affiliation(s)
- Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
13
|
Bianchini MC, Gularte COA, Escoto DF, Pereira G, Gayer MC, Roehrs R, Soares FAA, Puntel RL. Peumus boldus (Boldo) Aqueous Extract Present Better Protective Effect than Boldine Against Manganese-Induced Toxicity in D. melanogaster. Neurochem Res 2016; 41:2699-2707. [DOI: 10.1007/s11064-016-1984-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
|
14
|
Adedara IA, Abolaji AO, Rocha JBT, Farombi EO. Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem Res 2016; 41:1430-8. [PMID: 26875733 DOI: 10.1007/s11064-016-1852-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 01/24/2023]
Abstract
Several experimental and epidemiological reports have associated manganese exposure with induction of oxidative stress and locomotor dysfunctions. Diphenyl diselenide (DPDS) is widely reported to exhibit antioxidant, anti-inflammatory and neuroprotective effects in in vitro and in vivo studies via multiple biochemical mechanisms. The present study investigated the protective effect of DPDS on manganese-induced toxicity in Drosophila melanogaster. The flies were exposed, in a dietary regimen, to manganese alone (30 mmol per kg) or in combination with DPDS (10 and 20 µmol per kg) for 7 consecutive days. Exposure to manganese significantly (p < 0.05) increased flies mortality, whereas the survivors exhibited significant locomotor deficits with increased acetylcholinesterase (AChE) activity. However, dietary supplementation with DPDS caused a significant decrease in mortality, improvement in locomotor activity and restoration of AChE activity in manganese-exposed flies. Additionally, the significant decreases in the total thiol level, activities of catalase and glutathione-S-transferase were accompanied with significant increases in the generation of reactive oxygen and nitrogen species and thiobarbituric acid reactive substances in flies exposed to manganese alone. Dietary supplementation with DPDS significantly augmented the antioxidant status and prevented manganese-induced oxidative stress in the treated flies. Collectively, the present data highlight that DPDS may be a promising chemopreventive drug candidate against neurotoxicity resulting from acute manganese exposure.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Amos O Abolaji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
15
|
Rempoulakis P, Afshar N, Osorio B, Barajas-Aceves M, Szular J, Ahmad S, Dammalage T, Tomas US, Nemny-Lavy E, Salomon M, Vreysen MJB, Nestel D, Missirlis F. Conserved metallomics in two insect families evolving separately for a hundred million years. Biometals 2014; 27:1323-35. [PMID: 25298233 PMCID: PMC4223573 DOI: 10.1007/s10534-014-9793-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
Abstract
Μetal cofactors are required for enzymatic catalysis and structural stability of many proteins. Physiological metal requirements underpin the evolution of cellular and systemic regulatory mechanisms for metal uptake, storage and excretion. Considering the role of metal biology in animal evolution, this paper asks whether metal content is conserved between different fruit flies. A similar metal homeostasis was previously observed in Drosophilidae flies cultivated on the same larval medium. Each species accumulated in the order of 200 µg iron and zinc and approximately ten-fold less manganese and copper per gram dry weight of the adult insect. In this paper, data on the metal content in fourteen species of Tephritidae, which are major agricultural pests worldwide, are presented. These fruit flies can be polyphagous (e.g., Ceratitis capitata) or strictly monophagous (e.g., Bactrocera oleae) or oligophagous (e.g., Anastrepha grandis) and were maintained in the laboratory on five distinct diets based on olive oil, carrot, wheat bran, zucchini and molasses, respectively. The data indicate that overall metal content and distribution between the Tephritidae and Drosophilidae species was similar. Reduced metal concentration was observed in B. oleae. Feeding the polyphagous C. capitata with the diet of B. oleae resulted in a significant quantitative reduction of all metals. Thus, dietary components affect metal content in some Tephritidae. Nevertheless, although the evidence suggests some fruit fly species evolved preferences in the use or storage of particular metals, no metal concentration varied in order of magnitude between these two families of Diptera that evolved independently for over 100 million years.
Collapse
Affiliation(s)
- Polychronis Rempoulakis
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Negar Afshar
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| | - Martha Barajas-Aceves
- Departamento de Biotecnología y Bioingenería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| | - Joanna Szular
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Sohel Ahmad
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Thilakasiri Dammalage
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Ulysses Sto Tomas
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Esther Nemny-Lavy
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Mor Salomon
- Citrus Division, The Israel Cohen Institute for Biological Control, Plants Production and Marketing Board, Beit Dagan, Israel
| | - Marc J. B. Vreysen
- IAEA Laboratories, Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Beit Dagan, Israel
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, Mexico City, Mexico
| |
Collapse
|