1
|
Arefnezhd R, Chahardehi AM, Asadi A, Shadravan MM, Shariati A, Rezaee A, Radmanesh M, Nazarian M, Helfi M, Soleimani Meigoli MS, Motedayyen H, Rezaei-Tazangi F, Tavakoli MR. The function of chaperones in the radioresistance of glioblastoma: a new insight into the current knowledge. Brain Tumor Pathol 2025:10.1007/s10014-025-00501-7. [PMID: 40259161 DOI: 10.1007/s10014-025-00501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Radiotherapy remains a cornerstone of brain tumor treatment; however, its effectiveness is frequently undermined by the development of radioresistance. This review highlights the pivotal role of molecular chaperones in promoting radioresistance and explores the potential to increase radioresistance in brain cancers, particularly glioblastoma (GBM). Among chaperones, heat shock proteins (HSPs), such as HSP70 and HSP90, have been identified as key contributors to radioresistance, acting through mechanisms that include the maintenance of protein homeostasis, enhancement of DNA repair processes, and protection of cancer stem cells. Specifically, HSP70 and HSP90 are crucial in stabilizing oncogenic proteins and preventing apoptosis, thus enabling tumor survival during radiotherapy. Also, HSP27 and GRP78 are involved in the radioresistance of brain tumors mainly by suppressing cell death and enhancing tumor stem cell propagation. Emerging evidence also suggests that targeting these chaperones, in combination with radiotherapy, can enhance tumor radiosensitivity, offering promising therapeutic strategies. Recent studies have revealed novel aspects of chaperone-mediated autophagy and interaction with non-coding RNAs, providing deeper insights into the molecular mechanisms underlying radioresistance. This review also addresses the potential of combining chaperone-targeted therapies, such as HSP90 inhibitors, with radiotherapy to overcome resistance. Ultimately, understanding these mechanisms may pave the way for innovative clinical applications and personalized therapeutic approaches in brain tumor treatment.
Collapse
Affiliation(s)
- Reza Arefnezhd
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amirmasoud Asadi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | | | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrsa Radmanesh
- Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammadreza Nazarian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Helfi
- Department of Medical Physics, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Marziye Ranjbar Tavakoli
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Ma D, Song B, Gao S, Xue D, Xuan J. Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective. BIOINSPIRATION & BIOMIMETICS 2024; 19:061001. [PMID: 39423849 DOI: 10.1088/1748-3190/ad88c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.
Collapse
Affiliation(s)
- Dongfu Ma
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Bifeng Song
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, People's Republic of China
- National Key Laboratory of Aircraft Configuration Design, Xi'an, People's Republic of China
| | - Shijin Gao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Dong Xue
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, People's Republic of China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, People's Republic of China
| | - Jianlin Xuan
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, People's Republic of China
- National Key Laboratory of Aircraft Configuration Design, Xi'an, People's Republic of China
- Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, People's Republic of China
| |
Collapse
|
3
|
Xu P, Yuan J, Li K, Wang Y, Wu Z, Zhao J, Li T, Wu T, Miao X, He D, Cheng X. Development and validation of a novel endoplasmic reticulum stress-related lncRNAs signature in osteosarcoma. Sci Rep 2024; 14:25590. [PMID: 39462063 PMCID: PMC11513957 DOI: 10.1038/s41598-024-76841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteosarcoma (OS) is a cancerous tumor, and its development is greatly influenced by long non-coding RNA (lncRNA). Endoplasmic reticulum stress (ERS) is an essential biological defense process in cells and contributes to the progression of tumors. However, the exact mechanisms remain elusive. This study aims to develop a signature of lncRNAs associated with ERS in OS. This signature will guide the prognosis prediction and the determination of appropriate treatment strategies. The UCSC Xena database collected transcriptional and clinical data of OS and muscle, after identifying ERS differentially expressed genes, we utilized correlation analysis to determine the endoplasmic reticulum stress lncRNAs (ERLs). The Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analysis were utilized to develop an ERLs signature. To clarify the fundamental mechanisms controlling gene expression in low and high-risk groups, Gene Set Variation Analysis (GSVA) were conducted. In addition, the distinction between the two groups regarding drug sensitivity and immune-related activity was investigated to determine the immunotherapy effects. Utilizing RT-qPCR, the expression of model lncRNAs in OS cell lines was ascertained. The functional analysis of LINC02298 was carried out through in vitro experiments and pan-cancer analysis. This study successfully constructed an ERLs prognostic signature for OS, which comprised 5 lncRNAs (AC023157.3, AL031673.1, LINC02298, LINC02328, SNHG26). The risk signature predicted overall survival in patients with OS and was confirmed by assessing the validation and whole cohorts. Further, it was discovered that individuals classified as high-risk displayed suppressed immune activation, decreased infiltration of immune cells, and decreased responsiveness to immunotherapy. The RT-qPCR showed that the constructed risk prognosis model is reliable. Experimental validation has demonstrated that LINC02298 can promote OS cells' invasion, migration, and proliferation. In addition, LINC02298 exhibited significant differential expression in many types of cancer. Moreover, LINC02298 is an important biomarker in a variety of tumors. This study established a novel ERLs signature, which successfully predicted the prognosis of OS. The function of LINC02298 in OS was elucidated via in vitro experiments. Therefore, it offers new opportunities for predicting the clinical prognosis of OS and establishes the basis for targeted therapy in OS.
Collapse
Affiliation(s)
- Peichuan Xu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Kaihui Li
- Center of Stomatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Yameng Wang
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Jiangminghao Zhao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tao Li
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China
| | - Tianlong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xinxin Miao
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Dingwen He
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang University, 330006, Nanchang, China.
| |
Collapse
|
4
|
Pazi MB, Belan DV, Komarova EY, Ekimova IV. Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson's Disease. Int J Mol Sci 2024; 25:3951. [PMID: 38612761 PMCID: PMC11011682 DOI: 10.3390/ijms25073951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.
Collapse
Affiliation(s)
- Maria B Pazi
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Daria V Belan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| | - Elena Y Komarova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky pr., St. Petersburg 194064, Russia
| | - Irina V Ekimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
5
|
Wan L, Chen Z, Yang J, Wu G, Xu Y, Cui J, Zhao X. Identification of endoplasmic reticulum stress-related signature characterizes the tumor microenvironment and predicts prognosis in lung adenocarcinoma. Sci Rep 2023; 13:19462. [PMID: 37945620 PMCID: PMC10636162 DOI: 10.1038/s41598-023-45690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Lung adenocarcinoma (LUAD) remains one of the most lethal malignancies worldwide, with a high mortality rate and unfavorable prognosis. Endoplasmic reticulum (ER) stress is a key regulator of tumour growth, metastasis, and the response to chemotherapy, targeted therapies and immune response. It acts via responding to misfolded proteins and triggering abnormal activation of ER stress sensors and downstream signalling pathways. Notably, the expression patterns of ER-stress-related-genes (ERSRGs) are indicative of survival outcomes, especially in the context of immune infiltration. Through consensus clustering of prognosis-associated ERSRGs, we delineated two distinct LUAD subtypes: Cluster 1 and Cluster 2. Comprehensive analyses revealed significant disparities between these subtypes in terms of prognosis, immune cell infiltration, and tumor progression. Leveraging the robustness of LASSO regression and Multivariate stepwise regression, we constructed and validated an ER Stress-associated risk signature for LUAD. This signature underwent assessments for its prognostic value, correlation with clinical attributes, and interaction within the tumour immune microenvironment. By integrating this signature with multivariate cox analysis of distinct pathological stages, we devised an enhanced nomogram, validated through various statistical metrics, with an area under the curve for overall survival at 1, 3, and 5 years post-diagnosis being 0.79, 0.80, and 0.81, respectively. In conclusion, our findings introduce a composite signature of 11 pivotal ERSRGs, holding promise as a potent prognostic tool for LUAD, and offering insights for immunotherapeutic and targeted intervention strategies.
Collapse
Affiliation(s)
- Li Wan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaotian Wu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Cui
- Department of Thoracic Surgery, Wuzhong District People's Hospital, Suzhou, China.
| | - Xueping Zhao
- School of Nursing, Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Abe N, Sasaki M, Nakajima A. Tetrabromobisphenol A and hexabromocyclododecane, brominated flame retardants, trigger endoplasmic reticulum stress and activate necroptosis signaling in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104056. [PMID: 36592678 DOI: 10.1016/j.etap.2022.104056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are brominated flame retardants commonly used in a variety of industrial and consumer products. In this study, we performed RNA sequencing analysis of PC12 cells to clarify the mechanisms by which TBBPA and HBCD induce neurotoxicity. Differential expression analysis demonstrated that 636 and 271 genes were differentially expressed after TBBPA and HBCD treatment, respectively. Gene Ontology (GO) enrichment analysis revealed that genes annotated with the GO term "endoplasmic reticulum unfolded protein response" were upregulated in both TBBPA- and HBCD-treated groups. Furthermore, protein expression of endoplasmic reticulum stress markers, such as HSPA5 and DDIT3, as well as cleaved caspase-3, an apoptosis marker, were induced by TBBPA and HBCD. We also found that the cytotoxicity induced by TBBPA and HBCD was blocked by necrostatin-1, a necroptosis inhibitor, indicating the contribution of necroptosis. Our findings provide new insight into the mechanisms of toxicity induced by these chemicals.
Collapse
Affiliation(s)
- Nanami Abe
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Mao Sasaki
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan; Department of Industry Development Sciences, Hirosaki University Graduate School of Sustainable Community Studies, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
8
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
9
|
Shimada M, Maeda H, Nanashima N, Yamada K, Nakajima A. Anthocyanin‐rich blackcurrant extract improves long‐term memory impairment and emotional abnormality in senescence‐accelerated mice. J Food Biochem 2022; 46:e14295. [DOI: 10.1111/jfbc.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Minori Shimada
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| | - Hayato Maeda
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| | - Naoki Nanashima
- Department of Biomedical Science and Laboratory Medicine Hirosaki University Graduate School of Health Sciences Hirosaki Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy Nagoya University Graduate School of Medicine Nagoya Japan
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
- Department of Industry Development Sciences Hirosaki University Graduate School of Sustainable Community Studies Hirosaki Japan
| |
Collapse
|
10
|
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Front Oncol 2022; 12:920287. [PMID: 35875077 PMCID: PMC9303014 DOI: 10.3389/fonc.2022.920287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most common malignancy in the human liver and one of the leading causes of cancer death worldwide. Although there have been great advances in the treatment of HCC, such as regofenib, sorafenib, and lomvatinib, which have been developed and approved for the clinical treatment of advanced or metastatic HCC. However, they only prolong survival by a few months, and patients with advanced liver cancer are susceptible to tumor invasion metastasis and drug resistance. Ubiquitination modification is a type of post-translational modification of proteins. It can affect the physiological activity of cells by regulating the localization, stability and activity of proteins, such as: gene transcription, DNA damage signaling and other pathways. The reversible process of ubiquitination is called de-ubiquitination: it is the process of re-releasing ubiquitinated substrates with the participation of de-ubiquitinases (DUBs) and other active substances. There is growing evidence that many dysregulations of DUBs are associated with tumorigenesis. Although dysregulation of deuquitinase function is often found in HCC and other cancers, The mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma, including their structure, function, and relationship to hepatocellular carcinoma. hepatocellular carcinoma was highlighted, as well as the latest research reports. Among them, we focus on the USP family and OTU family which are more studied in the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the research progress of some DUB-related small molecule inhibitors and their clinical application significance as a treatment for HCC in the future.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yanan Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiancheng Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Shi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | | | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| | - Xiaoge Hu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoge Hu, ; Qiuran Xu,
| |
Collapse
|
11
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Dent P, Booth L, Roberts JL, Poklepovic A, Cridebring D, Reiman EM. Inhibition of heat shock proteins increases autophagosome formation, and reduces the expression of APP, Tau, SOD1 G93A and TDP-43. Aging (Albany NY) 2021; 13:17097-17117. [PMID: 34252884 PMCID: PMC8312464 DOI: 10.18632/aging.203297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer’s Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Jane L Roberts
- Department of Pharmacology and Toxicology, Richmond, VA 23298, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Derek Cridebring
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Eric M Reiman
- Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA.,Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| |
Collapse
|
13
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Piccialli I, Tedeschi V, Boscia F, Ciccone R, Casamassa A, de Rosa V, Grieco P, Secondo A, Pannaccione A. The Anemonia sulcata Toxin BDS-I Protects Astrocytes Exposed to Aβ 1-42 Oligomers by Restoring [Ca 2+] i Transients and ER Ca 2+ Signaling. Toxins (Basel) 2020; 13:20. [PMID: 33396295 PMCID: PMC7823622 DOI: 10.3390/toxins13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K+ channels, including KV3.4 underlying the fast-inactivating currents, has been demonstrated in several AD models. Here, the effect of KV3.4 modulation by the marine toxin blood depressing substance-I (BDS-I) extracted from Anemonia sulcata has been studied on [Ca2+]i transients in rat primary cortical astrocytes exposed to Aβ1-42 oligomers. We showed that: (1) primary cortical astrocytes expressing KV3.4 channels displayed [Ca2+]i transients depending on the occurrence of membrane potential spikes, (2) BDS-I restored, in a dose-dependent way, [Ca2+]i transients in astrocytes exposed to Aβ1-42 oligomers (5 µM/48 h) by inhibiting hyperfunctional KV3.4 channels, (3) BDS-I counteracted Ca2+ overload into the endoplasmic reticulum (ER) induced by Aβ1-42 oligomers, (4) BDS-I prevented the expression of the ER stress markers including active caspase 12 and GRP78/BiP in astrocytes treated with Aβ1-42 oligomers, and (5) BDS-I prevented Aβ1-42-induced reactive oxygen species (ROS) production and cell suffering measured as mitochondrial activity and lactate dehydrogenase (LDH) release. Collectively, we proposed that the marine toxin BDS-I, by inhibiting the hyperfunctional KV3.4 channels and restoring [Ca2+]i oscillation frequency, prevented Aβ1-42-induced ER stress and cell suffering in astrocytes.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, Federico II Universityof Naples, 80131 Napoli, Italy;
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| |
Collapse
|
15
|
Napoli B, Gumeni S, Forgiarini A, Fantin M, De Filippis C, Panzeri E, Vantaggiato C, Orso G. Naringenin Ameliorates Drosophila ReepA Hereditary Spastic Paraplegia-Linked Phenotypes. Front Neurosci 2019; 13:1202. [PMID: 31803000 PMCID: PMC6877660 DOI: 10.3389/fnins.2019.01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Defects in the endoplasmic reticulum (ER) membrane shaping and interaction with other organelles seem to be a crucial mechanism underlying Hereditary Spastic Paraplegia (HSP) neurodegeneration. REEP1, a transmembrane protein belonging to TB2/HVA22 family, is implicated in SPG31, an autosomal dominant form of HSP, and its interaction with Atlastin/SPG3A and Spastin/SPG4, the other two major HSP linked proteins, has been demonstrated to play a crucial role in modifying ER architecture. In addition, the Drosophila ortholog of REEP1, named ReepA, has been found to regulate the response to ER neuronal stress. Herein we investigated the role of ReepA in ER morphology and stress response. ReepA is upregulated under stress conditions and aging. Our data show that ReepA triggers a selective activation of Ire1 and Atf6 branches of Unfolded Protein Response (UPR) and modifies ER morphology. Drosophila lacking ReepA showed Atf6 and Ire1 activation, expansion of ER sheet-like structures, locomotor dysfunction and shortened lifespan. Furthermore, we found that naringenin, a flavonoid that possesses strong antioxidant and neuroprotective activity, can rescue the cellular phenotypes, the lifespan and locomotor disability associated with ReepA loss of function. Our data highlight the importance of ER homeostasis in nervous system functionality and HSP neurodegenerative mechanisms, opening new opportunities for HSP treatment.
Collapse
Affiliation(s)
- Barbara Napoli
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marianna Fantin
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Concetta De Filippis
- Foundation Institute of Pediatric Research, “Città della Speranza”, Padova, Italy
| | - Elena Panzeri
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Chiara Vantaggiato
- Scientific Institute, IRCCS Eugenio Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Voronin MV, Kadnikov IA, Voronkov DN, Seredenin SB. Chaperone Sigma1R mediates the neuroprotective action of afobazole in the 6-OHDA model of Parkinson's disease. Sci Rep 2019; 9:17020. [PMID: 31745133 PMCID: PMC6863824 DOI: 10.1038/s41598-019-53413-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with limited treatment options. Therefore, the identification of therapeutic targets is urgently needed. Previous studies have shown that the ligand activation of the sigma-1 chaperone (Sigma1R) promotes neuroprotection. The multitarget drug afobazole (5-ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole dihydrochloride) was shown to interact with Sigma1Rs and prevent decreases in striatal dopamine in the 6-hydroxydopamine (6-OHDA)-induced parkinsonism model. The aim of the present study was to elucidate the role of Sigma1Rs in afobazole pharmacological activity. Using ICR mice we found that administration of afobazole (2.5 mg/kg, i.p.) or selective agonist of Sigma1R PRE-084 (1.0 mg/kg, i.p.) over 14 days normalizes motor disfunction and prevents decreases in dopamine in the 6-OHDA-lesioned striatum. Afobazole administration also prevents the loss of TH + neurons in the substantia nigra. The pre-administration of selective Sigma1R antagonist BD-1047 (3.0 mg/kg, i.p.) abolishes the activity of either afobazole or PRE-084, as determined using the rotarod test and the analysis of striatal dopamine content. The current study demonstrates the contribution of Sigma1Rs in the neuroprotective effect of afobazole in the 6-OHDA model of Parkinson's disease and defines the therapeutic perspective of Sigma1R agonists in the clinic.
Collapse
Affiliation(s)
- Mikhail V Voronin
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", Department of Pharmacogenetics, Baltiyskaya street 8, Moscow, 125315, Russian Federation
| | - Ilya A Kadnikov
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", Department of Pharmacogenetics, Baltiyskaya street 8, Moscow, 125315, Russian Federation.
| | - Dmitry N Voronkov
- Research Center of Neurology, Laboratory of Functional Morphochemistry, Volokolamskoe Highway 80, Moscow, 125367, Russian Federation
| | - Sergey B Seredenin
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", Department of Pharmacogenetics, Baltiyskaya street 8, Moscow, 125315, Russian Federation
| |
Collapse
|
17
|
Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 2019; 118:109249. [PMID: 31351428 DOI: 10.1016/j.biopha.2019.109249] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) acts as a moving organelle with many important cellular functions. As the ER lacks sufficient nutrients under pathological conditions leading to uncontrolled protein synthesis, aggregation of unfolded/misfolded proteins in the ER lumen causes the unfolded protein response (UPR) to be activated. Chronic ER stress produces endogenous or exogenous damage to cells and activates UPR, which leads to impaired intracellular calcium and redox homeostasis. The UPR is capable of recognizing the accumulation of unfolded proteins in the ER. The protein response enhances the ability of the ER to fold proteins and causes apoptosis when the function of the ER fails to return to normal. In different malignancies, ER stress can effectively induce the occurrence of autophagy in cells because malignant tumor cells need to re-use their organelles to maintain growth. Autophagy simultaneously counteracts ER stress-induced ER expansion and has the effect of enhancing cell viability and non-apoptotic death. Oxidative stress also affects mitochondrial function of important proteins through protein overload. Mitochondrial reactive oxygen species (ROS) are produced by calcium-enhanced ER release. The accumulation of toxic substances in ER and mitochondria in mitochondria destroys basic organelle function. It is known that sustained ER stress can also trigger an inflammatory response through the UPR pathway. Inflammatory response is thought to be associated with tumor development. This review discusses the emerging links between UPR responses and autophagy, oxidative stress, and inflammatory response signals in ER stress, as well as the potential development of targeting this multifaceted signaling pathway in various cancers.
Collapse
|
18
|
Voronin MV, Kadnikov IA, Seredenin SB. Afobazole Restores the Dopamine Level in a 6-Hydroxydopamine Model of Parkinson’s Disease. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Meng J, Wang WX, Li L, Zhang G. Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:257-268. [PMID: 29562214 DOI: 10.1016/j.aquatox.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Lead (Pb) is one of the ubiquitous and toxic elements in aquatic environment. In oysters, gills and digestive glands are the main target organs for Pb-induced toxicity, but there is limited information on the molecular mechanisms underlying its toxicity. The present study investigated the Pb-induced toxicity mechanisms in the Pacific oyster (Crassostrea gigas) based on transcriptome, phenotypic anchoring, and validation of targeted gene expression. Gene ontology and pathway enrichment analyses revealed the differential Pb toxicity mechanisms in the tissues. In the gills, Pb disturbed the protein metabolism, with the most significant enrichment of the "protein processing in endoplasmic reticulum" pathway. The main mechanism comprised of a Pb-stimulated calcium (Ca2+) increase by the up-regulation of transporter-Ca-ATPase expression. The disturbed Ca2+ homeostasis then further induced high expressions of endoplasmic reticulum (ER) chaperones, leading to ER stress in the oysters. Unfolded proteins induced ER associated degradation (ERAD), thereby preventing the accumulation of folding-incompetent glycoproteins. However, Pb mainly induced oxidative reduction reactions in the digestive gland with high accumulation of lipid peroxidation products and high expression of antioxidant enzymes. Further, Pb induced fatty acid β-oxidation and CYP450 catalyzed ω-oxidation due to increased metabolic expenditure for detoxification. The increased content of arachidonic acid indicated that Pb exposure might alter unsaturated fatty acid composition and disturb cellular membrane functions. Taken together, our results provided a new insight into the molecular mechanisms underlying Pb toxicity in oysters.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| |
Collapse
|
20
|
The essential player in adipogenesis GRP78 is a novel KCTD15 interactor. Int J Biol Macromol 2018; 115:469-475. [PMID: 29665387 DOI: 10.1016/j.ijbiomac.2018.04.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
KCTD15 is a member of the K+ Channel Tetramerization Domain family, implicated in crucial physio-pathological processes. Recent evidences suggest that KCTD15 is an obesity-linked protein in humans and its Drosophila homologue is involved in food uptake. KCTD15 molecular mechanism in these processes is still unknown. To fill this gap, KCTD15 was biophysically characterized showing a folded, pentameric region endowed with a remarkable thermal stability. Notably, the C-terminal domain significantly contributes to the stabilization of the BTB N-terminal domain. The availability of large amount of stable recombinant protein also made possible a functional proteomic approach in 3T3-L1 cells to search for novel KCTD15 interactors. These investigations led to the discovery that GRP78 is a KCTD15 partner in all the adipogenesis phases. Our data clearly prove the physical interaction of the two proteins and also indicate that GRP78 plays an active role in the stabilization of KCTD15. Furthermore, the presence in Drosophila of a GRP78 homologue corroborates the physiological role played by the complex KCTD15-GRP78 in the adipogenesis process and indicates that it is evolutionarily conserved. Present results also suggest that KCTD15 may be a new target for obesity control.
Collapse
|
21
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
22
|
Qiu X, Guan X, Liu W, Zhang Y. DAL-1 attenuates epithelial to mesenchymal transition and metastasis by suppressing HSPA5 expression in non-small cell lung cancer. Oncol Rep 2017; 38:3103-3113. [PMID: 29048640 DOI: 10.3892/or.2017.6000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Metastasis is the primary cause of death in lung cancer patients and EMT (epithelial-mesenchymal transition) promotes metastasis. Previous study revealed that DAL-1 (differentially expressed in adenocarcinoma of the lung) could attenuate EMT and metastasis in non-small cell lung cancer (NSCLC). Further study proved that HSPA5 (heat shock protein 5), which has a promoting effect on EMT, could bind to DAL-1. In this study, the mRNA and protein expression levels of target molecules were detected by RTq-PCR and western blot assays, the migration and invasion abilities were examined by Transwell migration and invasion assay, and the proliferation ability was measured by CCK-8 assay. We revealed that DAL-1 was downregulated while HSPA5 was upregulated in NSCLC and found the protein of DAL-1 and HSPA5 co-localized in the cytoplasm and nucleus. We demonstrated that DAL-1 can suppress the expression of HSPA5 on mRNA and protein levels, and decrease EMT, migration, invasion and proliferation abilities by down-regulating HSPA5. Furthermore, we discovered that DAL-1 plays a role in inhibiting PI3K/Akt/Mdm2 signaling pathway by suppressing HSPA5.
Collapse
Affiliation(s)
- Xiaoliu Qiu
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu, Guangzhou, Guangdong 511436, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu, Guangzhou, Guangdong 511436, P.R. China
| | - Wanxia Liu
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu, Guangzhou, Guangdong 511436, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Xinzao, Panyu, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
23
|
Ghaderi S, Ahmadian S, Soheili ZS, Ahmadieh H, Samiei S, Kheitan S, Pirmardan ER. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress. J Cell Biochem 2017; 119:1355-1367. [PMID: 28782832 DOI: 10.1002/jcb.26296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022]
Abstract
Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases.
Collapse
Affiliation(s)
- Shima Ghaderi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zahra-Soheila Soheili
- Ministry of Science, Research and Technology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Samira Kheitan
- Ministry of Science, Research and Technology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan R Pirmardan
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Xu X, Huang E, Tai Y, Zhao X, Chen X, Chen C, Chen R, Liu C, Lin Z, Wang H, Xie WB. Nupr1 Modulates Methamphetamine-Induced Dopaminergic Neuronal Apoptosis and Autophagy through CHOP-Trib3-Mediated Endoplasmic Reticulum Stress Signaling Pathway. Front Mol Neurosci 2017; 10:203. [PMID: 28694771 PMCID: PMC5483452 DOI: 10.3389/fnmol.2017.00203] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine (METH) is an illegal and widely abused psychoactive stimulant. METH exposure causes detrimental effects on multiple organ systems, primarily the nervous system, especially dopaminergic pathways, in both laboratory animals and humans. In this study, we hypothesized that Nuclear protein 1 (Nupr1/com1/p8) is involved in METH-induced neuronal apoptosis and autophagy through endoplasmic reticulum (ER) stress signaling pathway. To test this hypothesis, we measured the expression levels of Nupr1, ER stress protein markers CHOP and Trib3, apoptosis-related protein markers cleaved-caspase3 and PARP, as well as autophagy-related protein markers LC3 and Beclin-1 in brain tissues of adult male Sprague-Dawley (SD) rats, rat primary cultured neurons and the rat adrenal pheochromocytoma cells (PC12 cells) after METH exposure. We also determined the effects of METH exposure on the expression of these proteins after silencing Nupr1, CHOP, or Trib3 expression with synthetic small hairpin RNA (shRNA) or siRNA in vitro, and after silencing Nupr1 in the striatum of rats by injecting lentivirus containing shRNA sequence targeting Nupr1 gene to rat striatum. The results showed that METH exposure increased Nupr1 expression that was accompanied with increased expression of ER stress protein markers CHOP and Trib3, and also led to apoptosis and autophagy in rat primary neurons and in PC12 cells after 24 h exposure (3.0 mM), and in the prefrontal cortex and striatum of rats after repeated intraperitoneal injections (15 mg/kg × 8 injections at 12 h intervals). Silencing of Nupr1 expression partly reduced METH-induced apoptosis and autophagy in vitro and in vivo. These results suggest that Nupr1 plays an essential role in METH-caused neuronal apoptosis and autophagy at relatively higher doses and may be a potential therapeutic target in high-dose METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Xu
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China.,School of Forensic Medicine, Wannan Medical CollegeWuhu, China
| | - Enping Huang
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Yunchun Tai
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Rui Chen
- Department of Forensic Medicine, Guangdong Medical UniversityDongguan, China
| | - Chao Liu
- Guangzhou Forensic Science InstituteGuangzhou, China
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
25
|
Kwon K, Kwon YS, Kim SW, Yu K, Lee KH, Kwon OY. Luteolin-induced apoptosis through activation of endoplasmic reticulum stress sensors in pheochromocytoma cells. Mol Med Rep 2017; 16:380-386. [PMID: 28498401 DOI: 10.3892/mmr.2017.6582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/06/2017] [Indexed: 11/05/2022] Open
Abstract
Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] is an active flavonoid compound from Lonicera japonica (Caprifoliaceae). Luteolin inhibits tumor cell proliferation, inflammatory and oxidative stress better, when compared with other flavonoids. In the present study, it was demonstrated that luteolin induces typical apoptosis in PC12 cells (derived from a pheochromocytoma of the rat adrenal medulla) accompanied by DNA fragmentation and formation of apoptotic bodies. In addition, luteolin regulates expression of the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein, activating ER stress sensors (eukaryotic initiation factor 2α phosphorylation and X‑box binding protein 1 mRNA splicing) and induced autophagy. The results indicated that luteolin induces the upregulation of the unfolded protein response pathway through the ER stress sensors, which helps as an influential regulator for the apoptosis pathway in PC12 cells. The results suggested that the understanding of the molecular mechanisms underlying luteolin‑induced apoptosis may be useful in cancer therapeutics, chemoprevention and neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Kisang Kwon
- Department of Biomedical Laboratory Science, College of Health and Welfare, Kyungwoon University, Gumi 39160, Republic of Korea
| | - Young-Sook Kwon
- Department of Nursing, College of Tourism and Health, Joongbu University, Geumsan 32713, Republic of Korea
| | - Seung-Whan Kim
- Department of Emergency Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Kweon Yu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyung-Ho Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - O-Yu Kwon
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
26
|
Macedo JA, Schrama D, Duarte I, Tavares E, Renaut J, Futschik ME, Rodrigues PM, Melo EP. Membrane-enriched proteome changes and prion protein expression during neural differentiation and in neuroblastoma cells. BMC Genomics 2017; 18:319. [PMID: 28431525 PMCID: PMC5401558 DOI: 10.1186/s12864-017-3694-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The function of the prion protein, involved in the so-called prion diseases, remains a subject of intense debate and the possibility that it works as a pleiotropic protein through the interaction with multiple membrane proteins is somehow supported by recent reports. Therefore, the use of proteomic and bioinformatics combined to uncover cellular processes occurring together with changes in the expression of the prion protein may provide further insight into the putative pleiotropic role of the prion protein. Results This study assessed the membrane-enriched proteome changes accompanying alterations in the expression of the prion protein. A 2D-DIGE approach was applied to two cell lines after prefractionation towards the membrane protein subset: an embryonic stem cell line and the PK1 subline of neuroblastoma cells which efficiently propagates prion infection. Several proteins were differentially abundant with the increased expression of the prion protein during neural differentiation of embryonic stem cells and with the knockdown of the prion protein in PK1 cells. The identity of around 20% of the differentially abundant proteins was obtained by tandem MS. The catalytic subunit A of succinate dehydrogenase, a key enzyme for the aerobic energy metabolism and redox homeostasis, showed a similar abundance trend as the prion protein in both proteomic experiments. A gene ontology analysis revealed “myelin sheath”, “organelle membrane” and “focal adhesion” associated proteins as the main cellular components, and “protein folding” and “ATPase activity” as the biological processes enriched in the first set of differentially abundant proteins. The known interactome of these differentially abundant proteins was customized to reveal four interactors with the prion protein, including two heat shock proteins and a protein disulfide isomerase. Conclusions Overall, our study shows that expression of the prion protein occurs concomitantly with changes in chaperone activity and cell-redox homeostasis, emphasizing the functional link between these cellular processes and the prion protein. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3694-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Macedo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - D Schrama
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - I Duarte
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E Tavares
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - J Renaut
- LIST, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - M E Futschik
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal.,School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - P M Rodrigues
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E P Melo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
27
|
Recombinant heat shock protein 78 enhances enterovirus 71 propagation in Vero cells and is induced in SK-N-SH cells during the infection. Arch Virol 2017; 162:1649-1660. [DOI: 10.1007/s00705-017-3287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/04/2017] [Indexed: 12/23/2022]
|
28
|
Kim JE, Hyun HW, Min SJ, Kang TC. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci 2017; 11:47. [PMID: 28275338 PMCID: PMC5319974 DOI: 10.3389/fncel.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Heat shock protein (HSP) 25 (murine/rodent 25 kDa, human 27 kDa) is one of the major astroglial HSP families, which has a potent anti-apoptotic factor contributing to a higher resistance of astrocytes to the stressful condition. However, impaired removals of HSP25 decrease astroglial viability. In the present study, we investigated whether HSP25 is involved in astroglial apoptosis or clasmatodendrosis (autophagic astroglial death) in the rat hippocampus induced by status epilepticus (SE). Following SE, HSP25 expression was transiently increased in astrocytes within the dentate gyrus (DG), while it was sustained in CA1 astrocytes until 4 weeks after SE. HSP25 knockdown exacerbated SE-induced apoptotic astroglial degeneration, but mitigated clasmatodendrosis accompanied by abrogation of endoplasmic reticulum (ER) stress without changed seizure susceptibility or severity. These findings suggest that sustained HSP25 induction itself may result in clasmatodendrosis via prolonged ER stress. To the best of our knowledge, the present study demonstrates for the first time the double-edge properties of HSP25 in astroglial death induced by SE.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
29
|
Zhang X, Tang S, Zhang Q, Shao W, Han X, Wang Y, Du Y. Endoplasmic reticulum stress mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau hyperphosphorylation in amyloid β oligomer-treated PC12 cells and primary neurons. Gene 2016; 587:183-93. [PMID: 27185631 DOI: 10.1016/j.gene.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/30/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) and insulin signaling impairment are commonly observed in Alzheimer's disease (AD), but the association between these two factors in AD has not been carefully studied. In peripheral insulin signaling impairment, ERS interferes with insulin signaling through c-Jun. N-terminal kinase (JNK)-dependent insulin receptor substance-1 (IRS-1) serine phosphorylation. We conducted this study to determine whether a similar mechanism contributes to insulin signaling impairment in AD pathogenesis. METHODS Changes in the levels of ERS markers, JNK activation, the insulin signaling status and Tau hyperphosphorylation were examined in amyloid β1-42 (Aβ1-42) oligomer-treated PC12 cells and primary neurons by western blotting and real-time fluorescence quantitative PCR. Inhibitors of ERS and JNK were utilized to confirm their association. RESULTS Our results demonstrated that Aβ1-42 oligomers significantly induced ERS and JNK activation. In addition, in response to Aβ1-42 oligomers, IRS-1 phosphorylation at serines 307, 318 and 612 was increased. Further, an increase in Tau hyperphosphorylation at threonine 181 was observed following Aβ1-42 oligomer treatment. Moreover, inhibition of ERS or JNK could partially reverse the changes induced by the Aβ1-42 oligomers. CONCLUSIONS These findings suggest that ERS may contribute to insulin signaling impairment in AD through JNK-dependent IRS-1 serine phosphorylation. The ERS/JNK/IRS-1 pathway may be involved in Aβ1-42 oligomer-induced Tau hyperphosphorylation in AD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Qinghua Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Wen Shao
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, PR China.
| |
Collapse
|
30
|
Chavez-Valdez R, Flock DL, Martin LJ, Northington FJ. Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia. Int J Dev Neurosci 2015; 48:58-70. [PMID: 26643212 DOI: 10.1016/j.ijdevneu.2015.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 11/26/2022] Open
Abstract
The endoplasmic reticulum (ER) is tasked, among many other functions, with preventing excitotoxicity from killing neurons following neonatal hypoxia-ischemia (HI). With the search for delayed therapies to treat neonatal HI, the study of delayed ER responses becomes relevant. We hypothesized that ER stress is a prominent feature of delayed neuronal death via programmed necrosis after neonatal HI. Since necrostatin-1 (Nec-1), an inhibitor of programmed necrosis, provides delayed neuroprotection against neonatal HI in male mice, Nec-1 is an ideal tool to study delayed ER responses. C57B6 male mice were exposed to right carotid ligation followed by exposure to FiO2=0.08 for 45 min at p7. Mice were treated with vehicle or Nec-1 (0.1 μl of 8 μmol) intracerebroventricularly with age-matched littermates as controls. Biochemistry assays at 3 and 24h and electron microscopy (EM) and immunohistochemistry at 96 h after HI were performed. EM showed ER dilation and mitochondrial swelling as apparent early changes in neurons. With advanced neurodegeneration, large cytoplasmic fragments containing dilated ER "shed" into the surrounding neuropil and calreticulin immunoreactivity was lost concurrent with nuclear features suggestive of programmed necrosis. Nec-1 attenuated biochemical markers of ER stress after neonatal HI, including PERK and eIF2α phosphorylation, and unconventional XBP-1 splicing, consistent with the mitigation of later ER pathology. ER pathology may be an indicator of severity of neuronal injury and potential for recovery characterized by cytoplasmic shedding, distinct from apoptotic blebbing, that we term neuronal macrozeiosis. Therapies to attenuate ER stress applied at delayed stages may rescue stressed neurons after neonatal HI.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Neonatal Research Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | - Debbie L Flock
- Department of Pediatrics, Neonatal Research Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | - Lee J Martin
- Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, 720 Rutland Ave. Ross Research Building, Room 558, Baltimore, MD 21205, USA.
| | - Frances J Northington
- Department of Pediatrics, Neonatal Research Laboratory, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| |
Collapse
|
31
|
Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L, Dent P. GRP78/Dna K Is a Target for Nexavar/Stivarga/Votrient in the Treatment of Human Malignancies, Viral Infections and Bacterial Diseases. J Cell Physiol 2015; 230:2552-78. [PMID: 25858032 PMCID: PMC4843173 DOI: 10.1002/jcp.25014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 01/10/2023]
Abstract
Prior tumor cell studies have shown that the drugs sorafenib (Nexavar) and regorafenib (Stivarga) reduce expression of the chaperone GRP78. Sorafenib/regorafenib and the multi‐kinase inhibitor pazopanib (Votrient) interacted with sildenafil (Viagra) to further rapidly reduce GRP78 levels in eukaryotes and as single agents to reduce Dna K levels in prokaryotes. Similar data were obtained in tumor cells in vitro and in drug‐treated mice for: HSP70, mitochondrial HSP70, HSP60, HSP56, HSP40, HSP10, and cyclophilin A. Prolonged ‘rafenib/sildenafil treatment killed tumor cells and also rapidly decreased the expression of: the drug efflux pumps ABCB1 and ABCG2; and NPC1 and NTCP, receptors for Ebola/Hepatitis A and B viruses, respectively. Pre‐treatment with the ‘Rafenib/sildenafil combination reduced expression of the Coxsackie and Adenovirus receptor in parallel with it also reducing the ability of a serotype 5 Adenovirus or Coxsackie virus B4 to infect and to reproduce. Sorafenib/pazopanib and sildenafil was much more potent than sorafenib/pazopanib as single agents at preventing Adenovirus, Mumps, Chikungunya, Dengue, Rabies, West Nile, Yellow Fever, and Enterovirus 71 infection and reproduction. ‘Rafenib drugs/pazopanib as single agents killed laboratory generated antibiotic resistant E. coli which was associated with reduced Dna K and Rec A expression. Marginally toxic doses of ‘Rafenib drugs/pazopanib restored antibiotic sensitivity in pan‐antibiotic resistant bacteria including multiple strains of blakpcKlebsiella pneumoniae. Thus, Dna K is an antibiotic target for sorafenib, and inhibition of GRP78/Dna K has therapeutic utility for cancer and for bacterial and viral infections. J. Cell. Physiol. 230: 2552–2578, 2015. © 2015 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Mehrad Tavallai
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Aida Nourbakhsh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | - Christopher D Doern
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
32
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats. Neuroscience 2015; 307:199-214. [PMID: 26335380 DOI: 10.1016/j.neuroscience.2015.08.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022]
Abstract
In the present study, we investigated whether endoplasmic reticulum (ER) stress is associated with neuronal- and astroglial-death in the hippocampus using LiCl-pilocarpine-induced status epilepticus (SE) rat model. Glucose-related protein (GRP) 78 and protein disulfide isomerase (PDI) expressions were transiently increased in CA1 neurons and dentate granule cells, and subsequently decreased in these cells following SE. GRP94 and calnexin (CNX) expression was gradually reduced in CA1 neurons, not in dentate granule cells. Phospho-protein kinase RNA (PKR)-like ER kinase (pPERK), phospho-eukaryotic initiation factor 2α (peIF2A) and CCAAT/enhancer-binding protein homologous protein (CHOP) immunoreactivities were observed in 17%, 12% and 7% of degenerating CA1 neurons, respectively. GRP 78 and PDI expressions were also up-regulated in reactive astrocytes within the CA1-3 regions. In the molecular layer of the dentate gyrus, PDI-positive astrocytes showed TUNEL signal, nuclear apoptosis inducing factor translocation and pPERK/peIF2A/CHOP immunoreactivities. Four weeks after SE, clasmatodendritic astrocytes showed pPERK peIF2A and CNX immunoreactivities without CHOP expression. These findings indicate that SE-induced ER stress may be associated with astroglial apoptosis and autophagic astroglial death in the regional-specific pattern.
Collapse
Affiliation(s)
- A-R Ko
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J Y Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - H-W Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J-E Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea.
| |
Collapse
|
33
|
Booth L, Roberts JL, Tavallai M, Nourbakhsh A, Chuckalovcak J, Carter J, Poklepovic A, Dent P. OSU-03012 and Viagra Treatment Inhibits the Activity of Multiple Chaperone Proteins and Disrupts the Blood-Brain Barrier: Implications for Anti-Cancer Therapies. J Cell Physiol 2015; 230:1982-98. [PMID: 25736380 PMCID: PMC4835175 DOI: 10.1002/jcp.24977] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
We examined the interaction between OSU‐03012 (also called AR‐12) with phosphodiesterase 5 (PDE5) inhibitors to determine the role of the chaperone glucose‐regulated protein (GRP78)/BiP/HSPA5 in the cellular response. Sildenafil (Viagra) interacted in a greater than additive fashion with OSU‐03012 to kill stem‐like GBM cells. Treatment of cells with OSU‐03012/sildenafil: abolished the expression of multiple oncogenic growth factor receptors and plasma membrane drug efflux pumps and caused a rapid degradation of GRP78 and other HSP70 and HSP90 family chaperone proteins. Decreased expression of plasma membrane receptors and drug efflux pumps was dependent upon enhanced PERK‐eIF2α‐ATF4‐CHOP signaling and was blocked by GRP78 over‐expression. In vivo OSU‐03012/sildenafil was more efficacious than treatment with celecoxib and sildenafil at killing tumor cells without damaging normal tissues and in parallel reduced expression of ABCB1 and ABCG2 in the normal brain. The combination of OSU‐03012/sildenafil synergized with low concentrations of sorafenib to kill tumor cells, and with lapatinib to kill ERBB1 over‐expressing tumor cells. In multiplex assays on plasma and human tumor tissue from an OSU‐03012/sildenafil treated mouse, we noted a profound reduction in uPA signaling and identified FGF and JAK1/2 as response biomarkers for potentially suppressing the killing response. Inhibition of FGFR signaling and to a lesser extent JAK1/2 signaling profoundly enhanced OSU‐03012/sildenafil lethality. J. Cell. Physiol. 230: 1982–1998, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Booth L, Roberts JL, Cash DR, Tavallai S, Jean S, Fidanza A, Cruz-Luna T, Siembiba P, Cycon KA, Cornelissen CN, Dent P. GRP78/BiP/HSPA5/Dna K is a universal therapeutic target for human disease. J Cell Physiol 2015; 230:1661-76. [PMID: 25546329 PMCID: PMC4402027 DOI: 10.1002/jcp.24919] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
The chaperone GRP78/Dna K is conserved throughout evolution down to prokaryotes. The GRP78 inhibitor OSU-03012 (AR-12) interacted with sildenafil (Viagra) or tadalafil (Cialis) to rapidly reduce GRP78 levels in eukaryotes and as a single agent reduce Dna K levels in prokaryotes. Similar data with the drug combination were obtained for: HSP70, HSP90, GRP94, GRP58, HSP27, HSP40 and HSP60. OSU-03012/sildenafil treatment killed brain cancer stem cells and decreased the expression of: NPC1 and TIM1; LAMP1; and NTCP1, receptors for Ebola/Marburg/Hepatitis A, Lassa fever, and Hepatitis B viruses, respectively. Pre-treatment with OSU-03012/sildenafil reduced expression of the coxsakie and adenovirus receptor in parallel with it also reducing the ability of a serotype 5 adenovirus or coxsakie virus B4 to infect and to reproduce. Similar data were obtained using Chikungunya, Mumps, Measles, Rubella, RSV, CMV, and Influenza viruses. OSU-03012 as a single agent at clinically relevant concentrations killed laboratory generated antibiotic resistant E. coli and clinical isolate multi-drug resistant N. gonorrhoeae and MRSE which was in bacteria associated with reduced Dna K and Rec A expression. The PDE5 inhibitors sildenafil or tadalafil enhanced OSU-03012 killing in N. gonorrhoeae and MRSE and low marginally toxic doses of OSU-03012 could restore bacterial sensitivity in N. gonorrhoeae to multiple antibiotics. Thus, Dna K and bacterial phosphodiesterases are novel antibiotic targets, and inhibition of GRP78 is of therapeutic utility for cancer and also for bacterial and viral infections. J. Cell. Physiol. 230: 1661–1676, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Booth L, Roberts JL, Dent P. HSPA5/Dna K may be a useful target for human disease therapies. DNA Cell Biol 2015; 34:153-8. [PMID: 25689303 DOI: 10.1089/dna.2015.2808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The chaperone protein HSPA5/Dna K is conserved throughout evolution from higher eukaryotes down to prokaryotes. The celecoxib derivative OSU-03012 (also called AR-12) interacts with Viagra or Cialis in eukaryotic cells to rapidly reduce HSPA5 levels as well as blunt the functions of many other chaperone proteins. Because multiple chaperones are modulated in eukaryotes, the expression of cell surface virus receptors is reduced and because HSPA5 in blocked viruses cannot efficiently replicate. Because DnaK levels are reduced in prokaryotes by OSU-03012, the levels of DnaK chaperone proteins such as Rec A decline, which is associated with bacterial cell death and a resensitization of so-called drug-resistant superbugs to standard of care antibiotics. In Alzheimer's disease, HSPA5 has been shown to play a supportive role for the progression of tau phosphorylation and neurodegeneration. Thus, in eukaryotes, HSPA5 represents a target for anticancer, antiviral, and anti-Alzheimer's therapeutics and in prokaryotes, DnaK and bacterial phosphodiesterases represent novel antibiotic targets that should be exploited in the future by pharmaceutical companies.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, Virginia
| | | | | |
Collapse
|
36
|
Liu ZC, Chu J, Lin L, Song J, Ning LN, Luo HB, Yang SS, Shi Y, Wang Q, Qu N, Zhang Q, Wang JZ, Tian Q. SIL1 Rescued Bip Elevation-Related Tau Hyperphosphorylation in ER Stress. Mol Neurobiol 2015; 53:983-994. [PMID: 25575678 DOI: 10.1007/s12035-014-9039-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/30/2014] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress has been indicated in the early stage of Alzheimer's disease (AD), in which tau hyperphosphorylation is one major pathological alteration. The elevation of binding immunoglobulin protein (Bip), an important ER chaperon, was reported in AD brain. It is important to study the roles of ER-related chaperons in tau hyperphosphorylation. In this research, increased Bip was found in the brains of the AD model mice (Tg2576) compared to the age-matched control mice. Meanwhile, deficiency of SIL1, an important co-chaperon of Bip, was observed in brains of Tg2576 mice and in ER stress both in vivo and in vitro. Then, we transfected Bip-EGFP plasmid into HEK293 cells stably expressing the longest human tau (HEK293/tau) or N2a cells and found that increased Bip induced tau hyperphosphorylation via activating glycogen synthase kinase-3β (GSK-3β), an important tau kinase, and increased the association with tau and GSK-3β. When we overexpressed SIL1 in Bip-transfected HEK293/tau cells and thapsigargin-treated HEK293/tau cells, significantly reduced tau hyperphosphorylation and GSK-3β activation were observed. These results suggested the important roles of ER-related chaperons, Bip and SIL1, in AD-like tau hyperphosphorylation.
Collapse
Affiliation(s)
- Zan-Chao Liu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- 2nd Hospital of Shijiazhuang, Shijiazhuang, 050051, China
| | - Jiang Chu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Li Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Hubei University of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Jie Song
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Hong-Bin Luo
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Medical School, Hubei University for Nationalities, Enshi, 445000, China
| | - Shu-Sheng Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
- Hubei University of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Na Qu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Qi Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College; Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute of Brain Science, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
37
|
Cabral Miranda F, Adão-Novaes J, Hauswirth WW, Linden R, Petrs-Silva H, Chiarini LB. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Front Cell Neurosci 2015; 8:438. [PMID: 25620910 PMCID: PMC4288139 DOI: 10.3389/fncel.2014.00438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/04/2014] [Indexed: 12/01/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus induced by severe ER stress. Organotypic hippocampal slice cultures (OHSCs) were exposed to Tunicamycin, a pharmacological ER stress inducer, to trigger cell death. Overexpression of CHIP was achieved with a recombinant adeno-associated viral vector (rAAV) and significantly diminished ER stress-induced cell death, as shown by analysis of propidium iodide (PI) uptake, condensed chromatin, TUNEL and cleaved caspase 3 in the CA1 region of OHSCs. In addition, overexpression of CHIP prevented upregulation of both CHOP and p53 both pro-apoptotic pathways induced by ER stress. We also detected an attenuation of eIF2a phosphorylation promoted by ER stress. However, CHIP did not prevent upregulation of BiP/GRP78 induced by UPR. These data indicate that overexpression of CHIP attenuates ER-stress death response while maintain ER stress adaptative response in the central nervous system. These results indicate a neuroprotective role for CHIP upon UPR signaling. CHIP emerge as a candidate for clinical intervention in neurodegenerative diseases associated with ER stress.
Collapse
Affiliation(s)
- Felipe Cabral Miranda
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro Rio de Janeiro, Brazil
| | - Juliana Adão-Novaes
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro Rio de Janeiro, Brazil
| | - William W Hauswirth
- Retinal Gene Therapy Group, Department of Ophthalmology, University of Florida Gainesville, FL, USA
| | - Rafael Linden
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro Rio de Janeiro, Brazil
| | - Luciana B Chiarini
- Laboratório de Neurogênese, Departamento de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|