1
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
2
|
Bossi S, Daniel H, McLean H. Interplay between metabotropic glutamate type 4 and adenosine type 1 receptors modulate synaptic transmission in the cerebellar cortex. Front Pharmacol 2024; 15:1406238. [PMID: 39211784 PMCID: PMC11358600 DOI: 10.3389/fphar.2024.1406238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The synapses between parallel fibers and Purkinje cells play a pivotal role in cerebellar function. They are intricately governed by a variety of presynaptic receptors, notably by type 4 metabotropic glutamate (mGlu4) receptors and type 1 adenosine (A1) receptors both of which curtail glutamate release upon activation. Despite their pivotal role in regulating synaptic transmission within the cerebellar cortex, functional interactions between mGlu4 and A1 receptors have remained relatively unexplored. To bridge this gap, our study delves into how mGlu4 receptor activity influences A1 receptor-mediated alterations in excitatory transmission. Employing a combination of whole-cell patch clamp recordings of Purkinje cells and parallel fiber presynaptic fluorometric calcium measurements in acute rat and mouse cerebellar cortical slices, our results reveal functional interactions between these receptor types. These findings hold implications for understanding potential roles of these presynaptic receptors in neuroprotection during pathophysiological conditions characterized by elevated glutamate and adenosine levels.
Collapse
Affiliation(s)
- Simon Bossi
- *Correspondence: Simon Bossi, ; Heather McLean,
| | | | - Heather McLean
- Institut des Neurosciences (NeuroPSI) UMR9197 CNRS, Université Paris-Saclay, Saclay, France
| |
Collapse
|
3
|
Gholipour P, Ebrahimi Z, Mohammadkhani R, Ghahremani R, Salehi I, Sarihi A, Komaki A, Karimi SA. Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in prenatal valproic acid-induced rat model of autism. Sci Rep 2024; 14:13168. [PMID: 38849397 PMCID: PMC11161498 DOI: 10.1038/s41598-024-63728-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition characterized by social interaction deficits, communication impairments, repetitive behaviors, and sensory sensitivities. While the etiology of ASD is multifaceted, abnormalities in glutamatergic neurotransmission and synaptic plasticity have been implicated. This study investigated the role of metabotropic glutamate receptor 8 (mGlu8) in modulating long-term potentiation (LTP) in a rat model of ASD induced by prenatal valproic acid (VPA) exposure. To induce an animal model with autism-like characteristics, pregnant rats received an intraperitoneal injection of 500 mg/kg of sodium valproate (NaVPA) on embryonic day 12.5. High-frequency stimulation was applied to the perforant path-dentate gyrus (PP-DG) synapse to induce LTP, while the mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) was administered into the DG. The results revealed that VPA-exposed rats exhibited reduced LTP compared to controls. DCPG had contrasting effects, inhibiting LTP in controls and enhancing it in VPA-exposed rats. Moreover, reduced social novelty preference index (SNPI) in VPA-exposed rats was reversed by intra-DG administration of S-3,4-DCPG. In conclusion, our study advances our understanding of the complex relationship between glutamatergic neurotransmission, synaptic plasticity, and VPA-induced autism model. The findings suggest that mGlu8 receptor dysfunction plays a role in the impaired synaptic plasticity seen in ASD.
Collapse
Affiliation(s)
- Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reihaneh Mohammadkhani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
5
|
Amare AT, Thalamuthu A, Schubert KO, Fullerton JM, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Hasler R, Richard-Lepouriel H, Perroud N, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski PM, Dalkner N, Del Zompo M, DePaulo JR, Étain B, Jamain S, Falkai P, Forstner AJ, Frisen L, Frye MA, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Fallgatter AJ, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman JL, Kohshour MO, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich D, Figge C, Jäger M, Lang FU, Juckel G, Konrad C, Reimer J, Schmauß M, Schmitt A, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer TFM, Fischer A, Bermpohl F, Ritter P, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haussleiter IS, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, et alAmare AT, Thalamuthu A, Schubert KO, Fullerton JM, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Hasler R, Richard-Lepouriel H, Perroud N, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski PM, Dalkner N, Del Zompo M, DePaulo JR, Étain B, Jamain S, Falkai P, Forstner AJ, Frisen L, Frye MA, Gard S, Garnham JS, Goes FS, Grigoroiu-Serbanescu M, Fallgatter AJ, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman JL, Kohshour MO, Reich-Erkelenz D, Schaupp SK, Schulte EC, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich D, Figge C, Jäger M, Lang FU, Juckel G, Konrad C, Reimer J, Schmauß M, Schmitt A, Spitzer C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer TFM, Fischer A, Bermpohl F, Ritter P, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haussleiter IS, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, Kuo PH, Kato T, Kelsoe J, Kittel-Schneider S, Ferensztajn-Rochowiak E, König B, Kusumi I, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Tortorella A, Manchia M, Martinsson L, McCarthy MJ, McElroy S, Colom F, Millischer V, Mitjans M, Mondimore FM, Monteleone P, Nievergelt CM, Nöthen MM, Novák T, O'Donovan C, Ozaki N, Pfennig A, Pisanu C, Potash JB, Reif A, Reininghaus E, Rouleau GA, Rybakowski JK, Schalling M, Schofield PR, Schweizer BW, Severino G, Shilling PD, Shimoda K, Simhandl C, Slaney CM, Squassina A, Stamm T, Stopkova P, Maj M, Turecki G, Vieta E, Veeh J, Witt SH, Wright A, Zandi PP, Mitchell PB, Bauer M, Alda M, Rietschel M, McMahon FJ, Schulze TG, Clark SR, Baune BT. Association of polygenic score and the involvement of cholinergic and glutamatergic pathways with lithium treatment response in patients with bipolar disorder. Mol Psychiatry 2023; 28:5251-5261. [PMID: 37433967 PMCID: PMC11041653 DOI: 10.1038/s41380-023-02149-1] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023]
Abstract
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.
Collapse
Affiliation(s)
- Azmeraw T Amare
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia.
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, UNSW Medicine & Health, University of New South Wales, Sydney, Australia
| | - Klaus Oliver Schubert
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Northern Adelaide Local Health Network, Mental Health Services, Adelaide, SA, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Muktar Ahmed
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Simon Hartmann
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR Klinikum Essen, University of Duisburg-Essen, Rheinische Kliniken, Essen, Germany
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Liping Hou
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Yi-Hsiang Hsu
- HSL Institute for Aging Research, Harvard Medical School, Boston, MA, USA
- Program for Quantitative Genomics, Harvard School of Public Health, Boston, MA, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nirmala Akula
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Bárbara Arias
- Unitat de Zoologia i Antropologia Biològica (Dpt. Biologia Evolutiva, Ecologia i Ciències Ambientals), Facultat de Biologia and Institut de Biomedicina (IBUB), University of Barcelona, CIBERSAM, Barcelona, Spain
| | - Jean-Michel Aubry
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Roland Hasler
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Hélène Richard-Lepouriel
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Nader Perroud
- Department of Psychiatry, Mood Disorders Unit, HUG - Geneva University Hospitals, Geneva, Switzerland
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Frank Bellivier
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
| | - Antonio Benabarre
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006, Paris, France
| | - Pablo Cervantes
- The Neuromodulation Unit, McGill University Health Centre, Montreal, Canada
| | - Hsi-Chung Chen
- Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, Hospital University Agency of Cagliari, Cagliari, Italy
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Cristiana Cruceanu
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Piotr M Czerski
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Maria Del Zompo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - J Raymond DePaulo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Bruno Étain
- INSERM UMR-S 1144, Université Paris Cité, Département de Psychiatrie et de Médecine Addictologique, AP-HP, Groupe Hospitalier Saint-Louis-Lariboisière-F.Widal, Paris, France
| | - Stephane Jamain
- Inserm U955, Translational Psychiatry laboratory, Fondation FondaMental, Créteil, France
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Louise Frisen
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sébastien Gard
- Pôle de Psychiatrie Générale Universitaire, Hôpital Charles Perrens, Bordeaux, France
| | - Julie S Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Andreas J Fallgatter
- University Department of Psychiatry and Psychotherapy Tuebingen, University of Tübingen, Tuebingen, Germany
| | - Sophia Stegmaier
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Thomas Ethofer
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
- Department of Biomedical Resonance, University of Tuebingen, Tuebingen, Germany
| | - Silvia Biere
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Kristiyana Petrova
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Ceylan Schuster
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ion-George Anghelescu
- Department of Psychiatry and Psychotherapy, Mental Health Institute Berlin, Berlin, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Detlef Dietrich
- AMEOS Clinical Center Hildesheim, Hildesheim, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Christian Figge
- Karl-Jaspers Clinic, European Medical School Oldenburg-Groningen, Oldenburg, 26160, Germany
| | - Markus Jäger
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Fabian U Lang
- Department of Psychiatry II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, Rotenburg, Germany
| | - Jens Reimer
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychiatry, Health North Hospital Group, Bremen, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jörg Zimmermann
- Psychiatrieverbund Oldenburger Land gGmbH, Karl-Jaspers-Klinik, Bad Zwischenahn, Germany
| | - Till F M Andlauer
- Department of Neurology, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Silke Matura
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Frankfurt, Goethe University, Frankfurt, Germany
| | - Anna Gryaznova
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Irina Falkenberg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Cüneyt Yildiz
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julia Schmidt
- Institute for Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Marius Koch
- Institute for Medical Informatics, University Medical Center Göttingen, Göttingen, Germany
| | - Kathrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Trost
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Ida S Haussleiter
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Martin Lambert
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja C Rohenkohl
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vivien Kraft
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Grof
- Mood Disorders Center of Ottawa, Ontario, Canada
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8553, Japan
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Esther Jiménez
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Jean-Pierre Kahn
- Service de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy - Université de Lorraine, Nancy, France
| | - Layla Kassem
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital of Würzburg, Wurzburg, Germany
| | | | - Barbara König
- Department of Psychiatry and Psychotherapeutic Medicine, Landesklinikum Neunkirchen, Neunkirchen, Austria
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Gonzalo Laje
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Mikael Landén
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Marion Leboyer
- Inserm U955, Translational Psychiatry laboratory, Université Paris-Est-Créteil, Department of Psychiatry and Addictology of Mondor University Hospital, AP-HP, Fondation FondaMental, Créteil, France
| | - Susan G Leckband
- Office of Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Lina Martinsson
- Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Michael J McCarthy
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Psychiatry, VA San Diego Healthcare System, San Diego, CA, USA
| | - Susan McElroy
- Department of Psychiatry, Lindner Center of Hope / University of Cincinnati, Mason, OH, USA
| | - Francesc Colom
- Mental Health Research Group, IMIM-Hospital del Mar, Barcelona, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marina Mitjans
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francis M Mondimore
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Palmiero Monteleone
- Neurosciences Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Tomas Novák
- National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norio Ozaki
- Department of Psychiatry & Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrea Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for bipolar affective disorder, Medical University of Graz, Graz, Austria
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Barbara W Schweizer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paul D Shilling
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Katzutaka Shimoda
- Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Christian Simhandl
- Bipolar Center Wiener Neustadt, Sigmund Freud University, Medical Faculty, Vienna, Austria
| | - Claire M Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Stamm
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Department of Clinical Psychiatry and Psychotherapy, Brandenburg Medical School, Brandenburg, Germany
| | - Pavla Stopkova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Eduard Vieta
- Bipolar and Depressive Disorders Program,, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adam Wright
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health & Human Services, Bethesda, MD, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Norton College of Medicine, Syracuse, NY, USA
| | - Scott R Clark
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Jo A, Deniz S, Xu J, Duvoisin RM, DeVries SH, Zhu Y. A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina. Nat Commun 2023; 14:5937. [PMID: 37741839 PMCID: PMC10517963 DOI: 10.1038/s41467-023-41638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Bourque M, Morissette M, Conquet F, Charvin D, Di Paolo T. Foliglurax, a positive allosteric modulator of the metabotrophic glutamate receptor 4, protects dopaminergic neurons in MPTP-lesioned male mice. Brain Res 2023; 1809:148349. [PMID: 36972837 DOI: 10.1016/j.brainres.2023.148349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Overactivity of the corticostriatal glutamatergic pathway is documented in Parkinson's disease (PD) and stimulation of presynaptic metabotropic glutamate (mGlu) receptors 4 on these striatal afferents inhibits glutamate release normalizing neuronal activity in the basal ganglia. Moreover, mGlu4 receptors are also expressed in glial cells and are able to modulate glial function making this receptor a potential target for neuroprotection. Hence, we investigated whether foliglurax, a positive allosteric modulator of mGlu4 receptors with high brain exposure after oral administration, has neuroprotective effects in MPTP mice to model early PD. Male mice were treated daily from day 1 to 10 with 1, 3 or 10 mg/kg of foliglurax and administered MPTP on the 5th day then euthanized on the 11th day. Dopamine neuron integrity was assessed with measures of striatal dopamine and its metabolites levels, striatal and nigral dopamine transporter (DAT) binding and inflammation with markers of striatal astrocytes (GFAP) and microglia (Iba1). MPTP lesion produced a decrease in dopamine, its metabolites and striatal DAT specific binding that was prevented by treatment with 3 mg/kg of foliglurax, whereas 1 and 10 mg/kg had no beneficial effect. MPTP mice had increased levels of GFAP; foliglurax treatment (3 mg/kg) prevented this increase. Iba1 levels were unchanged in MPTP mice compared to control mice. There was a negative correlation between dopamine content and GFAP levels. Our results show that positive allosteric modulation of mGlu4 receptors with foliglurax provided neuroprotective effects in the MPTP mouse model of PD.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada
| | | | | | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Québec, QC G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
8
|
Mozafari R, Karimi-Haghighi S, Fattahi M, Kalivas P, Haghparast A. A review on the role of metabotropic glutamate receptors in neuroplasticity following psychostimulant use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110735. [PMID: 36813105 DOI: 10.1016/j.pnpbp.2023.110735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Psychostimulant Use Disorder (PUD) is a chronic relapsing disorder with high motivation for drug abuse. In addition to developing PUD, the use of psychostimulants is a growing public health concern because it is associated with several physical and mental health impairments. To date, there are no FDA-confirmed medicines for the treatment of psychostimulant abuse; therefore, clarification of the cellular and molecular alterations participating in PUD is crucial for developing beneficial medications. PUD causes extensive neuroadaptations in glutamatergic circuitry involved in reinforcement and reward processing. These adaptations include both transient and long-lasting changes in glutamate transmission and glutamate receptors, especially metabotropic glutamate receptors, that have been linked to developing and maintaining PUD. Here, we review the roles of all groups of mGluRs,including I,II, and III in synaptic plasticity within brain reward circuitry engaged by psychostimulants (cocaine, amphetamine, methamphetamine, and nicotine). The review concentrates on investigations of psychostimulant-induced behavioral and neurological plasticity, with an ultimate goal to explore circuit and molecular targets with the potential to contribute to the treatment of PUD.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Freitas GA, Niswender CM. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol Biochem Behav 2023; 225:173546. [PMID: 37003303 PMCID: PMC10192299 DOI: 10.1016/j.pbb.2023.173546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The metabotropic glutamate receptor 7 (mGlu7), encoded by the GRM7 gene in humans, is a presynaptic, G protein-coupled glutamate receptor that is essential for modulating neurotransmission. Mutations in or reduced expression of GRM7 have been identified in different genetic neurodevelopmental disorders (NDDs), and rare biallelic missense variants have been proposed to underlie a subset of NDDs. Clinical GRM7 variants have been associated with a range of symptoms consistent with neurodevelopmental molecular features, including hypomyelination, brain atrophy and defects in axon outgrowth. Here, we review the newest findings regarding the cellular and molecular defects caused by GRM7 variants in NDD patients.
Collapse
Affiliation(s)
- Geanne A Freitas
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America.
| |
Collapse
|
10
|
Amare A, Thalamuthu A, Schubert KO, Fullerton J, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka J, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski P, Dalkner N, Del Zompo M, DePaulo JR, Etain B, Jamain S, Falkai P, Forstner AJ, Frisén L, Frye M, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Fallgatter A, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman J, Oraki Kohshour M, Reich-Erkelenz D, Schaupp S, Schulte E, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich DE, Figge C, Jäger M, Lang F, Juckel G, Spitzer C, Reimer J, Schmauß M, Schmitt A, Konrad C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer T, Fischer A, Bermpohl F, Kraft V, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haußleiter I, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, et alAmare A, Thalamuthu A, Schubert KO, Fullerton J, Ahmed M, Hartmann S, Papiol S, Heilbronner U, Degenhardt F, Tekola-Ayele F, Hou L, Hsu YH, Shekhtman T, Adli M, Akula N, Akiyama K, Ardau R, Arias B, Aubry JM, Backlund L, Bhattacharjee AK, Bellivier F, Benabarre A, Bengesser S, Biernacka J, Birner A, Marie-Claire C, Cervantes P, Chen HC, Chillotti C, Cichon S, Cruceanu C, Czerski P, Dalkner N, Del Zompo M, DePaulo JR, Etain B, Jamain S, Falkai P, Forstner AJ, Frisén L, Frye M, Gard S, Garnham J, Goes F, Grigoroiu-Serbanescu M, Fallgatter A, Stegmaier S, Ethofer T, Biere S, Petrova K, Schuster C, Adorjan K, Budde M, Heilbronner M, Kalman J, Oraki Kohshour M, Reich-Erkelenz D, Schaupp S, Schulte E, Senner F, Vogl T, Anghelescu IG, Arolt V, Dannlowski U, Dietrich DE, Figge C, Jäger M, Lang F, Juckel G, Spitzer C, Reimer J, Schmauß M, Schmitt A, Konrad C, von Hagen M, Wiltfang J, Zimmermann J, Andlauer T, Fischer A, Bermpohl F, Kraft V, Matura S, Gryaznova A, Falkenberg I, Yildiz C, Kircher T, Schmidt J, Koch M, Gade K, Trost S, Haußleiter I, Lambert M, Rohenkohl AC, Kraft V, Grof P, Hashimoto R, Hauser J, Herms S, Hoffmann P, Jiménez E, Kahn JP, Kassem L, Kuo PH, Kato T, Kelsoe J, Kittel-Schneider S, Ferensztajn-Rochowiak E, König B, Kusumi I, Laje G, Landén M, Lavebratt C, Leboyer M, Leckband SG, Tortorella A, Manchia M, Martinsson L, McCarthy M, McElroy SL, Colom F, Mitjans M, Mondimore F, Monteleone P, Nievergelt C, Nöthen M, Novak T, O'Donovan C, Ozaki N, Pfennig A, Pisanu C, Potash J, Reif A, Reininghaus E, Rouleau G, Rybakowski JK, Schalling M, Schofield P, Schweizer BW, Severino G, Shilling PD, Shimoda K, Simhandl C, Slaney C, Squassina A, Stamm T, Stopkova P, Maj M, Turecki G, Vieta E, Veeh J, Witt S, Wright A, Zandi P, Mitchell P, Bauer M, Alda M, Rietschel M, McMahon F, Schulze TG, Millischer V, Clark S, Baune B. Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder. RESEARCH SQUARE 2023:rs.3.rs-2580252. [PMID: 36824922 PMCID: PMC9949170 DOI: 10.21203/rs.3.rs-2580252/v1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N=2,367) and replicated in the combined PsyCourse (N=89) and BipoLife (N=102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P<����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mazda Adli
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | | | | | - Bárbara Arias
- Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, CIBERSAM
| | | | | | | | - Frank Bellivier
- Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Louise Frisén
- Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Till Andlauer
- Technical University of Munich, Klinikum rechts der Isar
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Esther Jiménez
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jean-Pierre Kahn
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Layla Kassem
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- College of Public Health, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Mitjans
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Stamm
- Charité - Universitätsmedizin Berlin, Campus Charité Mitte
| | | | - Mario Maj
- University of Campania "Luigi Vanvitelli", Naples
| | | | | | | | | | | | - Peter Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | | | | | | | | | - Francis McMahon
- National Institute of Mental Health Intramural Research Program; National Institutes of Health
| | | | | | | | | |
Collapse
|
11
|
Domin H. Group III metabotropic glutamate receptors as promising targets for neuroprotective therapy: Particular emphasis on the role of mGlu4 and mGlu7 receptors. Pharmacol Biochem Behav 2022; 219:173452. [PMID: 36030890 DOI: 10.1016/j.pbb.2022.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
There is still no effective treatment for central nervous system (CNS) pathologies, including cerebral ischemia, neurotrauma, and neurodegenerative diseases in which the Glu/GABA balance is disturbed with associated excitotoxicity. It is thus important to search for new efficacious therapeutic strategies. Preclinical studies on the role of metabotropic glutamate receptors (mGluRs) in neuroprotection conducted over the years show that these receptors may have therapeutic potential in these CNS disorders. However, clinical trials, especially for treating Parkinson's disease, have been unsatisfactory. This review focuses on the specific role of group III mGluRs in neuroprotection in experimental in vitro and in vivo models of excitotoxicity/neurotoxicity using neurotoxins as well as ischemia, traumatic brain injury, and neurodegenerative diseases such as Parkinson's disease, Alzheimer's diseases, and multiple sclerosis. The review highlights recent preclinical studies in which group III mGluR ligands (especially those acting at mGluR4 or mGluR7) were administered after damage, thus emphasizing the importance of the therapeutic time window in the treatment of ischemic stroke and traumatic brain injury. From a clinical standpoint, the review also highlights studies using group III mGluR agonists with favorable neuroprotective efficacy (histological and functional) in experimental ischemic stroke, including healthy normotensive and-hypertensive rats. This review also summarizes possible mechanisms underlying the neuroprotective activity of the group III mGluR ligands, which may be helpful in developing more effective and safe therapeutic strategies. Therefore, to fully assess the role of these receptors in neuroprotection, it is necessary to uncover new selective ligands, primarily those stimulating mGlu4 and mGlu7 receptors.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland.
| |
Collapse
|
12
|
Role of Group I Metabotropic Glutamate Receptors in Spike Timing-Dependent Plasticity. Int J Mol Sci 2022; 23:ijms23147807. [PMID: 35887155 PMCID: PMC9317389 DOI: 10.3390/ijms23147807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity (STDP) at hippocampal and neocortical synapses. Their roles of participating in the underlying mechanisms for detection of activity coincidence in STDP induction are debated, and diverse findings support models involving mGluRs in STDP forms in which NMDARs do not operate as classical postsynaptic coincidence detectors. Here, we briefly review the involvement of group I mGluRs in STDP and their possible role as coincidence detectors.
Collapse
|
13
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders. SIGNIFICANCE STATEMENT: Allosteric modulation of metabotropic glutamate (mGlu) receptors represents a promising therapeutic strategy to normalize dysregulated cellular physiology associated with neuropsychiatric disease. This review summarizes preclinical and clinical studies using mGlu receptor allosteric modulators as experimental tools and potential therapeutic approaches for the treatment of neuropsychiatric diseases, including schizophrenia, stress, and substance use disorders.
Collapse
|
14
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
15
|
Wen X, Song DX, Li KX, Wang LN, Xiong X, Li HD, Cui CP, Lu XL, Li BY, Liu Y. Ah-type baroreceptor neurons expressing estrogen dependent mGluR7 mediate descending inhibition of cardiac nociception. Neuroscience 2022; 492:18-31. [DOI: 10.1016/j.neuroscience.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
16
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
17
|
Ebrahimi Z, Kahvandi N, Komaki A, Karimi SA, Naderishahab M, Sarihi A. The role of mGlu4 receptors within the nucleus accumbens in acquisition and expression of morphine-induced conditioned place preference in male rats. BMC Neurosci 2021; 22:17. [PMID: 33743609 PMCID: PMC7981834 DOI: 10.1186/s12868-021-00627-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Several studies have shown that glutamate neurotransmission in the nucleus accumbens (NAc) is required for the development of morphine-induced conditional place preference (CPP). In addition, metabotropic glutamate receptors (mGluRs) in NAc play important roles in the reward pathways. However, the precise role of mGluR4 in different steps of the morphine-induced CPP is less well known. In the present study the effect of bilateral intra-accumbal infusion of VU0155041, as a specific mGluR4 agonist on the acquisition and expression of morphine induced CPP in male Wistar rats was investigated. The animals were bilaterally implanted with guide cannulae above the NAc. In the first step of the study, the VU0155041 was administered at doses of 10, 30 and 50 μg/0.5 μL saline per side into the NAc during the 3 days of morphine (5 mg/kg) conditioning (acquisition) phase of morphine-induced CPP. In the second step of the study, the rats bilaterally received VU0155041 at the dose of 50 μg/0.5 μL, 5 min before the post-conditioning test in order to check the effect of VU0155041 on the expression of morphine-induced CPP. Results The results showed that the intra-accumbal injection of VU0155041 inhibits the acquisition of morphine-induced CPP in a dose dependent manner, but had no effect on expression. Conclusions The data indicated that intra-NAc administration of VU0155041 dose dependently blocks the establishment of morphine-induced CPP and reduces the rewarding properties of morphine. These effects may be related to changes in glutamate activity in the NAC and/or learning dependent mechanism of glutamate neurotransmission in reward pathway(s).
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazanin Kahvandi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Salisbury AJ, Blackwood CA, Cadet JL. Prolonged Withdrawal From Escalated Oxycodone Is Associated With Increased Expression of Glutamate Receptors in the Rat Hippocampus. Front Neurosci 2021; 14:617973. [PMID: 33536871 PMCID: PMC7848144 DOI: 10.3389/fnins.2020.617973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
People suffering from opioid use disorder (OUD) exhibit cognitive dysfunctions. Here, we investigated potential changes in the expression of glutamate receptors in rat hippocampi at 2 h and 31 days after the last session of oxycodone self-administration (SA). RNA extracted from the hippocampus was used in quantitative polymerase chain reaction analyses. Rats, given long-access (9 h per day) to oxycodone (LgA), took significantly more drug than rats exposed to short-access (3 h per day) (ShA). In addition, LgA rats could be further divided into higher oxycodone taking (LgA-H) or lower oxycodone taking (LgA-L) groups, based on a cut-off of 50 infusions per day. LgA rats, but not ShA, rats exhibited incubation of oxycodone craving. In addition, LgA rats showed increased mRNA expression of GluA1-3 and GluN2a-c subunits as well as Grm3, Grm5, Grm6, and Grm8 subtypes of glutamate receptors after 31 days but not after 2 h of stopping the SA experiment. Changes in GluA1-3, Grm6, and Grm8 mRNA levels also correlated with increased lever pressing (incubation) after long periods of withdrawal from oxycodone. More studies are needed to elucidate the molecular mechanisms involved in altering the expression of these receptors during withdrawal from oxycodone and/or incubation of drug seeking.
Collapse
Affiliation(s)
| | | | - Jean Lud Cadet
- National Institute on Drug Abuse, Molecular Neuropsychiatry Branch, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Zhang Q, Chen X, Li S, Yao T, Wu J. Association between the group III metabotropic glutamate receptor gene polymorphisms and attention-deficit/hyperactivity disorder and functional exploration of risk loci. J Psychiatr Res 2021; 132:65-71. [PMID: 33068816 DOI: 10.1016/j.jpsychires.2020.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Existing evidence suggests that the group III metabotropic glutamate receptor (mGluR) gene variations are involved in attention-deficit/hyperactivity disorder (ADHD), but few studies have fully explored this association. We conducted a case-control study with 617 cases and 636 controls to investigate the association between functional single-nucleotide polymorphisms (SNPs) from the group III mGluR gene polymorphisms (GRM4, GRM7, GRM8) and ADHD in the Chinese Han population and initially explored the function of positive SNPs. The GRM4 rs1906953 T genotype showed a significant association with a decreased risk of ADHD (TT:CC, OR = 0.55, 95% CI = 0.40-0.77; recessive model, OR = 0.58, 95% CI = 0.43-0.78). GRM7 rs9826579 C showed a significant association with an increased risk of ADHD (TC:TT, OR = 1.81, 95% CI = 1.39-2.36; dominant model, OR = 1.74, 95% CI = 1.35-2.24; additive model, OR = 1.56, 95% CI = 1.24-1.97). In addition, compared with subjects with the rs1906953 TT genotype, subjects with of the CC genotype showed more obvious attention deficit behaviours and hyperactivity/impulsive behaviours. Dual-luciferase reporter gene assays showed that a promoter reporter with the rs1906953 TT genotype significantly decreased luciferase activity compared with the CC genotype. According to electrophoretic mobility shift assays, the binding capacity of rs1906953 T probe with nucleoprotein was lower than that of the rs1906953 C probe. Our results revealed the association of GRM4 rs1906953 and GRM7 rs9826579 with ADHD. Moreover, we found that rs1906953 disturbs the transcriptional activity of GRM4.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shanyawen Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
20
|
Selective activation of metabotropic glutamate receptor 7 blocks paclitaxel-induced acute neuropathic pain and suppresses spinal glial reactivity in rats. Psychopharmacology (Berl) 2021; 238:107-119. [PMID: 33089875 DOI: 10.1007/s00213-020-05662-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
RATIONALE Paclitaxel-induced acute pain syndrome (P-APS), characterized by deep muscle aches and arthralgia, occurs in more than 70% of patients who receive paclitaxel. P-APS can be debilitating for patients and lead to reductions and discontinuation of potentially curable therapy. Despite being relatively common in clinical practice, no clear treatment exists for P-APS and the underlying mechanisms remain poorly defined. Regulation of glutamatergic transmission by metabotropic glutamate receptors (mGluRs) has received growing attention with respect to its role in neuropathic pain. To our knowledge, no study has been conducted on alterations and functions of group III mGluR7 signaling in P-APS. OBJECTIVES In the present study, we determined whether a single administration of paclitaxel induces glutamatergic alterations and whether mGluR7 activation blocks paclitaxel-induced neuropathic pain by suppressing glial reactivity in the spinal cord. RESULTS A single paclitaxel injection dose-dependently induced acute mechanical and thermal hypersensitivity, and was associated with increased glutamate level accompanied by reduction in mGluR7 expression in the spinal cord. Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocked the development of paclitaxel-induced acute mechanical and thermal hypersensitivity, without affecting the normal pain behavior of control rats. Moreover, activation of mGluR7 by AMN082 inhibited glial reactivity and decreased pro-inflammatory cytokine release during P-APS. Abortion of spinal glial reaction to paclitaxel alleviated paclitaxel-induced acute mechanical and thermal hypersensitivity. CONCLUSIONS There results support the hypothesis that spinal mGluR7 signaling plays an important role in P-APS; Selective activation of mGluR7 by its positive allosteric modulator, AMN082, blocks P-APS in part by reducing spinal glial reactivity and neuroinflammatory process.
Collapse
|
21
|
Dasgupta A, Lim YJ, Kumar K, Baby N, Pang KLK, Benoy A, Behnisch T, Sajikumar S. Group III metabotropic glutamate receptors gate long-term potentiation and synaptic tagging/capture in rat hippocampal area CA2. eLife 2020; 9:e55344. [PMID: 32310084 PMCID: PMC7170650 DOI: 10.7554/elife.55344] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in synaptic plasticity and memory and are largely classified based on amino acid sequence homology and pharmacological properties. Among group III metabotropic glutamate receptors, mGluR7 and mGluR4 show high relative expression in the rat hippocampal area CA2. Group III metabotropic glutamate receptors are known to down-regulate cAMP-dependent signaling pathways via the activation of Gi/o proteins. Here, we provide evidence that inhibition of group III mGluRs by specific antagonists permits an NMDA receptor- and protein synthesis-dependent long-lasting synaptic potentiation in the apparently long-term potentiation (LTP)-resistant Schaffer collateral (SC)-CA2 synapses. Moreover, long-lasting potentiation of these synapses transforms a transient synaptic potentiation of the entorhinal cortical (EC)-CA2 synapses into a stable long-lasting LTP, in accordance with the synaptic tagging/capture hypothesis (STC). Furthermore, this study also sheds light on the role of ERK/MAPK protein signaling and the downregulation of STEP protein in the group III mGluR inhibition-mediated plasticity in the hippocampal CA2 region, identifying them as critical molecular players. Thus, the regulation of group III mGluRs provides a conducive environment for the SC-CA2 synapses to respond to events that could lead to activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Yu Jia Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Krishna Kumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Nimmi Baby
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Ka Lam Karen Pang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Life Sciences Institute Neurobiology Programme, National University of SingaporeSingaporeSingapore
| |
Collapse
|
22
|
Srivastava A, Das B, Yao AY, Yan R. Metabotropic Glutamate Receptors in Alzheimer's Disease Synaptic Dysfunction: Therapeutic Opportunities and Hope for the Future. J Alzheimers Dis 2020; 78:1345-1361. [PMID: 33325389 PMCID: PMC8439550 DOI: 10.3233/jad-201146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of neuritic plaques and neurofibrillary tangles. The impaired synaptic plasticity and dendritic loss at the synaptic level is an early event associated with the AD pathogenesis. The abnormal accumulation of soluble oligomeric amyloid-β (Aβ), the major toxic component in amyloid plaques, is viewed to trigger synaptic dysfunctions through binding to several presynaptic and postsynaptic partners and thus to disrupt synaptic transmission. Over time, the abnormalities in neural transmission will result in cognitive deficits, which are commonly manifested as memory loss in AD patients. Synaptic plasticity is regulated through glutamate transmission, which is mediated by various glutamate receptors. Here we review recent progresses in the study of metabotropic glutamate receptors (mGluRs) in AD cognition. We will discuss the role of mGluRs in synaptic plasticity and their modulation as a possible strategy for AD cognitive improvement.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Brati Das
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Annie Y. Yao
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
23
|
Hippocampal sub-regional differences in the microRNA response to forebrain ischemia. Mol Cell Neurosci 2019; 98:164-178. [DOI: 10.1016/j.mcn.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
|
24
|
Avdeeva NV, Sidorova SA, Gudyrev OS, Osipova OA, Golubev IV. Mechanism of neuroprotective effect of mGluR4 agonists. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.36565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction: This review of literature is to demonstrate a role of group III metabotropic glutamate receptors in maintaining the level of extracellular glutamate in ischemic stroke and neurodegenerative diseases.
Metabotropic glutamate receptors: mGluRs are classified into three groups. It is suggested that the activation of mGluR4 may have a neuroprotective effect.
Role of excitotoxicity in the development and severity of various brain diseases: An increase in the concentration of intracellular Ca2+ is the result of excessive accumulation of glutamate in the extracellular space. And a death of nerve cells occurs after a sequence of biochemical reactions, which was called excitotoxicity. It is followed by an imbalance between glutamatergic excitation and GABA-ergic inhibition. As a result of untimely activation of the inhibitory mechanisms, the accumulation of extracellular glutamate, and consequently the death of neurons, continues, which leads to more severe manifestations of the cerebral ischemia.
Role of modulation of mGluRs activity in neuroprotection: The literature describes a large number of studies proving that inhibition of hyperactive glutamatergic transmission has a neuroprotective effect. The most likely mechanisms of neuroprotection are inhibition of glutamate production in the substantia nigra, which in turn protects against glutamate-mediated excitotoxicity, and the reduction of the inflammatory effects.
Anti-inflammatory effect of mGluR4 agonists in the mechanism of neuroprotective action: The astroglial component may contribute to the protective action of mGluR4 modulators, since astrocytes and microglia have mGluR4.
Conclusion: mGluR4 agonists have the neuroprotective and anti-inflammatory effects.
Collapse
|
25
|
Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 2019; 76:1473-1488. [PMID: 30599069 PMCID: PMC11105246 DOI: 10.1007/s00018-018-3002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Beyond this function, glutamate also plays a key role in intermediary metabolism in all organs and tissues, linking carbohydrate and amino acid metabolism via the tricarboxylic acid cycle. Under both physiological and pathological conditions, we have recently found that the ability of glutamate to fuel cell metabolism selectively relies on the activity of two main transporters: the sodium-calcium exchanger (NCX) and the sodium-dependent excitatory amino-acid transporters (EAATs). In ischemic settings, when glutamate is administered at the onset of the reoxygenation phase, the coordinate activity of EAAT and NCX allows glutamate to improve cell viability by stimulating ATP production. So far, this phenomenon has been observed in both cardiac and neuronal models. In this review, we focus on the most recent findings exploring the unusual activity of glutamate as a potential survival factor in different settings.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
26
|
Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Expert Opin Ther Targets 2019; 23:341-351. [PMID: 30801204 DOI: 10.1080/14728222.2019.1586885] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Several drugs targeting the GABAergic system are used in the treatment of epilepsy, but only one drug targeting glutamate receptors is on the market. This is surprising because an imbalance between excitatory and inhibitory neurotransmission lies at the core of the pathophysiology of epilepsy. One possible explanation is that drug development has been directed towards the synthesis of molecules that inhibit the activity of ionotropic glutamate receptors. These receptors mediate fast excitatory synaptic transmission in the central nervous system (CNS) and their blockade may cause severe adverse effects such as sedation, cognitive impairment, and psychotomimetic effects. Metabotropic glutamate (mGlu) receptors are more promising drug targets because these receptors modulate synaptic transmission rather than mediate it. Areas covered: We review the current evidence that links mGlu receptor subtypes to the pathophysiology and experimental treatment of convulsive and absence seizures. Expert opinion: While mGlu5 receptor negative allosteric modulators have the potential to be protective against convulsive seizures and hyperactivity-induced neurodegeneration, drugs that enhance mGlu5 and mGlu7 receptor function may have beneficial effects in the treatment of absence epilepsy. Evidence related to the other mGlu receptor subtypes is more fragmentary; further investigations are required for an improved understanding of their role in the generation and propagation of seizures.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Bruno
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| | - Ferdinando Nicoletti
- a IRCCS NEUROMED , Pozzilli , Italy.,d Departments of Physiology and Pharmacology , University Sapienza , Rome , Italy
| |
Collapse
|
27
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
28
|
Zoicas I, Kornhuber J. The Role of Metabotropic Glutamate Receptors in Social Behavior in Rodents. Int J Mol Sci 2019; 20:ijms20061412. [PMID: 30897826 PMCID: PMC6470515 DOI: 10.3390/ijms20061412] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023] Open
Abstract
The appropriate display of social behavior is critical for the well-being and survival of an individual. In many psychiatric disorders, including social anxiety disorder, autism spectrum disorders, depression and schizophrenia social behavior is severely impaired. Selective targeting of metabotropic glutamate receptors (mGluRs) has emerged as a novel treatment strategy for these disorders. In this review, we describe some of the behavioral paradigms used to assess different types of social behavior, such as social interaction, social memory, aggressive behavior and sexual behavior. We then focus on the effects of pharmacological modulation of mGluR1-8 on these types of social behavior. Indeed, accumulating evidence indicates beneficial effects of selective ligands of specific mGluRs in ameliorating innate or pharmacologically-induced deficits in social interaction and social memory as well as in reducing aggression in rodents. We emphasize the importance of future studies investigating the role of selective mGluR ligands on different types of social behavior to provide a better understanding of the neural mechanisms involved which, in turn, might promote the development of selective mGluR-targeted tools for the improved treatment of psychiatric disorders associated with social deficits.
Collapse
Affiliation(s)
- Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91054, Germany.
| |
Collapse
|
29
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
30
|
Bossi S, Helleringer R, Galante M, Monlleó E, Trapero A, Rovira X, Daniel H, Llebaria A, McLean H. A Light-Controlled Allosteric Modulator Unveils a Role for mGlu 4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex. Front Cell Neurosci 2018; 12:449. [PMID: 30542267 PMCID: PMC6277836 DOI: 10.3389/fncel.2018.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber – Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.
Collapse
Affiliation(s)
- Simon Bossi
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Romain Helleringer
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Ester Monlleó
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ana Trapero
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Xavier Rovira
- Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, Vic, Spain
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| |
Collapse
|
31
|
The dorsal hippocampal group III metabotropic glutamate receptors are involved in morphine effect on memory formation in male mice. Eur J Pharmacol 2018; 836:44-49. [DOI: 10.1016/j.ejphar.2018.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/21/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023]
|
32
|
Jantas D, Lech T, Gołda S, Pilc A, Lasoń W. New evidences for a role of mGluR7 in astrocyte survival: Possible implications for neuroprotection. Neuropharmacology 2018; 141:223-237. [PMID: 30170084 DOI: 10.1016/j.neuropharm.2018.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 01/18/2023]
Abstract
A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland.
| | - Tomasz Lech
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Andrzej Pilc
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, PL, 31-343, Kraków, Poland
| |
Collapse
|
33
|
Vatankhah M, Karimi-Haghighi S, Sarihi A, Haghparast A. Intra-accumbal administration of AMN082, a metabotropic glutamate receptor type 7 allosteric agonist, inhibits the acquisition but not the expression of morphine-induced conditioned place preference in rats. Neurosci Lett 2018; 681:56-61. [PMID: 29800675 DOI: 10.1016/j.neulet.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/17/2022]
Abstract
The nucleus accumbens (NAc) plays a primary role in opioid reward. The actions of glutamate are mediated by the activation of ionotropic and metabotropic glutamate receptors (mGluRs). Previous documents have shown the extensive distributions of the different types of mGluRs, including mGluR7, in regions that are involved in opioid reward, such as the NAc. In this study, seventy male Wistar rats were used to investigate the role of mGluR7 receptors in the NAc on the acquisition and expression of morphine-induced conditioned place preference (CPP). In Experiment 1, to determine the effect of AMN082, a selective mGluR7 allosteric agonist, on the acquisition of morphine-induced conditioned place preference (CPP), the rats bilaterally received AMN082 (1, 3 and 5 μg/0.5 μL DMSO) during three-day conditioning by morphine (5 mg/kg). In Experiment 2, the rats bilaterally received AMN082 (5 μg/0.5 μL DMSO) 5 min prior to the post-conditioning test to investigate the effect of AMN082 on the expression of morphine-induced CPP. The results showed that the intra-accumbal injection of AMN082 prevents the acquisition of morphine-induced CPP in a dose-dependent manner. However, intra-accumbal injection of AMN082 had no effect on the expression of morphine-induced CPP. The findings propose that the mGluR7 in the NAc inhibits the acquisition of morphine-induced CPP that could be mediated by inhibition of NMDA receptors in the NAc.
Collapse
Affiliation(s)
- Mahsaneh Vatankhah
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeideh Karimi-Haghighi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
34
|
Selvam C, Lemasson IA, Brabet I, Oueslati N, Karaman B, Cabaye A, Tora AS, Commare B, Courtiol T, Cesarini S, McCort-Tranchepain I, Rigault D, Mony L, Bessiron T, McLean H, Leroux FR, Colobert F, Daniel H, Goupil-Lamy A, Bertrand HO, Goudet C, Pin JP, Acher FC. Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. J Med Chem 2018; 61:1969-1989. [DOI: 10.1021/acs.jmedchem.7b01438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chelliah Selvam
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle A. Lemasson
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle Brabet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Nadia Oueslati
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Berin Karaman
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Alexandre Cabaye
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Amélie S. Tora
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Bruno Commare
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Tiphanie Courtiol
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Sara Cesarini
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Rigault
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Laetitia Mony
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
- Institut de Biologie, Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, PSL University, 46 rue d’Ulm, 75005 Paris, France
| | - Thomas Bessiron
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Frédéric R. Leroux
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Françoise Colobert
- UMR 7509/CNRS/ECPM, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg 02, France
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Université Paris-Sud/CNRS/NeuroPSI−UMR 9197, F-91405 Orsay, France
| | - Anne Goupil-Lamy
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Hugues-Olivier Bertrand
- BIOVIA, Dassault Systèmes, 10 rue Marcel Dassault, CS 40501, 78946 Vélizy-Villacoublay Cedex, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Jean-Philippe Pin
- IGF, CNRS, INSERM, Université Montpellier, F-34094 Montpellier, France
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
35
|
Zhang X, Qiao L, Chen Y, Zhao B, Gu Y, Huo X, Zhang Y, Li G. In Silico Analysis of the Association Relationship between Neuroprotection and Flavors of Traditional Chinese Medicine Based on the mGluRs. Int J Mol Sci 2018; 19:ijms19010163. [PMID: 29320397 PMCID: PMC5796112 DOI: 10.3390/ijms19010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/30/2023] Open
Abstract
The metabotropic glutamate receptors (mGluRs) are known as both synaptic receptors and taste receptors. This feature is highly similar to the Property and Flavor theory of Traditional Chinese medicine (TCM), which has the pharmacological effect and flavor. In this study, six ligand based pharmacophore (LBP) models, seven homology modeling models, and fourteen molecular docking models of mGluRs were built based on orthosteric and allosteric sites to screening potential compounds from Traditional Chinese Medicine Database (TCMD). Based on the Pharmacopoeia of the People's Republic of China, TCMs of compounds and their flavors were traced and listed. According to the tracing result, we found that the TCMs of the compounds which bound to orthosteric sites of mGluRs are highly correlated to a sweet flavor, while the allosteric site corresponds to a bitter flavor. Meanwhile, the pharmacological effects of TCMs with highly frequent flavors were further analyzed. We found that those TCMs play a neuroprotective role through the efficiencies of detumescence, promoting blood circulation, analgesic effect, and so on. This study provides a guide for developing new neuroprotective drugs from TCMs which target mGluRs. Moreover, it is the first study to present a novel approach to discuss the association relationship between flavor and the neuroprotective mechanism of TCM based on mGluRs.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Liansheng Qiao
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yankun Chen
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Bowen Zhao
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yu Gu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xiaoqian Huo
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yanling Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Gongyu Li
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
36
|
Guo B, Wang J, Yao H, Ren K, Chen J, Yang J, Cai G, Liu H, Fan Y, Wang W, Wu S. Chronic Inflammatory Pain Impairs mGluR5-Mediated Depolarization-Induced Suppression of Excitation in the Anterior Cingulate Cortex. Cereb Cortex 2017; 28:2118-2130. [DOI: 10.1093/cercor/bhx117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Baolin Guo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Jiaqi Wang
- Cadet Brigade, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Han Yao
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Keke Ren
- School of life Sciences, Yan’an University, Yan’an 716000, P.R. China
| | - Jing Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Jing Yang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Guohong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Haiying Liu
- Cadet Brigade, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Yunlong Fan
- Cadet Brigade, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Wenting Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, P.R. China
| |
Collapse
|
37
|
Maksymetz J, Moran SP, Conn PJ. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol Brain 2017; 10:15. [PMID: 28446243 PMCID: PMC5405554 DOI: 10.1186/s13041-017-0293-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Support for the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia has led to increasing focus on restoring proper glutamatergic signaling as an approach for treatment of this devastating disease. The ability of metabotropic glutamate (mGlu) receptors to modulate glutamatergic neurotransmission has thus attracted considerable attention for the development of novel antipsychotics. Consisting of eight subtypes classified into three groups based on sequence homology, signal transduction, and pharmacology, the mGlu receptors provide a wide range of targets to modulate NMDAR function as well as glutamate release. Recently, allosteric modulators of mGlu receptors have been developed that allow unprecedented selectivity among subtypes, not just groups, facilitating the investigation of the effects of subtype-specific modulation. In preclinical animal models, positive allosteric modulators (PAMs) of the group I mGlu receptor mGlu5 have efficacy across all three symptom domains of schizophrenia (positive, negative, and cognitive). The discovery and development of mGlu5 PAMs that display unique signal bias suggests that efficacy can be retained while avoiding the neurotoxic effects of earlier compounds. Interestingly, mGlu1 negative allosteric modulators (NAMs) appear efficacious in positive symptom models of the disease but are still in early preclinical development. While selective group II mGlu receptor (mGlu2/3) agonists have reached clinical trials but were unsuccessful, specific mGlu2 or mGlu3 receptor targeting still hold great promise. Genetic studies implicated mGlu2 in the antipsychotic effects of group II agonists and mGlu2 PAMs have since entered into clinical trials. Additionally, mGlu3 appears to play an important role in cognition, may confer neuroprotective effects, and thus is a promising target to alleviate cognitive deficits in schizophrenia. Although group III mGlu receptors (mGlu4/6/7/8) have attracted less attention, mGlu4 agonists and PAMs appear to have efficacy across all three symptoms domains in preclinical models. The recent discovery of heterodimers comprising mGlu2 and mGlu4 may explain the efficacy of mGlu4 selective compounds but this remains to be determined. Taken together, compounds targeting mGlu receptors, specifically subtype-selective allosteric modulators, provide a compelling alternative approach to fill the unmet clinical needs for patients with schizophrenia.
Collapse
Affiliation(s)
- James Maksymetz
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
| | - Sean P. Moran
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37232 USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
38
|
Chardonnet S, Bessiron T, Ramos CI, Dammak R, Richard MA, Boursier C, Cadilhac C, Coquelle FM, Bossi S, Ango F, Le Maréchal P, Decottignies P, Berrier C, McLean H, Daniel H. Native metabotropic glutamate receptor 4 depresses synaptic transmission through an unusual Gα q transduction pathway. Neuropharmacology 2017; 121:247-260. [PMID: 28456688 DOI: 10.1016/j.neuropharm.2017.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/13/2023]
Abstract
In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.
Collapse
Affiliation(s)
- Solenne Chardonnet
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Thomas Bessiron
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Cathy Isaura Ramos
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Raoudha Dammak
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Marie-Ange Richard
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Céline Boursier
- Plateforme de Transcriptomique et Protéomique (Trans-Prot), UMS-IPSIT, Univ Paris Sud CNRS Inserm, F- 92296 Chatenay-Malabry, France
| | - Christelle Cadilhac
- Equipe Mise en place des circuits GABAergiques, Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier Cedex 5, France
| | - Frédéric M Coquelle
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette Cedex, France
| | - Simon Bossi
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Fabrice Ango
- Equipe Mise en place des circuits GABAergiques, Institut de Génomique Fonctionnelle, CNRS UMR 5203, F-34094 Montpellier Cedex 5, France
| | - Pierre Le Maréchal
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Paulette Decottignies
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Catherine Berrier
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Heather McLean
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France
| | - Hervé Daniel
- Equipe Pharmacologie et Biochimie de la Synapse, NeuroPSI - UMR 9197 « Univ Paris-sud - CNRS », Université Paris-Sud, F-91405 Orsay, France.
| |
Collapse
|
39
|
Woźniak M, Acher F, Marciniak M, Lasoń-Tyburkiewicz M, Gruca P, Papp M, Pilc A, Wierońska JM. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022. Curr Neuropharmacol 2017; 14:413-26. [PMID: 26769224 PMCID: PMC4983756 DOI: 10.2174/1570159x13666150516000630] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023] Open
Abstract
Considering that ligands of metabotropic glutamate and GABA receptors may exert beneficial effects on schizophrenia, we assessed the actions of the first mGlu4-selective orthosteric agonist, LSP4-2022, in several tests reflecting positive, negative, and cognitive symptoms of schizophrenia. Moreover, we investigated the possible involvement of GABAB receptors in LSP4-2022-induced actions. Hyperactivity induced by MK-801 or amphetamine and DOI-induced head twitches in mice were used as the models of positive symptoms. The social interaction test, modified forced swim test (FST), and novel object recognition (NOR) test were used as the models of negative and cognitive symptoms of schizophrenia. LSP4-2022 inhibited hyperactivity (in a dose-dependent manner, 0.5-2 mg/kg) induced by MK-801 or amphetamine and DOI-induced head twitches. In mGlu4 receptor knockout mice, LSP4-2022 was not effective. However, it reversed MK-801-induced impairment in the social interaction test and the MK-801-induced increase of immobility in the modified FST. In the NOR test, LSP4-2022 was active at a dose of 2 mg/kg. GABAB receptor antagonist, CGP55845 (10 mg/kg), reversed LSP4-2022-induced effects in hyperactivity and head twitch tests. At the same time, the simultaneous administration of subeffective doses of LSP4-2022 (0.1 mg/kg) and a positive allosteric modulator of GABAB receptor PAM, GS39783 (0.1 mg/kg), induced clear antipsychotic-like effects in those two tests. Such an interaction between mGlu4 and GABAB receptors was not observed in the social interaction and NOR tests. Therefore, we suggest that the activation of the mGlu4 receptor is a promising approach facilitating the discovery of novel antipsychotic drugs, and that the interplay between mGlu4 and GABAB receptors may become the basis for a novel therapy for schizophrenic patients with predomination of positive symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
40
|
Chappell MD, Li R, Smith SC, Dressman BA, Tromiczak EG, Tripp AE, Blanco MJ, Vetman T, Quimby SJ, Matt J, Britton TC, Fivush AM, Schkeryantz JM, Mayhugh D, Erickson JA, Bures MG, Jaramillo C, Carpintero M, Diego JED, Barberis M, Garcia-Cerrada S, Soriano JF, Antonysamy S, Atwell S, MacEwan I, Condon B, Sougias C, Wang J, Zhang A, Conners K, Groshong C, Wasserman SR, Koss JW, Witkin JM, Li X, Overshiner C, Wafford KA, Seidel W, Wang XS, Heinz BA, Swanson S, Catlow JT, Bedwell DW, Monn JA, Mitch CH, Ornstein PL. Discovery of (1S,2R,3S,4S,5R,6R)-2-Amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid Hydrochloride (LY3020371·HCl): A Potent, Metabotropic Glutamate 2/3 Receptor Antagonist with Antidepressant-Like Activity. J Med Chem 2016; 59:10974-10993. [DOI: 10.1021/acs.jmedchem.6b01119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Carlos Jaramillo
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mercedes Carpintero
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José Eugenio de Diego
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Mario Barberis
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Susana Garcia-Cerrada
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - José F. Soriano
- Discovery
Chemistry Synthesis Group, Centro de Investigación Lilly S.A. Avda. de la Industria, 30 Alcobendas, Madrid 28108, Spain
| | - Stephen Antonysamy
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Shane Atwell
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Iain MacEwan
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Bradley Condon
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Christine Sougias
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Jing Wang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Aiping Zhang
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Kris Conners
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Chris Groshong
- Structural
Biology, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States
| | - Stephen R. Wasserman
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - John W. Koss
- Structural Biology,
Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Building 438A, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | | | | | | - Keith A. Wafford
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | - Wesley Seidel
- Neuroscience Research, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey, U.K. GU20 6PH
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat. Pharmacol Rep 2016; 69:97-104. [PMID: 27914294 DOI: 10.1016/j.pharep.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metabotropic glutamate receptors (mGlu) play a role in a number of physiological processes and behaviors, as well as in certain pathological conditions and diseases. New drugs targetting mGlu receptors are being developed with treatment purposes. Recent data indicates that glutamate is involved in sleep, and pharmacological manipulation of distinct subtypes of mGlu receptors affect sleep. Here the consequences of selective pharmacological agonism of mGlu8 receptor upon sleep and wakefulness are explored for the first time. METHODS 32 male Wistar rats were stereotaxically prepared for polysomnography. (S)-3,4-dicarboxyphenylglycine (S)-3,4-DCPG (5, 10, and 20mg/kg, ip), a selective and potent mGlu8 receptor agonist, or physiological saline was administered one hour after the light period began. RESULTS Compared to control vehicle, (S)-3,4-DCPG, did not affect, at any of the doses given, the sleep and wakefulness parameters examined in the general analysis of the three hours of recording. Drug effects across time were studied analyzing three one-hour time blocks, control and experimental groups did not show any significant difference in the sleep and wakefulness parameters analyzed. Latency to sleep stages did not significantly vary between vehicle and treatment groups. CONCLUSIONS Results indicate that pharmacological activation of mGlu8 receptor by (S)-3,4-DCPG (5, 10, 20mg/kg, ip) does not affect sleep and wakefulness in the rat, suggesting that pharmacological agonism of these receptors may not influence sleep. Further research is needed to verify whether new drugs acting on these receptors lack of effect upon sleep and wakefulness.
Collapse
|
42
|
The neuroprotective effects of orthosteric agonists of group II and III mGluRs in primary neuronal cell cultures are dependent on developmental stage. Neuropharmacology 2016; 111:195-211. [PMID: 27600687 DOI: 10.1016/j.neuropharm.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates neuronal excitability. Here, we evaluated the neuroprotective potential of four structurally diverse activators of group II and III mGluRs: an orthosteric agonist of group II (LY354740), an orthosteric agonist of group III (ACPT-I), an allosteric agonist of mGluR7 (AMN082) and a positive allosteric modulator (PAM) of mGluR4 (VU0361737). Neurotoxicity was induced by the pro-apoptotic agents: staurosporine (St) and doxorubicin (Dox) or the excitotoxic factor glutamate (Glu). The effects were analyzed in primary hippocampal (HIP) and cerebellar granule cell (CGC) cultures at two developmental stages, at 7 and 12 days in vitro (DIV). The data reveal a general neuroprotective effect of group II and III mGluR activators against the St- and Glu- but not Dox-induced cell damage. We found that neuroprotective effects of group II and III mGluR orthosteric agonists (LY354740 and ACPT-I) were higher at 12 DIV when compared to 7 DIV cells. In contrast, the efficiency of allosteric mGluR agents (AMN082 and VU0361737) did not differ between 7 and 12 DIV in both, St and Glu models of neuronal cell damage. Interestingly, the protective effects of activators of group II and III mGluRs were blocked by relevant antagonists only against Glu-induced neurotoxicity. Moreover, the observed neuroprotective action of group II and III mGluR activators in the St model was associated with a decreased number of PI-positive cells and no alterations in the caspase-3 activity. Finally, we showed that MAPK/ERK pathway activation was potentially involved in the mechanism of ACPT-I- and AMN082-induced neuroprotection against the St-evoked cellular damage. Our comparative study demonstrated the developmental stage-dependent neuroprotective effect of orthosteric group II and III mGluR agonists. In comparison to allosteric modulators, orthosteric compounds may provide more specific tools for suppression of neuronal cell loss associated with various chronic neurodegenerative conditions. Our results also suggest that the inhibition of intracellular pathways mediating necrotic, rather than apoptotic cascades, may be involved in neuroprotective effects of activators of group II and III mGluRs.
Collapse
|
43
|
Woźniak M, Gołembiowska K, Noworyta-Sokołowska K, Acher F, Cieślik P, Kusek M, Tokarski K, Pilc A, Wierońska JM. Neurochemical and behavioral studies on the 5-HT 1A-dependent antipsychotic action of the mGlu 4 receptor agonist LSP4-2022. Neuropharmacology 2016; 115:149-165. [PMID: 27465045 DOI: 10.1016/j.neuropharm.2016.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/29/2022]
Abstract
LSP4-2022 is a novel, orthosteric agonist of mGlu4 receptor that induces antipsychotic-like activity in animal studies. In the present study, the involvement of 5-HT1A receptors in LSP4-2022-induced antipsychotic actions and the neurochemical background of that interaction were investigated. In several behavioral tests the actions of effective doses of the compound (0.5-2 mg/kg) were antagonized via the administration of the 5-HT1A antagonist WAY100635 (0.1 mg/kg). The co-administration of sub-effective dose of the 5-HT1A agonist (R)-(S)-8-OH-DPAT (0.01 mg/kg) intensified the activity of ineffective doses of LSP4-2022, having no influence on the efficacy of the active doses. The co-administration of effective doses of both compounds did not intensify each other's action. In the microdialysis in vivo tests, MK-801 (0.6 mg/kg) induced an enhancement of the release of dopamine, serotonin, glutamate and GABA in the prefrontal cortex. Administration of LSP4-2022 (2 mg/kg) abolished this MK-801-induced effect on neurotransmitter release. Co-administration with WAY100635 (0.1 mg/kg), a 5-HT1A antagonist, completely (dopamine, serotonin) or partially (glutamate, GABA) counteracted this LSP4-2022-induced effect. Subsequently, the patch-clamp recordings of spontaneous EPSCs were performed. sEPSCs were evoked in slices from the mouse prefrontal cortex by DOI (10 μM). LSP4-2022 (2.5; 5 and 10 μm) reversed DOI-induced changes in both the frequency and amplitude of the sEPSCs, but the more robust effect on the frequency was observed. The administration of WAY100635 had no effect on the LSP4-2022-induced effects on sEPSCs, indicating that the mGlu4-5-HT1A interaction does not occur via single-neuron signaling but involves neuronal circuits that regulate neurotransmitter release. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Monika Woźniak
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | | | | | - Francine Acher
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, UMR8601-CNRS, Paris Descartes University, Sorbonne Paris Cite,45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | - Paulina Cieślik
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland.
| |
Collapse
|
44
|
Glasauer SMK, Wäger R, Gesemann M, Neuhauss SCF. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol 2016; 524:2363-78. [PMID: 27121676 DOI: 10.1002/cne.24029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non-GABAergic, non-starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363-2378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stella M K Glasauer
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Robert Wäger
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
45
|
Peterlik D, Flor PJ, Uschold-Schmidt N. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders. Curr Neuropharmacol 2016; 14:514-39. [PMID: 27296643 PMCID: PMC4983752 DOI: 10.2174/1570159x13666150515234920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders.
Collapse
Affiliation(s)
| | - Peter J Flor
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
46
|
Witkin JM, Ornstein PL, Mitch CH, Li R, Smith SC, Heinz BA, Wang XS, Xiang C, Carter JH, Anderson WH, Li X, Broad LM, Pasqui F, Fitzjohn SM, Sanger HE, Smith JL, Catlow J, Swanson S, Monn JA. In vitro pharmacological and rat pharmacokinetic characterization of LY3020371, a potent and selective mGlu 2/3 receptor antagonist. Neuropharmacology 2015; 115:100-114. [PMID: 26748052 DOI: 10.1016/j.neuropharm.2015.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/27/2022]
Abstract
Metabotropic glutamate 2/3 (mGlu2/3) receptors are of considerable interest owing to their role in modulating glutamate transmission via presynaptic, postsynaptic and glial mechanisms. As part of our ongoing efforts to identify novel ligands for these receptors, we have discovered (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid; (LY3020371), a potent and selective orthosteric mGlu2/3 receptor antagonist. In this account, we characterize the effects of LY3020371 in membranes and cells expressing human recombinant mGlu receptor subtypes as well as in native rodent and human brain tissue preparations, providing important translational information for this molecule. In membranes from cells expressing recombinant human mGlu2 and mGlu3 receptor subtypes, LY3020371.HCl competitively displaced binding of the mGlu2/3 agonist ligand [3H]-459477 with high affinity (hmGlu2 Ki = 5.26 nM; hmGlu3 Ki = 2.50 nM). In cells expressing hmGlu2 receptors, LY3020371.HCl potently blocked mGlu2/3 agonist (DCG-IV)-inhibited, forskolin-stimulated cAMP formation (IC50 = 16.2 nM), an effect that was similarly observed in hmGlu3-expressing cells (IC50 = 6.21 nM). Evaluation of LY3020371 in cells expressing the other human mGlu receptor subtypes revealed high mGlu2/3 receptor selectivity. In rat native tissue assays, LY3020371 demonstrated effective displacement of [3H]-459477 from frontal cortical membranes (Ki = 33 nM), and functional antagonist activity in cortical synaptosomes measuring both the reversal of agonist-suppressed second messenger production (IC50 = 29 nM) and agonist-inhibited, K+-evoked glutamate release (IC50 = 86 nM). Antagonism was fully recapitulated in both primary cultured cortical neurons where LY3020371 blocked agonist-suppressed spontaneous Ca2+ oscillations (IC50 = 34 nM) and in an intact hippocampal slice preparation (IC50 = 46 nM). Functional antagonist activity was similarly demonstrated in synaptosomes prepared from epileptic human cortical or hippocampal tissues, suggesting a translation of the mGlu2/3 antagonist pharmacology from rat to human. Intravenous dosing of LY3020371 in rats led to cerebrospinal fluid drug levels that are expected to effectively block mGlu2/3 receptors in vivo. Taken together, these results establish LY3020371 as an important new pharmacological tool for studying mGlu2/3 receptors in vitro and in vivo. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paul L Ornstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Charles H Mitch
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Renhua Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Stephon C Smith
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Beverly A Heinz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xu-Shan Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Chuanxi Xiang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Joan H Carter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Wesley H Anderson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xia Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | - John Catlow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - James A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
47
|
Podkowa K, Rzeźniczek S, Marciniak M, Acher F, Pilc A, Pałucha-Poniewiera A. A novel mGlu4 selective agonist LSP4-2022 increases behavioral despair in mouse models of antidepressant action. Neuropharmacology 2015; 97:338-45. [PMID: 26074092 DOI: 10.1016/j.neuropharm.2015.05.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/26/2015] [Accepted: 05/30/2015] [Indexed: 11/16/2022]
Abstract
Numerous data have indicated that metabotropic glutamate (mGlu) receptor ligands may be potentially useful as novel antidepressant drugs (ADs). The Group III mGlu receptor has not been explored much because of the limited access to selective ligands, but some behavioral studies have indicated that modulating group III mGlu receptors may result in benefits for the therapy of depression. Here, we investigated the potential antidepressant-like effects of a new mGlu4 selective orthosteric agonist, LSP4-2022. We found that the drug induced pro-depressant effects in the tail suspension test (TST) and the forced swim test (FST) in mice at doses that did not change the locomotor activity of the animals. Additional experiments that used knock-out (KO) mice and aimed to verify the selectivity of LSP4-2022 revealed that the drug induced strong pro-depressant-like effects in mGlu7 KO mice but did not affect the behavior of mGlu4 KO mice in the TST, suggesting that the activation of the mGlu4 receptor plays a role in producing the pro-depressant activity of the tested drug. The results of our study indicate that the inhibition rather than activation of mGlu4 receptors might induce antidepressant effects, but this hypothesis should be verified using a selective mGlu4 receptor antagonist, which is currently not available.
Collapse
Affiliation(s)
- Karolina Podkowa
- Institute of Pharmacology Polish Academy of Sciences, Department of Neurobiology, Smętna 12, 31-343 Kraków, Poland
| | - Szymon Rzeźniczek
- Institute of Pharmacology Polish Academy of Sciences, Department of Neurobiology, Smętna 12, 31-343 Kraków, Poland
| | - Marcin Marciniak
- Institute of Pharmacology Polish Academy of Sciences, Department of Neurobiology, Smętna 12, 31-343 Kraków, Poland
| | - Francine Acher
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, UMR8601-CNRS, Paris Descartes University, Sorbonne Paris Cite,45, rue des Saints-Peres, 75270 Paris Cedex 06, France
| | - Andrzej Pilc
- Institute of Pharmacology Polish Academy of Sciences, Department of Neurobiology, Smętna 12, 31-343 Kraków, Poland; Jagiellonian University Medical College, Department of Drug Management, Faculty of Health Sciences, Grzegórzecka 20, 31-531 Kraków, Poland
| | - Agnieszka Pałucha-Poniewiera
- Institute of Pharmacology Polish Academy of Sciences, Department of Neurobiology, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
48
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
49
|
Raber J, Duvoisin RM. Novel metabotropic glutamate receptor 4 and glutamate receptor 8 therapeutics for the treatment of anxiety. Expert Opin Investig Drugs 2014; 24:519-28. [DOI: 10.1517/13543784.2014.986264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob Raber
- 1Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, Oregon Health and Science University, Division of Neuroscience, ONPRC, Portland, OR, USA ;
| | - Robert M Duvoisin
- 2Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|