1
|
Abramova A, Bride J, Oger C, Demion M, Galano JM, Durand T, Roy J. Metabolites derived from radical oxidation of PUFA: NEO-PUFAs, promising molecules for health? Atherosclerosis 2024; 398:118600. [PMID: 39341752 DOI: 10.1016/j.atherosclerosis.2024.118600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Oxidative stress plays a critical role in numerous pathological processes. Under these stress conditions, the free radical-catalyzed lipid peroxidation generates in vivo a large number of key products that are involved in many physiological and pathophysiological processes. Among these products are neuroprostanes, which arise from the peroxidation of docosahexaenoic acid (DHA), and isoprostanes, resulting from arachidonic acid (AA) and eicosapentaenoic acid (EPA) through the same peroxidation process. These non-enzymatic oxygenated metabolites newly appointed NEO-PUFAs have gained recognition as reliable markers of oxidative stress in neurogenerative and cardiovascular diseases. Moreover, some of them display a wide range of biological activities. The ability to detect and measure these metabolites offers precious insights into the mechanisms of oxidative damage and holds potential therapeutic implications for various health conditions, including neurodegenerative diseases. This review focuses on the role of neuroprostanes as biomarkers for oxidative stress and related diseases, highlighting their potential applications in medical research and treatment.
Collapse
Affiliation(s)
- Anna Abramova
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Jamie Bride
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Marie Demion
- PhyMedExp, Université de Montpellier, Inserm U1046, UMR CNRS 9412, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Recherche Chimie Balard, Université Montpellier, UMR 5247, CNRS, ENSCM, 34293, Montpellier cedex, France.
| | - Jérôme Roy
- Universite de Pau et des Pays de l'Adour, INRAE, NUMEA, Aquapôle, 64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
2
|
Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Prog Lipid Res 2022; 86:101165. [PMID: 35508275 PMCID: PMC9346631 DOI: 10.1016/j.plipres.2022.101165] [Citation(s) in RCA: 271] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids, and influence cellular function via effects on membrane properties, and also by acting as a precursor pool for lipid mediators. These lipid mediators are formed via activation of pathways involving at least one step of dioxygen-dependent oxidation, and are consequently called oxylipins. Their biosynthesis can be either enzymatically-dependent, utilising the promiscuous cyclooxygenase, lipoxygenase, or cytochrome P450 mixed function oxidase pathways, or nonenzymatic via free radical-catalyzed pathways. The oxylipins include the classical eicosanoids, comprising prostaglandins, thromboxanes, and leukotrienes, and also more recently identified lipid mediators. With the advent of new technologies there is growing interest in identifying these different lipid mediators and characterising their roles in health and disease. This review brings together contributions from some of those at the forefront of research into lipid mediators, who provide brief introductions and summaries of current understanding of the structure and functions of the main classes of nonclassical oxylipins. The topics covered include omega-3 and omega-6 PUFA biosynthesis pathways, focusing on the roles of the different fatty acid desaturase enzymes, oxidized linoleic acid metabolites, omega-3 PUFA-derived specialized pro-resolving mediators, elovanoids, nonenzymatically oxidized PUFAs, and fatty acid esters of hydroxy fatty acids.
Collapse
|
3
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
4
|
Phung AS, Bannenberg G, Vigor C, Reversat G, Oger C, Roumain M, Galano JM, Durand T, Muccioli GG, Ismail A, Wang SC. Chemical Compositional Changes in Over-Oxidized Fish Oils. Foods 2020; 9:foods9101501. [PMID: 33092165 PMCID: PMC7590219 DOI: 10.3390/foods9101501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
A recent study has reported that the administration during gestation of a highly rancid hoki liver oil, obtained by oxidation through sustained exposure to oxygen gas and incident light for 30 days, causes newborn mortality in rats. This effect was attributed to lipid hydroperoxides formed in the omega-3 long-chain polyunsaturated fatty acid-rich oil, while other chemical changes in the damaged oil were overlooked. In the present study, the oxidation condition employed to damage the hoki liver oil was replicated, and the extreme rancidity was confirmed. A detailed analysis of temporal chemical changes resulting from the sustained oxidative challenge involved measures of eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) omega-3 oil oxidative quality (peroxide value, para-anisidine value, total oxidation number, acid value, oligomers, antioxidant content, and induction time) as well as changes in fatty acid content, volatiles, isoprostanoids, and oxysterols. The chemical description was extended to refined anchovy oil, which is a more representative ingredient oil used in omega-3 finished products. The present study also analyzed the effects of a different oxidation method involving thermal exposure in the dark in contact with air, which is an oxidation condition that is more relevant to retail products. The two oils had different susceptibility to the oxidation conditions, resulting in distinct chemical oxidation signatures that were determined primarily by antioxidant protection as well as specific methodological aspects of the applied oxidative conditions. Unique isoprostanoids and oxysterols were formed in the over-oxidized fish oils, which are discussed in light of their potential biological activities.
Collapse
Affiliation(s)
- Austin S. Phung
- Department of Chemistry, University of California, Davis, CA 95616, USA;
| | - Gerard Bannenberg
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
- Correspondence: (G.B.); (S.C.W.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Martin Roumain
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, 34093 Montpellier, France; (C.V.); (G.R.); (C.O.); (J.-M.G.); (T.D.)
| | - Giulio G. Muccioli
- Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (M.R.); (G.G.M.)
| | - Adam Ismail
- Global Organization for EPA and DHA Omega-3s (GOED), Salt Lake City, UT 84105, USA;
| | - Selina C. Wang
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (G.B.); (S.C.W.)
| |
Collapse
|
5
|
Pavlíčková T, Bultel-Poncé V, Guy A, Rocher A, Reversat G, Vigor C, Durand T, Galano JM, Jahn U, Oger C. First Total Syntheses of Novel Non-Enzymatic Polyunsaturated Fatty Acid Metabolites and Their Identification in Edible Oils. Chemistry 2020; 26:10090-10098. [PMID: 32531118 DOI: 10.1002/chem.202002138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OS) is an in vivo process leading to free radical overproduction, which triggers polyunsaturated fatty acid (PUFA) peroxidation resulting in the formation of racemic non-enzymatic oxygenated metabolites. As potential biomarkers of OS, their in vivo quantification is of great interest. However, since a large number of isomeric metabolites is formed in parallel, their quantification remains difficult without primary standards. Three new PUFA-metabolites, namely 18-F3t -isoprostane (IsoP) from eicosapentaenoic acid (EPA), 20-F4t -neuroprostane (NeuroP) from docosahexaenoic acid (DHA) and 20-F3t -NeuroP from docosapentaenoic acid (DPAn-3 ) were synthesized by two complementary synthetic strategies. The first one relied on a racemic approach to 18(RS)-18-F3t -IsoP using an oxidative radical anion cyclization as a key step, whereas the second used an enzymatic deracemization of a bicyclo[3.3.0]octene intermediate obtained from cyclooctadiene to pursue an asymmetric synthesis. The synthesized metabolites were applied in targeted lipidomics to prove lipid peroxidation in edible oils of commercial nutraceuticals.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 05, France
| |
Collapse
|
6
|
Roy J, Vigor C, Vercauteren J, Reversat G, Zhou B, Surget A, Larroquet L, Lanuque A, Sandres F, Terrier F, Oger C, Galano JM, Corraze G, Durand T. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie 2020; 178:137-147. [PMID: 32623048 DOI: 10.1016/j.biochi.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain. Hence, the goal of this study was to characterize the whole brain fatty acid composition (precursors, enzymatic and non-enzymatic oxidation metabolites) of fish model of rainbow trout fed with three experimental plant-based diet containing distinct levels of eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) (0% for low, 15.7% for medium and 33.4% for high, total fatty acid content) during nine weeks. Trout fed with the diet devoid of DHA and EPA showed reduced brain content of total ω-3 LC-PUFAs, with diminution of EPA and DHA. Selected enzymatic (cyclooxygenases and lipoxygenases) oxidation metabolites of arachidonic acid (AA, 20:4 ω-6) decrease in medium and high ω-3 LC-PUFAs diets. On the contrary, total selected enzymatic oxidation metabolites of DHA and EPA increased in high ω-3 LC-PUFAs diet. Total selected non-enzymatic oxidation metabolites of DHA (not detected for EPA) increased in medium and high ω-3 LC-PUFAs diets. In conclusion, this work revealed for the first time in fish model the presence of some selected enzymatic and non-enzymatic oxidation metabolites in brain and the modulation of brain lipid content by dietary DHA and EPA levels.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Anne Surget
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
7
|
García-Flores LA, Medina S, Gómez C, Wheelock CE, Cejuela R, Martínez-Sanz JM, Oger C, Galano JM, Durand T, Hernández-Sáez Á, Ferreres F, Gil-Izquierdo Á. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food Funct 2018; 9:463-475. [PMID: 29231216 DOI: 10.1039/c7fo01409k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, we examined whether particular urinary oxylipins (isoprostanes (IsoPs), leukotrienes (LTs), prostaglandins (PGs), and thromboxanes (TXs)) in 16 elite triathletes could alter during 145 days of training. Within this time span, 45 days were dedicated to examining the effects of the intake of a beverage rich in polyphenols (one serving: 200 mL per day) supplemented in their diet. The beverage was a mixture of citrus juice (95%) and Aronia melanocarpa juice (5%) (ACJ). Fifty-two oxylipins were analyzed in the urine. The quantification was carried out using solid-phase extraction, liquid chromatography coupled with triple quadrupole mass spectrometry. The physical activity decreased the excretion of some PG, IsoP, TX, and LT metabolites from arachidonic acid, γ-dihomo-linolenic acid, and eicosapentaenoic acid. The ACJ also reduced the excretion of 2,3-dinor-11β-PGF2α and 11-dehydro-TXB2, although the levels of other metabolites increased after juice supplementation (PGE2, 15-keto-15-F2t-IsoP, 20-OH-PGE2, LTE4, and 15-epi-15-E2t-IsoP), compared to the placebo. The metabolites that increased in abundance have been related to vascular homeostasis and smooth muscle function, suggesting a positive effect on the cardiovascular system. In conclusion, exercise influences mainly the decrease in oxidative stress and the inflammation status in elite triathletes, while ACJ supplementation has a potential benefit regarding the cardiovascular system that is connected in a synergistic manner with elite physical activity.
Collapse
Affiliation(s)
- Libia Alejandra García-Flores
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Galano JM, Roy J, Durand T, Lee JCY, Le Guennec JY, Oger C, Demion M. Biological activities of non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) derived from EPA and DHA: New anti-arrhythmic compounds? Mol Aspects Med 2018; 64:161-168. [PMID: 29572110 DOI: 10.1016/j.mam.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 12/13/2022]
Abstract
ω3 Polyunsaturated fatty acids (ω3 PUFAs) have several biological properties including anti-arrhythmic effects. However, there are some evidences that it is not solely ω3 PUFAs per se that are biologically active but the non-enzymatic oxygenated metabolites of polyunsaturated fatty acids (NEO-PUFAs) like isoprostanes and neuroprostanes. Recent question arises how these molecules take part in physiological homeostasis, show biological bioactivities and anti-inflammatory properties. Furthermore, they are involved in the circulations of childbirth, by inducing the closure of the ductus arteriosus. In addition, oxidative stress which can be beneficial for the heart in given environmental conditions such as the presence of ω3 PUFAs on the site of the stress and the signaling pathways involved are also explained in this review.
Collapse
Affiliation(s)
| | - Jérôme Roy
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| | - Thierry Durand
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | | | | | - Camille Oger
- Université de Montpellier, CNRS, IBMM, Montpellier, France
| | - Marie Demion
- Université de Montpellier, CNRS, Inserm, PhyMedExp, Montpellier, France
| |
Collapse
|
9
|
Bankhele P, Salvi A, Jamil J, Njie-Mbye F, Ohia S, Opere CA. Comparative Effects of Hydrogen Sulfide-Releasing Compounds on [ 3H]D-Aspartate Release from Bovine Isolated Retinae. Neurochem Res 2018; 43:692-701. [PMID: 29353375 DOI: 10.1007/s11064-018-2471-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, L-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM-10 µM), L-cysteine (100 nM-10 µM) and N-acetylcysteine (10 µM-1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: L-cysteine > GYY 4137 > N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, L-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and L-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and L-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), L-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of L-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.
Collapse
Affiliation(s)
- Pratik Bankhele
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Ankita Salvi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jamal Jamil
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Fatou Njie-Mbye
- Department of Pharmaceutical & Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA
| | - Sunny Ohia
- Department of Pharmaceutical & Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA
| | - Catherine A Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
10
|
Insight into the contribution of isoprostanoids to the health effects of omega 3 PUFAs. Prostaglandins Other Lipid Mediat 2017; 133:111-122. [DOI: 10.1016/j.prostaglandins.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
|
11
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat 2017; 132:84-91. [DOI: 10.1016/j.prostaglandins.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
|
13
|
Roy J, Galano JM, Durand T, Le Guennec JY, Lee JCY. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J 2017; 31:3729-3745. [PMID: 28592639 DOI: 10.1096/fj.201700170r] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
It has been 60 yr since the discovery of reactive oxygen species (ROS) in biology and the beginning of the scientific community's attempt to understand the impact of the unpaired electron of ROS molecules in biological pathways, which was eventually noted to be toxic. Several studies have shown that the presence of ROS is essential in triggering or acting as a secondary factor for numerous pathologies, including metabolic and genetic diseases; however, it was demonstrated that chronic treatment with antioxidants failed to show efficacy and positive effects in the prevention of diseases or health complications that result from oxidative stress. On the contrary, such treatment has been shown to sometimes even worsen the disease. Because of the permanent presence of ROS in organisms, elaborate mechanisms to adapt with these reactive molecules and to use them without necessarily blocking or preventing their actions have been studied. There is now a large body of evidence that shows that living organisms have conformed to the presence of ROS and, in retrospect, have adapted to the bioactive molecules that are generated by ROS on proteins, lipids, and DNA. In addition, ROS have undergone a shift from being molecules that invoked oxidative damage in regulating signaling pathways that impinged on normal physiological and redox responses. Working in this direction, this review unlocks a new conception about the involvement of cellular oxidants in the maintenance of redox homeostasis in redox regulation of normal physiological functions, and an explanation for its essential role in numerous pathophysiological states is noted.-Roy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., Lee, J. C.-Y. Physiological role of reactive oxygen species as promoters of natural defenses.
Collapse
Affiliation(s)
- Jérôme Roy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Montreal Diabetes Research Center, Department of Nutrition, Université de Montréal, Montreal, Québec, Canada; .,Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Jean-Yves Le Guennec
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
14
|
Lee YY, Galano JM, Oger C, Vigor C, Guillaume R, Roy J, Le Guennec JY, Durand T, Lee JCY. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids 2016; 51:1217-1229. [PMID: 27671161 DOI: 10.1007/s11745-016-4198-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Oxygenated lipid mediators released from non-enzymatic peroxidation of polyunsaturated fatty acids (PUFA) are known to have functional roles in humans. Notably, among these lipid mediators, isoprostanes molecules are robust biomarkers of oxidative stress but those from n-3 PUFA are also bioactive molecules. In order to identify and assess the isoprostanes, the use of mass spectrometry (MS) for analysis is preferable and has been used for over two decades. Gas chromatography (GC) is commonly coupled to the MS to separate the derivatized isoprostanes of interest in biological samples. In order to increase the accuracy of the analytical performance, GC-MS/MS was also applied. Lately, MS or MS/MS has been coupled with high-performance liquid chromatography to assess multiple isoprostane molecules in a single biological sample without derivatization process. However, there are limitations for the use of LC-MS/MS in the measurement of plasma isoprostanes, which will be discussed in this review.
Collapse
Affiliation(s)
- Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Reversat Guillaume
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jérôme Roy
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP, Université de Montpellier, Montpellier, France
| | - Jean-Yves Le Guennec
- UMR CNRS 9214-Inserm U1046 Physiologie et Médecine Expérimentale du cœur et des muscles-PHYMEDEXP, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
15
|
Non-enzymatic cyclic oxygenated metabolites of omega-3 polyunsaturated fatty acid: Bioactive drugs? Biochimie 2015; 120:56-61. [PMID: 26112019 DOI: 10.1016/j.biochi.2015.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/13/2015] [Indexed: 12/21/2022]
Abstract
Non-enzymatic oxygenated metabolites derived from polyunsaturated fatty acids (PUFA) are formed in vivo through free radical reaction under oxidative stress conditions. It has been over twenty-five years since the discovery of cyclic oxygenated metabolites derived from arachidonic acid (20:4 n-6), the isoprostanes, and since then they have become biomarkers of choice for assessing in vivo OS in humans and animals. Chemical synthesis of n-3 PUFA isoprostanoids such as F3-Isoprostanes from eicosapentaenoic acid (20:5 n-3), and F4-Neuroprostanes from docosahexaenoic acid (22:6 n-6) unravelled novel and unexpected biological properties of such omega-3 non-enzymatic cyclic metabolites as highlighted in this review.
Collapse
|