1
|
Cheng F, Zhang Y, Xiong H, Zhao M, Wang Q, Zhu Y, Li Y, Tang R, Li J. NMNATs expression inhibition mediated NAD + deficiency plays a critical role in doxorubicin-induced hepatotoxicity in mice. Toxicol Appl Pharmacol 2024; 482:116799. [PMID: 38160893 DOI: 10.1016/j.taap.2023.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Doxorubicin (DOX) is one of the most widely used antineoplastic drugs with known cardiotoxicity while other organ toxicity, such as hepatotoxicity is not well defined. This study was to explore the role of nicotinamide adenine dinucleotide (NAD+) in DOX-induced hepatotoxicity. DOX (20 mg/kg) induced acute liver injury and oxidative stress in C57BL/6 J mice at 48 h. Notably, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H dehydrogenase quinone 1 (NQO1) were downregulated. NAD+ deficiency was confirmed due to DOX exposure. Mechanistically, the downregulation of nicotinamide mononucleotide adenylyl transferase 1 (NMNAT1), NMNAT2 and NMNAT3, while no alteration of nicotinamide phosphoribosyl transferase was proved. As a consequence of NAD+ deficiency, the expression of poly-ADP-ribose polymerase1 (PARP1), CD38 and Sirtuin1 (SIRT1) were reduced. Furthermore, supplementation of NAD+ (200 mg/kg/day) or its precursor nicotinamide mononucleotide (NMN) (500 mg/kg/day) alleviated liver injury, attenuated oxidative stress, and elevated the downregulation of Nrf2 and NQO1. More importantly, compromised expression of NMNAT1-3, PARP1, CD38 and SIRT1 were improved by NAD+ and NMN. In conclusion, NAD+ deficiency due to NMNATs expression inhibition may attribute to the pathogenesis of DOX-induced hepatotoxicity, thus providing new insights for mitigating DOX side effects.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Yongtai Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Hongli Xiong
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Minzhu Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Qi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Ying Zhu
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Yongguo Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Renkuan Tang
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China
| | - Jianbo Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, PR China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing, PR China; Chongqing Key Laboratory of Forensic Medicine, Chongqing, PR China.
| |
Collapse
|
2
|
Wang XZ, Liang SP, Chen X, Wang ZC, Li C, Feng CS, Lu S, He C, Wang YB, Chi GF, Ge PF. TAX1BP1 contributes to deoxypodophyllotoxin-induced glioma cell parthanatos via inducing nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I. Acta Pharmacol Sin 2023; 44:1906-1919. [PMID: 37186123 PMCID: PMC10462642 DOI: 10.1038/s41401-023-01091-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei. Evidence has shown that deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells via induction of excessive ROS. In this study we explored the downstream signal of activated PARP1 to induce nuclear translocation of AIF in DPT-triggered glioma cell parthanatos. We showed that treatment with DPT (450 nM) induced PARP1 over-activation and Tax1 binding protein 1 (TAX1BP1) distribution to mitochondria in human U87, U251 and U118 glioma cells. PARP1 activation promoted TAX1BP1 distribution to mitochondria by depleting nicotinamide adenine dinucleotide (NAD+). Knockdown of TAX1BP1 with siRNA not only inhibited TAX1BP1 accumulation in mitochondria, but also alleviated nuclear translocation of AIF and glioma cell death. We demonstrated that TAX1BP1 enhanced the activity of respiratory chain complex I not only by upregulating the expression of ND1, ND2, NDUFS2 and NDUFS4, but also promoting their assemblies into complex I. The activated respiratory complex I generated more superoxide to cause mitochondrial depolarization and nuclear translocation of AIF, while the increased mitochondrial superoxide reversely reinforced PARP1 activation by inducing ROS-dependent DNA double strand breaks. In mice bearing human U87 tumor xenograft, administration of DPT (10 mg· kg-1 ·d-1, i.p., for 8 days) markedly inhibited the tumor growth accompanied by NAD+ depletion, TAX1BP1 distribution to mitochondria, AIF distribution to nuclei as well as DNA DSBs and PARP1 activation in tumor tissues. Taken together, these data suggest that TAX1BP1 acts as a downstream signal of activated PARP1 to trigger nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I.
Collapse
Affiliation(s)
- Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Sheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
4
|
Rodriguez J, Li T, Xu Y, Sun Y, Zhu C. Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:205-213. [PMID: 32859765 PMCID: PMC7896227 DOI: 10.4103/1673-5374.290875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Perinatal complications, such as asphyxia, can cause brain injuries that are often associated with subsequent neurological deficits, such as cerebral palsy or mental retardation. The mechanisms of perinatal brain injury are not fully understood, but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion. Among these proteins, apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia, but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury. In this review, we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy, specifically on the importance of apoptosis-inducing factor. The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality, especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress, acting as a free radical scavenger. We also discuss all the different apoptosis-inducing factor isoforms discovered, focusing especially on apoptosis-inducing factor 2, which is only expressed in the brain and the functions of which are starting now to be clarified. Finally, we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions (pro-survival and pro-apoptotic) and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.
Collapse
Affiliation(s)
- Juan Rodriguez
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tao Li
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yiran Xu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Sun
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Anatomy, School of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Peroxiredoxin 5 Silencing Sensitizes Dopaminergic Neuronal Cells to Rotenone via DNA Damage-Triggered ATM/p53/PUMA Signaling-Mediated Apoptosis. Cells 2019; 9:cells9010022. [PMID: 31861721 PMCID: PMC7016837 DOI: 10.3390/cells9010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (Prxs) are a family of thioredoxin peroxidases. Accumulating evidence suggests that changes in the expression of Prxs may be involved in neurodegenerative diseases pathology. However, the expression and function of Prxs in Parkinson’s disease (PD) remains unclear. Here, we showed that Prx5 was the most downregulated of the six Prx subtypes in dopaminergic (DA) neurons in rotenone-induced cellular and rat models of PD, suggesting possible roles in regulating their survival. Depletion of Prx5 sensitized SH-SY5Y DA neuronal cells to rotenone-induced apoptosis. The extent of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation was increased by Prx5 loss. Furthermore, Prx5 knockdown enhanced the induction of PUMA by rotenone through a p53-dependent mechanism. Using RNA interference approaches, we demonstrated that the p53/PUMA signaling was essential for Prx5 silencing-exacerbated mitochondria-driven apoptosis. Additionally, downregulation of Prx5 augmented rotenone-induced DNA damage manifested as induction of phosphorylated histone H2AX (γ-H2AX) and activation of ataxia telangiectasia mutated (ATM) kinase. The pharmacological inactivation of ATM revealed that ATM was integral to p53 activation by DNA damage. These findings provided a novel link between Prx5 and DNA damage-triggered ATM/p53/PUMA signaling in a rotenone-induced PD model. Thus, Prx5 might play an important role in protection against rotenone-induced DA neurodegeneration.
Collapse
|
6
|
Ding Y, He C, Lu S, Wang X, Wang C, Wang L, Zhang J, Piao M, Chi G, Luo Y, Sai K, Ge P. MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis. Cancer Lett 2019; 467:58-71. [PMID: 31560934 DOI: 10.1016/j.canlet.2019.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Chromatinolysis refers to enzymatic degradation of nuclear DNA and is regarded as one of the crucial events leading to cell death. Mixed-lineage kinase domain-like protein (MLKL) has been identified as a key executor of necroptosis, but it remains unclear whether MLKL contributes to necroptosis via regulation of chromatinolysis. In this study, we find that shikonin induces MLKL activation and chromatinolysis in glioma cells in vitro and in vivo, which are accompanied with nuclear translocation of AIF and γ-H2AX formation. In vitro studies reveal that inhibition of MLKL with its specific inhibitor NSA or knockdown of MLKL with siRNA abrogates shikonin-induced glioma cell necroptosis, as well as chromatinolysis. Mechanistically, activated MLKL targets mitochondria and triggers excessive generation of mitochondrial superoxide, which promotes AIF translocation into nucleus via causing mitochondrial depolarization and aggravates γ-H2AX formation via improving intracellular accumulation of ROS. Inhibition of nuclear level of AIF by knockdown of AIF with siRNA or mitigation of γ-H2AX formation by suppressing ROS with antioxidant NAC effectively prevents shikonin-induced chromatinolysis. Then, we found that RIP3 accounts for shikonin-induced activation of MLKL, and activated MLKL reversely up-regulates the protein level of CYLD and promotes the activation of RIP1 and RIP3. Taken together, our data suggest that MLKL contributes to shikonin-induced glioma cell necroptosis via promotion of chromatinolysis, and shikonin induces a positive feedback between MLKL and its upstream signals RIP1 and RIP3.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Ke Sai
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
8
|
Berberine Induces Cell Apoptosis through Cytochrome C/Apoptotic Protease-Activating Factor 1/Caspase-3 and Apoptosis Inducing Factor Pathway in Mouse Insulinoma Cells. Chin J Integr Med 2015; 25:853-860. [DOI: 10.1007/s11655-015-2280-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
|