1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Wang H, Liu Z, Du Y, Cheng X, Gao S, Liang W, Zhu Q, Jiang Z, Gao Y, Shang P. High expression of ARPC1B promotes the proliferation and apoptosis of clear cell renal cell carcinoma cells, leading to a poor prognosis. Mol Cell Probes 2025; 79:102011. [PMID: 39818256 DOI: 10.1016/j.mcp.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients. METHODS Multi-omics data and clinical information from public databases were analyzed to determine the associations between ARPC1B and prognosis, clinical features, immune microenvironment, and drug sensitivity in ccRCC. Co-expression and gene set enrichment analyses were conducted to elucidate the potential role of ARPC1B in ccRCC pathogenesis. Functional assays, including RT-qPCR, CCK8 assays, colony formation assays, immunofluorescence, immunohistochemistry, and xenograft tumor formation in nude mice, were performed to assess ARPC1B's impact on cell proliferation and apoptosis. Flow cytometry and Western blotting were further employed to investigate the underlying molecular mechanisms of ARPC1B in ccRCC. RESULTS ARPC1B expression was significantly elevated in ccRCC and associated with an unfavorable prognosis. Both independent and meta-analyses confirmed that ARPC1B is an independent prognostic risk factor in ccRCC. Furthermore, ARPC1B expression significantly correlated with the immune microenvironment and drug sensitivity. In vitro, experiments demonstrated that ARPC1B knockdown suppressed ccRCC cell proliferation and induced apoptosis through the BAX-Bcl-2/c-caspase3/c-PARP axis, which was further validated by in vivo studies. CONCLUSION ARPC1B overexpression is associated with poor prognosis, altered immune status, and drug sensitivity in ccRCC. Furthermore, ARPC1B promotes the malignant behavior of ccRCC cells and holds potential as a prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yuelin Du
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shanjun Gao
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Wenjia Liang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyun Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhengfa Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Panfeng Shang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Sun L, Ye X, Yu J, Wang L, Wu Y, Cui J, Dai L. Peripheral Lymphocyte-to-Monocyte Ratio as a Predictive Factor for Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Int J Gen Med 2024; 17:4397-4405. [PMID: 39355340 PMCID: PMC11444228 DOI: 10.2147/ijgm.s483064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
Purpose Previous studies have reported that lymphocyte-to-monocyte ratio (LMR) is associated with the prognosis of patients with acute ischemic stroke (AIS); however, the relationship between LMR and early neurological deterioration (END) in AIS patients has not been elucidated. Patients and Methods Patients were divided into two groups according to LMR by using receiver operating characteristic (ROC) curve analysis. Patients with END were confirmed as the National Institutes of Health Stroke Scale (NIHSS) increased ≥ 4 points between hospital days 0 and 5. Multivariate logistic regression analysis was used to analyze the factors independently related to END in patients with AIS. Results In total, 202 patients diagnosed with AIS were enrolled in this retrospective study. Using ROC curve analysis, patients were divided into two groups according to LMR: low LMR group (LMR < 3.24, n = 95) and high LMR group (LMR ≥ 3.24, n = 107). The frequencies of END were significantly higher in the low LMR group compared to the high LMR group (41.05 vs.15.89%, p < 0.001). Multivariate logistic regression showed that age (OR = 1.03, 95% CI 1.01-1.06, p = 0.04), infarct volume (OR = 1.01, 95% CI 1.00-1.02, p = 0.001), neutrophil count (OR = 1.17, 95% CI 1.03-1.33, p = 0.018), and LMR (OR = 2.49, 95% CI 1.01-9.11, p = 0.018) were independently associated with END in AIS patients. Conclusion A peripheral LMR levels at admission were significantly associated with END and LMR < 3.24 is an independent predictive factor of END in patients with AIS.
Collapse
Affiliation(s)
- Liying Sun
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Xuhui Ye
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Junping Yu
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Linlin Wang
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Yan Wu
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Jing Cui
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| | - Lihua Dai
- Intensive Care Unit, Shidong Hospital, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Zhou X, Xue S, Si X, Du W, Guo Y, Qu Y, Guo Z, Sun X. Impact of peripheral lymphocyte subsets on prognosis for patients after acute ischemic stroke: A potential disease prediction model approach. CNS Neurosci Ther 2024; 30:e70023. [PMID: 39205499 PMCID: PMC11358587 DOI: 10.1111/cns.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS To investigate the relationship between peripheral blood lymphocyte subsets and prognosis in patients with acute ischemic stroke (AIS). METHODS We enrolled 294 patients with AIS and collected peripheral blood samples for analysis of lymphocyte subsets. Prognosis was assessed at 3 months using the modified Rankin Scale (mRS). Association between lymphocyte count and poor outcomes (mRS score >2) was assessed using logistic regression. Individualized prediction models were developed to predict poor outcomes. RESULTS Patients in the mRS score ≤2 group had higher T-cell percentage (odds ratio [OR] = 0.947; 95% confidence interval [CI]: 0.899-0.998; p = 0.040), CD3+ T-cell count (OR = 0.999; 95% CI: 0.998-1.000; p = 0.018), and CD4+ T-cell count (OR = 0.998; 95% CI: 0.997-1.000; p = 0.030) than those in the mRS score >2 group 1-3 days after stroke. The prediction model for poor prognosis based on the CD4+ T-cell count showed good discrimination (area under the curve of 0.844), calibration (p > 0.05), and clinical utility. CONCLUSION Lower T cell percentage, CD3+, and CD4+ T-cell counts 1-3 days after stroke were independently associated with increased risk of poor prognosis. Individualized predictive model of poor prognosis based on CD4+ T-cell count have good accuracy and may predict disease prognosis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Song Xue
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Xiang‐Kun Si
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Wen‐Yu Du
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Ya‐Nan Guo
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Yang Qu
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Zhen‐Ni Guo
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
- Department of Neurology, Neuroscience Research Centerthe First Hospital of Jilin UniversityChangchunChina
| | - Xin Sun
- Department of Neurology, Stroke Centerthe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Li L, Wang Y. Identification of Potential Biomarkers for Patients with DWI-Negative Ischemic Stroke. J Mol Neurosci 2024; 74:68. [PMID: 38995420 PMCID: PMC11245437 DOI: 10.1007/s12031-024-02229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Ischemic stroke is the leading cause of long-term disability in adults, accounting for 80% of stroke cases. Diffusion weighted imaging (DWI) examination is the main test for acute ischemic stroke, but in recent years, several studies have shown that some patients show negative DWI examination after the onset of ischemic stroke with symptoms of significant neurological deficits. In this study, we investigated potential biomarkers related to immune metabolism in the peripheral blood of DWI-negative versus DWI-positive patients after ischemic stroke and explored their possible regulatory processes in ischemic stroke. The datasets related to ischemic stroke were downloaded from the GEO database, immune-related genes and metabolism-related genes were obtained from the ImmPort database and MSigDB database, respectively, and immune-related differential genes were obtained based on immune scores using the algorithm of the R software package "GSVA." Candidate genes were selected based on intersections, hub genes were screened using the algorithm in Cytoscape software, and finally, GeneMANIA analysis, GSEA enrichment analysis, subcellular localization, gene transcription factor and gene-drug interaction networks, and disease correlation analyses were performed for the hub genes. Five hub genes (GART, TYMS, PPAT, CTPS1, and PAICS) were obtained by PPI network analysis and software analysis. Among them, PPAT and PAICS may be the real hub genes with consistent and significantly differentiated results from the discovery and validation sets. The functions of these hub genes may be related to pathways such as nucleotide biosynthetic processes. The constructed hub gene ceRNA network showed that hsa-10a-5p is the key miRNA connecting PAICS and multiple lncRNAs in this study. Differential genes related to immunity and metabolism in DWI-negative and DWI-positive patients after IS were identified using bioinformatics analysis, and their pathways and related TF-RNAs, miRNAs, and lncRNAs were identified. These genes may be considered effective targets for the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China
| | - Ying Wang
- Department of Neurology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 6500032, China.
| |
Collapse
|
6
|
Pu B, Zhu H, Wei L, Gu L, Zhang S, Jian Z, Xiong X. The Involvement of Immune Cells Between Ischemic Stroke and Gut Microbiota. Transl Stroke Res 2024; 15:498-517. [PMID: 37140808 DOI: 10.1007/s12975-023-01151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
Ischemic stroke, a disease with high mortality and disability rate worldwide, currently has no effective treatment. The systemic inflammation response to the ischemic stroke, followed by immunosuppression in focal neurologic deficits and other inflammatory damage, reduces the circulating immune cell counts and multiorgan infectious complications such as intestinal and gut dysfunction dysbiosis. Evidence showed that microbiota dysbiosis plays a role in neuroinflammation and peripheral immune response after stroke, changing the lymphocyte populations. Multiple immune cells, including lymphocytes, engage in complex and dynamic immune responses in all stages of stroke and may be a pivotal moderator in the bidirectional immunomodulation between ischemic stroke and gut microbiota. This review discusses the role of lymphocytes and other immune cells, the immunological processes in the bidirectional immunomodulation between gut microbiota and ischemic stroke, and its potential as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Liang Wei
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, People's Republic of China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, Sichuan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Rd, Wuhan, Hubei, 430060, People's Republic of China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
7
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wang Z, Li Y, Ye Y, Zhu H, Zhang J, Wang H, Lei J, Gu L, Zhan L. NLRP3 inflammasome deficiency attenuates cerebral ischemia-reperfusion injury by inhibiting ferroptosis. Brain Res Bull 2023; 193:37-46. [PMID: 36435361 DOI: 10.1016/j.brainresbull.2022.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The role of ferroptosis in ischemic stroke has been hotly debated recently, but the mechanism is not clearly clarified. It has been reported that the NLRP3 inflammasome is essential for the progression of ischemic stroke. Whether the ferroptosis after ischemic stroke mediated by the activation of NLRP3 inflammasome is still not reported. In this study, we investigated the effect of NLRP3 deficiency on ferroptosis following cerebral ischemia-reperfusion injury (CIRI) in vivo and in vitro. MATERIALS In vivo, we used C57BL/6J mice and NLRP3-/- mice to establish a model of middle cerebral artery occlusion (MCAO). After 3 days of reperfusion, we assessed neurological function and then performed TTC staining to measure the infarct volume. Besides, we measured the expression of NLRP3 inflammasome-related proteins and the ferroptosis-inhibiting protein glutathione peroxidase 4 (GPX4) by western blotting (WB) and immunofluorescence (IF). Moreover, we evaluated the levels of ferroptosis-related factors (Fe2+, MDA and GSH) in the infarct area by using appropriate kits. Furthermore, we used WB to measure the expression of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which participate in the progression of ischemic stroke. In vitro, we knocked down NLRP3 with small interfering RNAs (siRNAs) and established an oxygen glucose deprivation/Reperfusion (OGD/R) model in BV2 cells to simulate ischemic conditions. Next, we assessed the viability of BV2 cells by the Cell Counting Kit (CCK)-8 cytotoxicity assay. Moreover, we used WB to measure the expression of NLRP3, IL-1β, GPX4, Keap1 and Nrf2 proteins which are involved in CIRI. RESULTS Three days after MCAO, the NLRP3-/- mice exhibited smaller cerebral infarct volumes and lower neurological deficit scores. The expression of NLRP3 inflammasome-associated proteins (IL-18 and IL-1β) and Keap1/Nrf2 signaling pathway moleculars (Keap1 and Nrf2) in mice brain tissue and BV2 cells were inhibited by NLRP3 knockout/knockdown, while the expression of GPX4, one of the ferroptosis-related factors was increased. Furthermore, the contents of Fe2+ and MDA in the brain tissues of NLRP3-/- mice were decreased, while the content of GSH were increased significantly. CONCLUSION Inhibition of the NLRP3 inflammasome alleviates CIRI by inhibiting ferroptosis and inflammation, possibly through a mechanism of the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiaxi Lei
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Wang CJ, Pang CY, Huan-Yu, Cheng YF, Wang H, Deng BB, Huang HJ. Monocyte-to-lymphocyte ratio affects prognosis in LAA-type stroke patients. Heliyon 2022; 8:e10948. [PMID: 36247122 PMCID: PMC9561738 DOI: 10.1016/j.heliyon.2022.e10948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/04/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
Abstract
Nowadays, the prognostic prediction of acute ischemic stroke (AIS) patients is still challenging because of the limited predictive properties of existing models. Blood-based biomarkers may provide additional information to the established prognostic factors. Markers of atherosclerosis have been identified as one of the most promising biomarkers for predicting prognosis, and inflammation, in turn, affects atherosclerosis. According to previous studies, the ratio of monocytes to lymphocytes (MLR) has been reported as a novel indicator of inflammation. Thus, our study was the first to conduct more in-depth research on the relationship between MLR and the prognosis of large artery atherosclerosis (LAA)-type AIS patients. A total of 296 patients with LAA-type stroke were recruited. Of these, 202 patients were assigned to the development cohort, and 94 patients were assigned to the validation cohort. In the development cohort, 202 patients were divided into groups A, B, C, and D according to the quartile method of MLR levels. The one-year prognosis of patients was tracked, and the modified Rankin scale (MRS, with a score ranging from 0 to 6) was mainly selected as the measurement result of the function. The relationship between MLR and prognosis was analyzed by building logistics regression models. The models showed that MLR made significant predictions in poor outcomes of LAA-type stroke patients (odds ratio: 4.037; p = 0.048). At the same time, receiver operating characteristics (ROC) curves were used to compare the predictive values between MLR and clinical prediction score (Barthel Index). This study demonstrated that patients with LAA-type stroke and high MLR had a poor prognosis. MLR might be a reliable, inexpensive, and novel predictor of LAA-type stroke prognosis.
Collapse
|
11
|
Th1/Th2 polarization of peripheral immune response in atherothrombotic and cardioembolic stroke: a prospective study. Sci Rep 2022; 12:16384. [PMID: 36180482 PMCID: PMC9525580 DOI: 10.1038/s41598-022-20515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Compelling evidence suggest a key role of immune system in the development and progression of ischemic stroke. Although the balance between proinflammatory CD4 + T helper (Th)-1 lymphocytes, expressing T-bet transcription factor, and anti-inflammatory Th2 cells expressing GATA3 seems to influence the outcome in experimental stroke, the role of peripheral immune response in acute stroke patients is poorly understood. We aimed to evaluate the peripheral Th1/Th2 balance in acute atherothrombotic (ATHS) and cardioembolic stroke (CES) patients and in age- and sex-matched healthy subjects. Using flow cytometry, we analyzed the percentage of CD4 + T-bet + T cells and CD4 + GATA3 + T cells from peripheral blood of ATHS and CES patients (2,4 and 7 days after stroke onset). Patients and controls were screened for infectious conditions, autoimmune, inflammatory, or cancerous diseases. On day 2 circulating CD4 + T-bet + T cells were significantly higher in stroke patients compared to controls, and in ATHS compared to CES and controls. On day 7, we observed a significant increase of CD4 + T-bet + T cells in both ATHS and CES patients compared to baseline. No difference was observed in circulating CD4 + GATA3 + T cells among ATHS, CES patients, and controls. These data suggest that circulating CD4 + T-bet + T cells could be useful marker indicating atherothrombotic genesis of stroke and provide new insight into the peripheral adaptive immune response in acute stroke.
Collapse
|
12
|
Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, Weng Y, Xiong X, Zhan R, Shen J. Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 2022; 13:911661. [PMID: 36211352 PMCID: PMC9533176 DOI: 10.3389/fimmu.2022.911661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic stroke is a leading cause of disability and death. It imposes a heavy economic burden on individuals, families and society. The mortality rate of ischemic stroke has decreased with the help of thrombolytic drug therapy and intravascular intervention. However, the nerve damage caused by ischemia-reperfusion is long-lasting and followed by multiple organ dysfunction. In this process, the immune responses manifested by systemic inflammatory responses play an important role. It begins with neuroinflammation following ischemic stroke. The large number of inflammatory cells released after activation of immune cells in the lesion area, along with the deactivated neuroendocrine and autonomic nervous systems, link the center with the periphery. With the activation of systemic immunity and the emergence of immunosuppression, peripheral organs become the second “battlefield” of the immune response after ischemic stroke and gradually become dysfunctional and lead to an adverse prognosis. The purpose of this review was to describe the systemic immune responses after ischemic stroke. We hope to provide new ideas for future research and clinical treatments to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Fan Wu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Di Ye
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxiang Weng
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Clinical Laboratory, Renmin Hospital, Faculty of Medical Sciences, Wuhan University, Wuhan, China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| |
Collapse
|
13
|
Datsi A, Piotrowski L, Markou M, Köster T, Kohtz I, Lang K, Plöttner S, Käfferlein HU, Pleger B, Martinez R, Pintea B, Fried R, Müller M, Chapot R, Gousias K. Stroke-derived neutrophils demonstrate higher formation potential and impaired resolution of CD66b + driven neutrophil extracellular traps. BMC Neurol 2022; 22:186. [PMID: 35596126 PMCID: PMC9121602 DOI: 10.1186/s12883-022-02707-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Recent evidence suggests a merging role of immunothrombosis in the formation of arterial thrombosis. Our study aims to investigate its relevance in stroke patients. Methods We compared the peripheral immunological profile of stroke patients vs. healthy controls. Serum samples were functionally analyzed for their formation and clearance of Neutrophil-Extracellular-Traps. The composition of retrieved thrombi has been immunologically analyzed. Results Peripheral blood of stroke patients showed significantly elevated levels of DNAse-I (p < 0.001), LDG (p = 0.003), CD4 (p = 0.005) as well as the pro-inflammatory cytokines IL-17 (p < 0.001), INF-γ (p < 0.001) and IL-22 (p < 0.001) compared to controls, reflecting a TH1/TH17 response. Increased counts of DNAse-I in sera (p = 0.045) and Neutrophil-Extracellular-Traps in thrombi (p = 0.032) have been observed in patients with onset time of symptoms longer than 4,5 h. Lower values of CD66b in thrombi were independently associated with greater improvement of NIHSS after mechanical thrombectomy (p = 0.045). Stroke-derived neutrophils show higher potential for Neutrophil-Extracellular-Traps formation after stimulation and worse resolution under DNAse-I treatment compared to neutrophils derived from healthy individuals. Conclusions Our data provide new insight in the role of activated neutrophils and Neutrophil-Extracellular-Traps in ischemic stroke. Future larger studies are warranted to further investigate the role of immunothrombosis in the cascades of stroke. Trial registration DRKS, DRKS00013278, Registered 15 November 2017, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013278 Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02707-0.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Laura Piotrowski
- Medical School, Rheinische Friedrich-Wilhelms University of Bonn, Sigmund Freud Strasse 25, 53121, Bonn, Germany
| | - Markella Markou
- Department of Neurology and Psychotraumatology, BG Klinikum Duisburg, Großenbaumer Allee 250, 47249, Duisburg, Germany
| | - Thomas Köster
- Department for Diagnostic and Interventional Radiology, University Hospital Bonn Venusberg-Campus 1, 53127, Bonn, Germany
| | - Isabelle Kohtz
- Ruhr University Bochum, Universitätsstraße 150, Bergmannsheil Bochum, 44801, Bochum, Germany
| | - Kerstin Lang
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Sabine Plöttner
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Heiko Udo Käfferlein
- Institute for Prevention and Occupational Medicine (IPA) Ruhr University Bochum (IPA), Bochum, Germany
| | - Burkhard Pleger
- Department of Neurology, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Ramon Martinez
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Bogdan Pintea
- Department of BG Neurosurgery and Spinal Surgery, University Hospital Bergmannsheil Bochum, Bürkle-de-la Camp Platz 1, 44079, Bochum, Germany
| | - Roland Fried
- Statistics in the Biosciences, TU Dortmund University, Vogelpothsweg 87, 44221, Dortmund, Germany
| | - Marcus Müller
- Department of Neurology, St Marien Academic Hospital Hamm, St Paulus Corporation, Knappenstrasse 19, 59071, Hamm, Germany
| | - Rene Chapot
- Department of Radiology and Neuroradiology, Alfried-Krupp-Hospital Rüttenscheid, 45131, Essen, Germany
| | - Konstantinos Gousias
- Department of Neurosurgery, KLW St Paulus Corporation, St Marien Academic Hospital Lünen, Westfälische Wilhelms-University Münster, Altstadtstrasse 23, 44534, Lünen, Germany. .,Medical School, University of Münster, Domagkstrasse 3, 48149, Münster, Germany. .,Medical School, University of Nicosia, Ilia Papakyriakou 21, 2414, Nicosia, Cyprus.
| |
Collapse
|
14
|
Zhang H, Guan J, Lee H, Wu C, Dong K, Liu Z, Cui L, Song H, Ding Y, Meng R. Immunocytes Rapid Responses Post-ischemic Stroke in Peripheral Blood in Patients With Different Ages. Front Neurol 2022; 13:887526. [PMID: 35645988 PMCID: PMC9135975 DOI: 10.3389/fneur.2022.887526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To explore the alterations in immune cell composition in peripheral blood in patients with acute ischemic stroke (AIS) based on their age group. Methods Patients with imaging confirmed AIS were enrolled from April 2019 to January 2020 and were divided into three groups according to their ages: <55 years (group-A), 55–65 years (group-B), and >65 years (group-C). Blood samples were collected immediately when the patients were admitted to our ward prior to any intervention. Flow cytometry was used to analyze immune cell composition in peripheral blood. Results A total of 41 eligible patients were included for final analysis. Among the three groups, the proportions of CD56+ CD16dim NK cells were least to greatest in group-B, group-A, then group-C, respectively. With increasing age, there was a decrease in the proportion of CD3+ T-cells (group-A vs. group-C, P = 0.016) and CD3+CD4+ T-cells (group-C vs. group-A, P = 0.008; group-C vs. group-B P = 0.026). Meanwhile, no significant differences in proportions of monocytes and B cells were observed. Conclusions The compositions of immune cells in peripheral blood of AIS patients were distinct when divided by age groups. Differences in immune cell ratios may affect clinical outcomes and foreshadows possible need for customized treatment of AIS in different age groups.
Collapse
Affiliation(s)
- Haiyue Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingwei Guan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Dong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Ran Meng ; orcid.org/0000-0003-1190-4710
| |
Collapse
|
15
|
Wang L, Yao C, Chen J, Ge Y, Wang C, Wang Y, Wang F, Sun Y, Dai M, Lin Y, Yao S. γδ T Cell in Cerebral Ischemic Stroke: Characteristic, Immunity-Inflammatory Role, and Therapy. Front Neurol 2022; 13:842212. [PMID: 35432162 PMCID: PMC9008352 DOI: 10.3389/fneur.2022.842212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Gamma-delta (γδ) T cells are a small subset of T cells that are reported to have a proinflammatory role in the pathophysiology of cerebral ischemia stroke (CIS). Upon activation by interleukin-1 beta (IL-1β), IL-23 and IL-18, γδ T cells are stimulated to secrete various cytokines, such as IL-17a, IL-21, IL-22, and interferon-gamma (IFN-γ). In addition, they all play a pivotal role in the inflammatory and immune responses in ischemia. Nevertheless, the exact mechanisms responsible for γδ T cell proinflammatory functions remain poorly understood, and more effective therapies targeting at γδ T cells and cytokines they release remain to be explored, particularly in the context of CIS. CIS is the second most common cause of death and the major cause of permanent disability in adults worldwide. In this review, we focus on the neuroinflammatory and immune functions of γδ T cells and related cytokines, intending to understand their roles in CIS, which may be crucial for the development of novel effective clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yun Lin
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shanglong Yao
| |
Collapse
|
16
|
Zhang Z, Li Y, Shi J, Zhu L, Dai Y, Fu P, Liu S, Hong M, Zhang J, Wang J, Jiang C. Lymphocyte-Related Immunomodulatory Therapy with Siponimod (BAF-312) Improves Outcomes in Mice with Acute Intracerebral Hemorrhage. Aging Dis 2022; 14:966-991. [PMID: 37191423 DOI: 10.14336/ad.2022.1102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Modulators of the sphingosine-1-phosphate receptor (S1PR) have been proposed as a promising strategy for treating stroke. However, the detailed mechanisms and the potential translational value of S1PR modulators for intracerebral hemorrhage (ICH) therapy warrant exploration. Using collagenase VII-S-induced ICH in the left striatum of mice, we investigated the effects of siponimod on cellular and molecular immunoinflammatory responses in the hemorrhagic brain in the presence or absence of anti-CD3 monoclonal antibodies (Abs). We also assessed the severity of short- and long-term brain injury and evaluated the efficacy of siponimod in long-term neurologic function. Siponimod treatment significantly decreased brain lesion volume and brain water content on day 3 and the volume of the residual lesion and brain atrophy on day 28. It also inhibited neuronal degeneration on day 3 and improved long-term neurologic function. These protective effects may be associated with a reduction in the expression of lymphotactin (XCL1) and T-helper 1 (Th1)-type cytokines (interleukin 1β and interferon-γ). It may also be associated with inhibition of neutrophil and lymphocyte infiltration and alleviation of T lymphocyte activation in perihematomal tissues on day 3. However, siponimod did not affect the infiltration of natural killer cells (NK) or the activation of CD3-negative immunocytes in perihematomal tissues. Furthermore, it did not influence the activation or proliferation of microglia or astrocytes around the hematoma on day 3. Siponimod appears to have a profound impact on infiltration and activation of T lymphocytes after ICH. The effects of neutralized anti-CD3 Abs-induced T-lymphocyte tolerance on siponimod immunomodulation further confirmed that siponimod alleviated the cellular and molecular Th1 response in the hemorrhagic brain. This study provides preclinical evidence that encourages future investigation of immunomodulators, including siponimod, which target the lymphocyte-related immunoinflammatory reaction in ICH therapy.
Collapse
|
17
|
Zhang B, Yin X, Lang Y, Han X, Shao J, Bai R, Cui L. Role of cellular prion protein in splenic CD4 + T cell differentiation in cerebral ischaemic/reperfusion. Ann Clin Transl Neurol 2021; 8:2040-2051. [PMID: 34524735 PMCID: PMC8528449 DOI: 10.1002/acn3.51453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Cellular prion protein (PrPC), the primary form of prion diseases pathogen, has received increasing attention for its protective effect against ischaemic stroke. Little is known about its role in peripheral immune responses after cerebral ischaemia/reperfusion (I/R) injury. This study is to detect the variation of splenic CD4+ T lymphocytes differentiation and the concentration of inflammatory cytokines after murine cerebral I/R injury in the context of PRNP expression as well as its influence on the ischaemic neuronal apoptosis. Methods We established the cerebral ischaemic murine model of different PRNP genotypes. We detected the percentage of splenic CD4+PrPC+ T cells of PRNP wild‐type mice and the ratio of splenic Th1/2/17 lymphocytes of mice of different PRNP expression. The relevant inflammatory cytokines were then measured. Oxygen glucose deprivation/reperfusion (OGD/R) HT22 mouse hippocampal neurons were co‐cultured with the T‐cell‐conditioned medium harvested from the spleen of modelled mice and then the neuronal apoptosis was detected. Results CD4+ PrPC+ T lymphocytes in wild‐type mice elevated after MCAO/R. PRNP expression deficiency led to an elevation of Th1/17 phenotypes and the promotion of pro‐inflammatory cytokines, while PRNP overexpression led to the elevation of Th2 phenotype and upregulation of anti‐inflammatory cytokines. In addition, PrPC‐overexpressed CD4+T cells weakened the apoptosis of OGD/R HT‐22 murine hippocampal neurons caused by MCAO/R CD4+ T‐cell‐conditioned medium, while PrPC deficiency enhanced apoptosis. Interpretation PrPC works as a neuron protector in the CNS when I/R injury occurs and affects the peripheral immune responses and defends against stroke‐induced neuronal apoptosis.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoou Han
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
18
|
Zhou Q, Niño DF, Yamaguchi Y, Wang S, Fulton WB, Jia H, Lu P, Prindle T, Pamies D, Morris M, Chen LL, Sodhi CP, Hackam DJ. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain. Sci Transl Med 2021; 13:13/575/eaay6621. [PMID: 33408187 DOI: 10.1126/scitranslmed.aay6621] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) causes acute intestinal necrosis in premature infants and is associated with severe neurological impairment. In NEC, Toll-like receptor 4 is activated in the intestinal epithelium, and NEC-associated brain injury is characterized by microglial activation and white matter loss through mechanisms that remain unclear. We now show that the brains of mice and humans with NEC contained CD4+ T lymphocytes that were required for the development of brain injury. Inhibition of T lymphocyte influx into the brains of neonatal mice with NEC reduced inflammation and prevented myelin loss. Adoptive intracerebroventricular delivery of gut T lymphocytes from mice with NEC into Rag1 -/- recipient mice lacking CD4+ T cells resulted in brain injury. Brain organoids derived from mice with or without NEC and from human neuronal progenitor cells revealed that IFN-γ release by CD4+ T lymphocytes induced microglial activation and myelin loss in the organoids. IFN-γ knockdown in CD4+ T cells derived from mice with NEC abrogated the induction of NEC-associated brain injury after adoptive transfer to naïve Rag1 -/- recipient mice. T cell receptor sequencing revealed that NEC mouse brain-derived T lymphocytes shared homology with gut T lymphocytes from NEC mice. Intraperitoneal injection of NEC gut-derived CD4+ T lymphocytes into naïve Rag1 -/- recipient mice induced brain injury, suggesting that gut-derived T lymphocytes could mediate neuroinflammation in NEC. These findings indicate that NEC-associated brain injury may be induced by gut-derived IFN-γ-releasing CD4+ T cells, suggesting that early management of intestinal inflammation in children with NEC could improve neurological outcomes.
Collapse
Affiliation(s)
- Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diego F Niño
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins School of Public Health, Baltimore, MD, USA.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Meaghan Morris
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liam L Chen
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Liu H, Zhan F, Wang Y. Evaluation of monocyte-to-high-density lipoprotein cholesterol ratio and monocyte-to-lymphocyte ratio in ischemic stroke. J Int Med Res 2021; 48:300060520933806. [PMID: 32660292 PMCID: PMC7361497 DOI: 10.1177/0300060520933806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objectives We aimed to evaluate the diagnostic value of the combination of the monocyte-to-high-density lipoprotein cholesterol ratio (MHR) with the monocyte-to-lymphocyte ratio (MLR) in ischemic stroke patients. Methods There were 253 patients who were diagnosed with ischemic stroke and 211 healthy subjects enrolled into this retrospective study. Result MHR and MLR were significantly higher in ischemic stroke patients compared with controls. MHR and MLR remained as independent variables for the presence of ischemic stroke. In receiver operating characteristic analyses, the optimal cut-off values for MHR and MLR were 0.28 and 0.19, respectively. The area under the curve for MHR was 0.777 (sensitivity, 66.01%; specificity, 77.25%), and that for MLR was 0.742 (sensitivity, 70.36%; specificity, 67.77%) in ischemic stroke patients. Moreover, the combination MHR and MLR increased the sensitivity compared with MHR or MLR alone. Conclusion The present study shows that a high MHR and MLR are each predictive for the risk of ischemic stroke, and together, they exhibit a better diagnostic value compared with each ratio alone.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated with Soochow University, Jiangsu, China
| | - Feng Zhan
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated with Soochow University, Jiangsu, China
| | - Yazhou Wang
- Department of Clinical Laboratory, Changzhou Tumor Hospital Affiliated with Soochow University, Jiangsu, China
| |
Collapse
|
20
|
Nakajima S, Tanaka R, Yamashiro K, Chiba A, Noto D, Inaba T, Kurita N, Miyamoto N, Kuroki T, Shimura H, Ueno Y, Urabe T, Miyake S, Hattori N. Mucosal-Associated Invariant T Cells Are Involved in Acute Ischemic Stroke by Regulating Neuroinflammation. J Am Heart Assoc 2021; 10:e018803. [PMID: 33733818 PMCID: PMC8174378 DOI: 10.1161/jaha.120.018803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Background Mucosal-associated invariant T (MAIT) cells have been associated with inflammation in several autoimmune diseases. However, their relation to ischemic stroke remains unclear. This study attempted to elucidate the role of MAIT cells in acute ischemic stroke in mice. Methods and Results We used MR1 knockout C57BL/6 (MR1-/-) mice and wild-type littermates (MR1+/+). After performing a transient middle cerebral artery occlusion (tMCAO), we evaluated the association with inflammation and prognosis in the acute cerebral ischemia. Furthermore, we analyzed the tMCAO C57BL/6 mice administered with the suppressive MR1 ligand and the vehicle control. We also evaluated the infiltration of MAIT cells into the ischemic brain by flow cytometry. Results showed a reduction of infarct volume and an improvement of neurological impairment in MR1-/- mice (n=8). There was a reduction in the number of infiltrating microglia/macrophages (n=3-5) and in their activation (n=5) in the peri-infarct area of MR1-/- mice. The cytokine levels of interleukin-6 and interleukin-17 at 24 hours after tMCAO (n=3-5), and for interleukin-17 at 72 hours after tMCAO (n=5), were lower in the MR1-/- mice. The administration of the suppressive MR1 ligand reduced the infarct volume and improved functional impairment (n=5). Flow cytometric analysis demonstrated there was a reduction of MAIT cells infiltrating into the ischemic brain at 24 hours after tMCAO (n=17). Conclusions Our results showed that MAIT cells play an important role in neuroinflammation after focal cerebral ischemia and the use of MAIT cell regulation has a potential role as a novel neuroprotectant for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Sho Nakajima
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| | - Ryota Tanaka
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
- Stroke Center and Division of NeurologyDepartment of MedicineJichi Medical UniversityTochigiJapan
| | - Kazuo Yamashiro
- Department of NeurologyJuntendo University Urayasu HospitalChibaJapan
| | - Asako Chiba
- Department of ImmunologyJuntendo University Faculty of MedicineTokyoJapan
| | - Daisuke Noto
- Department of ImmunologyJuntendo University Faculty of MedicineTokyoJapan
| | - Toshiki Inaba
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| | - Naohide Kurita
- Department of NeurologyJuntendo University Urayasu HospitalChibaJapan
| | - Nobukazu Miyamoto
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| | - Takuma Kuroki
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| | - Hideki Shimura
- Department of NeurologyJuntendo University Urayasu HospitalChibaJapan
| | - Yuji Ueno
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| | - Takao Urabe
- Department of NeurologyJuntendo University Urayasu HospitalChibaJapan
| | - Sachiko Miyake
- Department of ImmunologyJuntendo University Faculty of MedicineTokyoJapan
| | - Nobutaka Hattori
- Department of NeurologyJuntendo University Faculty of MedicineTokyoJapan
| |
Collapse
|
21
|
Lei TY, Ye YZ, Zhu XQ, Smerin D, Gu LJ, Xiong XX, Zhang HF, Jian ZH. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 2021; 18:25. [PMID: 33461586 PMCID: PMC7814595 DOI: 10.1186/s12974-020-02057-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.
Collapse
Affiliation(s)
- Tian-Yu Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ying-Ze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xi-Qun Zhu
- Department of Head and Neck and Neurosurgery, Hubei Cancer Hospital, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Daniel Smerin
- University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhi-Hong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
22
|
Cao BQ, Tan F, Zhan J, Lai PH. Mechanism underlying treatment of ischemic stroke using acupuncture: transmission and regulation. Neural Regen Res 2021; 16:944-954. [PMID: 33229734 PMCID: PMC8178780 DOI: 10.4103/1673-5374.297061] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The inflammatory response after cerebral ischemia/reperfusion is an important cause of neurological damage and repair. After cerebral ischemia/reperfusion, microglia are activated, and a large number of circulating inflammatory cells infiltrate the affected area. This leads to the secretion of inflammatory mediators and an inflammatory cascade that eventually causes secondary brain damage, including neuron necrosis, blood-brain barrier destruction, cerebral edema, and an oxidative stress response. Activation of inflammatory signaling pathways plays a key role in the pathological process of ischemic stroke. Increasing evidence suggests that acupuncture can reduce the inflammatory response after cerebral ischemia/reperfusion and promote repair of the injured nervous system. Acupuncture can not only inhibit the activation and infiltration of inflammatory cells, but can also regulate the expression of inflammation-related cytokines, balance the effects of pro-inflammatory and anti-inflammatory factors, and interfere with inflammatory signaling pathways. Therefore, it is important to study the transmission and regulatory mechanism of inflammatory signaling pathways after acupuncture treatment for cerebral ischemia/reperfusion injury to provide a theoretical basis for clinical treatment of this type of injury using acupuncture. Our review summarizes the overall conditions of inflammatory cells, mediators, and pathways after cerebral ischemia/reperfusion, and discusses the possible synergistic intervention of acupuncture in the inflammatory signaling pathway network to provide a foundation to explore the multiple molecular mechanisms by which acupuncture promotes nerve function restoration.
Collapse
Affiliation(s)
- Bing-Qian Cao
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, China
| | - Jie Zhan
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Peng-Hui Lai
- Department of Rehabilitation, Nan'ao People's Hospital Dapeng New District, Shenzhen, Guangdong Province, China
| |
Collapse
|
23
|
Zhang Q, Liao Y, Liu Z, Dai Y, Li Y, Li Y, Tang Y. Interleukin-17 and ischaemic stroke. Immunology 2020; 162:179-193. [PMID: 32935861 DOI: 10.1111/imm.13265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine family that includes 6 members, IL-17A through IL-17F, most of them are reported to have pro-inflammatory role. Through binding to their receptors (IL-17Rs), IL-17 activates the intracellular signalling pathways to play an important role in autoimmune diseases, including rheumatoid arthritis (RA) and multiple sclerosis (MS). Ischaemic stroke is a complex pathophysiological process mainly caused by regional cerebral ischaemia. Inflammatory factors contribute to the physiological process of stroke that leads to poor prognosis. IL-17 plays a crucial role in promoting inflammatory response and inducing secondary injury in post-stroke. Though immune cells and inflammatory factors have been reported to be involved in the damage of stroke, the functions of IL-17 in this process need to be elucidated. This review focuses on the pathological modulation and the mechanism of IL-17 family in ischaemic stroke and seeking to provide new insights for future therapies.
Collapse
Affiliation(s)
- Qiaohui Zhang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yunxin Li
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Li
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- Chinese Medical Institute, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
24
|
Engler-Chiurazzi EB, Monaghan KL, Wan ECK, Ren X. Role of B cells and the aging brain in stroke recovery and treatment. GeroScience 2020; 42:1199-1216. [PMID: 32767220 PMCID: PMC7525651 DOI: 10.1007/s11357-020-00242-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
As mitigation of brain aging continues to be a key public health priority, a wholistic and comprehensive consideration of the aging body has identified immunosenescence as a potential contributor to age-related brain injury and disease. Importantly, the nervous and immune systems engage in bidirectional communication and can exert profound influence on each other. Emerging evidence supports numerous impacts of innate, inflammatory immune responses and adaptive T cell-mediated immunity in neurological function and diseased or injured brain states, such as stroke. Indeed, a growing body of evidence supports key impacts of brain-resident immune cell activation and peripheral immune infiltration in both the post-stroke acute injury phase and the long-term recovery period. As such, modulation of the immune system is an attractive strategy for novel therapeutic interventions for a devastating age-related brain injury for which there are few readily available neuroprotective treatments or neurorestorative approaches. However, the role of B cells in the context of brain function, and specifically in response to stroke, has not been thoroughly elucidated and remains controversial, leaving our understanding of neuroimmune interactions incomplete. Importantly, emerging evidence suggests that B cells are not pathogenic contributors to stroke injury, and in fact may facilitate functional recovery, supporting their potential value as novel therapeutic targets. By summarizing the current knowledge of the role of B cells in stroke pathology and recovery and interpreting their role in the context of their interactions with other immune cells as well as the immunosenescence cascades that alter their function in aged populations, this review supports an increased understanding of the complex interplay between the nervous and immune systems in the context of brain aging, injury, and disease.
Collapse
Affiliation(s)
- E. B. Engler-Chiurazzi
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - K. L. Monaghan
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - E. C. K. Wan
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| | - X. Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Center for Basic & Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
25
|
Lymphocyte-to-monocyte ratio and risk of hemorrhagic transformation in patients with acute ischemic stroke. Neurol Sci 2020; 41:2511-2520. [DOI: 10.1007/s10072-020-04355-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023]
|
26
|
Ye Z, Jin Y, Li H, Xu H, He Y, Chen Y. Association of Tim-4 expression in monocyte subtypes with clinical course and prognosis in acute ischemic stroke patients. Int J Neurosci 2020; 130:906-916. [PMID: 31877070 DOI: 10.1080/00207454.2019.1709842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: It has been proven that T cell immunoglobin and mucin domain (Tim)-4 and monocytes (Mo) are involved in regulation of immunity, which is important for the recovery of acute ischemic stroke (AIS).Methods: In this study, the expression of Tim-4 in both circulating Mo subtypes and plasma in 32 consecutive AIS patients and 32 control patients was assessed to determine their correlation with the clinical course and prognosis of AIS.Results: It was found that, compared to the control patients, the percentage of Tim-4 expression in overall Mo, classical Mo and non-classical Mo was significantly elevated after 2 and 5 days of stroke (p < 0.05), while it was promoted from 0 to 10 days of stoke in intermediate Mo (p < 0.05). Furthermore, Tim-4 expressions in non-classical Mo and intermediate Mo were obviously correlated with National Institutes of Health Stroke Scale (NIHSS) scores at 2 days of stroke (r = 0.351, p = 0.048; r = 0.358, p = 0.044, respectively). In poor outcome (PO) patients, the expression of Tim-4 in non-classical Mo was remarkably promoted at 2 days of stroke in comparison with non-PO patients (p < 0.05). More importantly, our results revealed a positive correlation between Tim-4 expression in non-classical Mo and interleukin (IL)-6 plasma levels in AIS patients without infection.Conclusion: In summary, our findings proved that Tim-4 expression in non-classical Mo could be an appropriate target for the prediction of the clinical course and prognosis in AIS patients.
Collapse
Affiliation(s)
- Zhinan Ye
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yingying Jin
- Intensive Care Unit, Taizhou Hospital, Taizhou, Zhejiang, China
| | - Haijun Li
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Hao Xu
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yingye He
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Ying Chen
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
27
|
Korostynski M, Morga R, Piechota M, Hoinkis D, Golda S, Dziedzic T, Slowik A, Moskala M, Pera J. Inflammatory Responses Induced by the Rupture of Intracranial Aneurysms Are Modulated by miRNAs. Mol Neurobiol 2019; 57:988-996. [PMID: 31654316 PMCID: PMC7031224 DOI: 10.1007/s12035-019-01789-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
Abstract
Influence of an intracranial aneurysm (IA) rupture on the expression of miRNAs and the potential significance of the resulting changes remains poorly understood. We aimed to characterize the response to the IA rupture through the analysis of miRNAs in peripheral blood cells. Expression of small RNAs was investigated using deep transcriptome sequencing in patients in the acute phase of an IA rupture (first 72 h), in the chronic phase (3–15 months), and controls. A functional analysis and the potential interactions between miRNAs and target genes were investigated. We also measured the levels of proteins that were influenced by regulated miRNAs. We found that 106 mature miRNAs and 90 miRNA precursors were differentially expressed among the groups. The regulated miRNAs were involved in a variety of pathways, and the top pathway involved cytokine-cytokine receptor interactions. The identified miRNAs targeted the inflammatory factors HMGB1 and FASLG. Changes in their expression were detected at the mRNA and protein levels. IA rupture strongly influences the transcription profiles in peripheral blood cells. The regulated miRNAs were involved in the control of immune cell homeostasis. In summary, these results may aid in the elucidation of the molecular mechanisms that orchestrate the inflammatory response to IA rupture.
Collapse
Affiliation(s)
- Michal Korostynski
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Rafal Morga
- Department of Neurosurgery and Neurotraumatology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Krakow, Poland
| | - Marcin Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Dzesika Hoinkis
- Intelliseq sp. z o.o, ul. Chabrowa 12/3, 31-335, Krakow, Poland
| | - Slawomir Golda
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Krakow, Poland
| | - Marek Moskala
- Department of Neurosurgery and Neurotraumatology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Krakow, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, ul. Botaniczna 3, 31-503, Krakow, Poland.
| |
Collapse
|
28
|
Giarretta I, Gaetani E, Bigossi M, Tondi P, Asahara T, Pola R. The Hedgehog Signaling Pathway in Ischemic Tissues. Int J Mol Sci 2019; 20:ijms20215270. [PMID: 31652910 PMCID: PMC6862352 DOI: 10.3390/ijms20215270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented.
Collapse
Affiliation(s)
- Igor Giarretta
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Eleonora Gaetani
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Margherita Bigossi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Paolo Tondi
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
29
|
Stamova B, Ander BP, Jickling G, Hamade F, Durocher M, Zhan X, Liu DZ, Cheng X, Hull H, Yee A, Ng K, Shroff N, Sharp FR. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab 2019; 39:1818-1835. [PMID: 29651892 PMCID: PMC6727143 DOI: 10.1177/0271678x18769513] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how the blood transcriptome of human intracerebral hemorrhage (ICH) differs from ischemic stroke (IS) and matched controls (CTRL) will improve understanding of immune and coagulation pathways in both disorders. This study examined RNA from 99 human whole-blood samples using GeneChip® HTA 2.0 arrays to assess differentially expressed transcripts of alternatively spliced genes between ICH, IS and CTRL. We used a mixed regression model with FDR-corrected p(Dx) < 0.2 and p < 0.005 and |FC| > 1.2 for individual comparisons. For time-dependent analyses, subjects were divided into four time-points: 0(CTRL), <24 h, 24-48 h, >48 h; 489 transcripts were differentially expressed between ICH and CTRL, and 63 between IS and CTRL. ICH had differentially expressed T-cell receptor and CD36 genes, and iNOS, TLR, macrophage, and T-helper pathways. IS had more non-coding RNA. ICH and IS both had angiogenesis, CTLA4 in T lymphocytes, CD28 in T helper cells, NFAT regulation of immune response, and glucocorticoid receptor signaling pathways. Self-organizing maps revealed 4357 transcripts changing expression over time in ICH, and 1136 in IS. Understanding ICH and IS transcriptomes will be useful for biomarker development, treatment and prevention strategies, and for evaluating how well animal models recapitulate human ICH and IS.
Collapse
Affiliation(s)
- Boryana Stamova
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Bradley P Ander
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Glen Jickling
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA.,2 Department of Medicine, University of Alberta, Edmonton, Canada
| | - Farah Hamade
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Marc Durocher
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xinhua Zhan
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Da Zhi Liu
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Xiyuan Cheng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Heather Hull
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Alan Yee
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Kwan Ng
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Natasha Shroff
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Frank R Sharp
- 1 Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
30
|
Ye Y, Zeng Z, Jin T, Zhang H, Xiong X, Gu L. The Role of High Mobility Group Box 1 in Ischemic Stroke. Front Cell Neurosci 2019; 13:127. [PMID: 31001089 PMCID: PMC6454008 DOI: 10.3389/fncel.2019.00127] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
High-mobility group box 1 protein (HMGB1) is a novel, cytokine-like, and ubiquitous, highly conserved, nuclear protein that can be actively secreted by microglia or passively released by necrotic neurons. Ischemic stroke is a leading cause of death and disability worldwide, and the outcome is dependent on the amount of hypoxia-related neuronal death in the cerebral ischemic region. Acting as an endogenous danger-associated molecular pattern (DAMP) protein, HMGB1 mediates cerebral inflammation and brain injury and participates in the pathogenesis of ischemic stroke. It is thought that HMGB1 signals via its presumed receptors, such as toll-like receptors (TLRs), matrix metalloproteinase (MMP) enzymes, and receptor for advanced glycation end products (RAGEs) during ischemic stroke. In addition, the release of HMGB1 from the brain into the bloodstream influences peripheral immune cells. However, the role of HMGB1 in ischemic stroke may be more complex than this and has not yet been clarified. Here, we summarize and review the research into HMGB1 in ischemic stroke.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongfei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Li XQ, Wang YY, Yang TT, Qian YN, Yin H, Zhong SS, A R, He Y, Xu BL, Liu GZ. Increased Peripheral CD137 Expression in a Mouse Model of Permanent Focal Cerebral Ischemia. Cell Mol Neurobiol 2019; 39:451-460. [PMID: 30778712 PMCID: PMC11469804 DOI: 10.1007/s10571-019-00661-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 11/30/2022]
Abstract
Various studies demonstrate that CD137 (TNFRSF9, 4-1BB) promotes atherosclerosis and vascular inflammation in experimental models via interactions with the CD137 ligand (CD137L). However, the exact role of CD137 in ischemic stroke remains unclear. In this study, we analyzed dynamic changes of peripheral CD137 expression on T cells in a mouse model of cerebral ischemia-middle cerebral artery occlusion (MCAO), as well as alternation of neurological function, infarct size and cerebral inflammatory status after inhibition of the CD137/CD137L pathway using an anti-CD137L monoclonal antibody. MCAO mice showed elevated surface expression of CD137 on T cells in both peripheral blood and lymphoid tissues during early cerebral ischemia. Remarkably, blockade of the CD137/CD137L pathway reduced the post-ischemic brain damage. Our findings indicate that enhanced CD137 costimulation occurs in early cerebral ischemia and promotes T cell activation, which in turn upregulates inflammatory immune response and possibly exerting deleterious effects on cerebral ischemia.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yi-Ning Qian
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - He Yin
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Shan-Shan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Rong A
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing, 100044, China
| | - Bao-Lei Xu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
32
|
Huang Q, Zhong W, Hu Z, Tang X. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J Neuroinflammation 2018; 15:348. [PMID: 30572925 PMCID: PMC6302517 DOI: 10.1186/s12974-018-1387-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke starts a series of pathophysiological processes that cause brain injury. Caveolin-1 (cav-1) is an integrated protein and locates at the caveolar membrane. It has been demonstrated that cav-1 can protect blood–brain barrier (BBB) integrity by inhibiting matrix metalloproteases (MMPs) which degrade tight junction proteins. This article reviews recent developments in understanding the mechanisms underlying BBB dysfunction, neuroinflammation, and oxidative stress after ischemic stroke, and focuses on how cav-1 modulates a series of activities after ischemic stroke. In general, cav-1 reduces BBB permeability mainly by downregulating MMP9, reduces neuroinflammation through influencing cytokines and inflammatory cells, promotes nerve regeneration and angiogenesis via cav-1/VEGF pathway, reduces apoptosis, and reduces the damage mediated by oxidative stress. In addition, we also summarize some experimental results that are contrary to the above and explore possible reasons for these differences.
Collapse
Affiliation(s)
- Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Wei Zhong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China.
| |
Collapse
|
33
|
Qi H, Wang D, Deng X, Pang X. Lymphocyte-to-Monocyte Ratio Is an Independent Predictor for Neurological Deterioration and 90-Day Mortality in Spontaneous Intracerebral Hemorrhage. Med Sci Monit 2018; 24:9282-9291. [PMID: 30572340 PMCID: PMC6320655 DOI: 10.12659/msm.911645] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lymphocyte-to-monocyte ratio (LMR) is an independent predictive factor of clinical outcome of acute ischemic stroke and cancer, but the predictive effect of LMR in spontaneous intracerebral hemorrhage (ICH) is unknown. Thus, the aim of this study was to explore the impact of peripheral LMR on the neurological deterioration (ND) during the initial week after spontaneous ICH onset, as well as 90-day mortality. MATERIAL AND METHODS The clinical data of 558 consecutive patients with ICH were retrospectively analyzed. LMR is calculated by absolute lymphocyte count divided by absolute monocyte count. RESULTS Of these patients, 166 patients experienced ND during the first week after admission and 72 patients died within 90 days. Multivariate analysis indicated that white blood cells (WBC), absolute neutrophil count (ANC), absolute lymphocyte count (ALC), neutrophil-to-lymphocyte ratio (NLR), LMR were significantly associated with ND during the initial week after ICH onset and also were associated with 90-day mortality. Moreover, NLR and LMR showed a higher predictive ability in ND during the initial week after ICH onset than 90-day mortality in receiver operating characteristic analysis. The best cut-off points of NLR and LMR in predicting ND and 90-day mortality were 10.24 and 2.21 and 16.81 and 2.19, respectively. CONCLUSIONS Our results suggest that LMR on admission is a predictive factor for ND during the initial week after ICH onset, as well as 90-day mortality.
Collapse
Affiliation(s)
- Haijun Qi
- Department of Neurosurgery, Ulanqab Central Hospital, Ulanqab, Inner Mongolia, China (mainland)
| | - Dong Wang
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Xiuling Deng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Monglia, China (mainland)
| | - Xuefei Pang
- Department of Medical Engineering, Ulanqab Central Hospital, Ulanqab, Inner Mongolia, China (mainland)
| |
Collapse
|
34
|
The Neuroprotective Roles of Sonic Hedgehog Signaling Pathway in Ischemic Stroke. Neurochem Res 2018; 43:2199-2211. [DOI: 10.1007/s11064-018-2645-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/29/2018] [Accepted: 09/19/2018] [Indexed: 01/20/2023]
|
35
|
Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S. FasL incapacitation alleviates CD4 + T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol 2018; 318:36-44. [PMID: 29395324 DOI: 10.1016/j.jneuroim.2018.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
Inflammation responses involving the crosstalk between infiltrated T cells and microglia play crucial roles in ischemia stroke. Recent studies showed that Fas ligand (FasL) mutation could reduce post-stroke T cell invasion and microglia activation. In this study, we demonstrated that CD4+ T cells could induce M1 microglia polarization through NF-κB signaling pathway, whereas FasL mutant CD4+ T cells significantly reversed this effect. Besides, Th17/Treg cells balance was skewed into Treg cells after FasL mutation. In addition, conditioned medium from co-culture of FasL mutant CD4+ T cells and microglia could alleviate neuronal injury. Collectively, FasL incapacitation could alleviate CD4+ T cells-induced inflammation through remodeling microglia polarization, suggesting a therapeutic potential for control of inflammation responses after ischemic stroke.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Lihua Wan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China.
| | - Shuwei Qiu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China.
| |
Collapse
|
36
|
Ren H, Han L, Liu H, Wang L, Liu X, Gao Y. Decreased Lymphocyte-to-Monocyte Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Treated with Thrombolysis. Med Sci Monit 2017; 23:5826-5833. [PMID: 29220346 PMCID: PMC5731214 DOI: 10.12659/msm.907919] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Our previous study found that lower lymphocyte-to-monocyte ratio (LMR) is an independent risk factor of clinical outcome of acute ischemic stroke (AIS). However, whether lower LMR is independently associated with adverse prognosis of AIS treated with thrombolysis has not been determined. In this study, we explored the relationship between LMR and prognosis of AIS treated with thrombolysis. Material/Methods We retrospectively enrolled 108 patients treated with thrombolysis. LMR was calculated according to lymphocyte count and monocyte count on admission. Patients were classified into 3 groups according to LMR values on admission (group 1 LMR >4.34, group 2 LMR 2.79 to 4.34, group 3 LMR <2.79). Neurologic impairment was estimated by use of the National Institute of Health Stroke Scale. Clinical prognosis at 3 months was assessed by modified Rankin Scale. The relationship between LMR and neurologic impairment was analyzed by Spearman rank correlation. Receiver operating characteristic curve (ROC) was used to evaluate the ability of LMR to predict outcome. Results Patients in group 3 had lower lymphocyte counts and LMR values and higher monocyte counts (P<0.001). LMR value was negatively correlated with the degree of neurologic impairment (r=−0.372, P<0.001). The ROC suggested a moderate sensitivity (71.6%) and specificity (80.5%) of LMR for predicting prognosis with an optimal cut-off point at 3.48. Higher LMR value was an independent protective factor against adverse prognosis (odds ratio 0.683, 95% confidence interval 0.490−0.952, P=0.024). Conclusions A lower LMR value is an independent predictor of poor prognosis of AIS treated with thrombolytic therapy.
Collapse
Affiliation(s)
- Hao Ren
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China (mainland)
| | - Lin Han
- Department of Neurology, Hengshui Hospital of Traditional Chinese Medicine, Hengshui, Hebei, China (mainland)
| | - Hongbin Liu
- Department of Neurology, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China (mainland)
| | - Lin Wang
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China (mainland)
| | - Xiao Liu
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China (mainland)
| | - Yanjun Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China (mainland)
| |
Collapse
|
37
|
Liu Y, Luo S, Kou L, Tang C, Huang R, Pei Z, Li Z. Ischemic stroke damages the intestinal mucosa and induces alteration of the intestinal lymphocytes and CCL19 mRNA in rats. Neurosci Lett 2017; 658:165-170. [PMID: 28859865 DOI: 10.1016/j.neulet.2017.08.061] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/19/2022]
Abstract
The immunoreaction has a pivotal effect on ischemic stroke. It has been demonstrated that intestinal lymphocytes infiltrate into the brain and aggravate tissue injury after stroke. However, less attention has been paid to the influence on the intestinal immunology as well as morphology. Here, we utilized a rat permanent middle cerebral artery occlusion (MCAO) model to investigate the influences on intestinal mucosa, lymphocytes of the gut-associated lymphoid tissue (GALT), and the intestinal expression of CCL25 mRNA and CCL19 mRNA of stroke. Rats were randomly divided into stroke, sham, and control groups. Stroke and sham groups were further divided into interval groups of 6h, 12h, and 24h after surgery. Intestinal pathophysiological changes were observed by hematoxylin-eosin (H&E) staining. The lymphocyte numbers were detected by flow cytometry. The expression of CCL25 mRNA and CCL19 mRNA was tested with the PCR technique. We found significant necrosis and shedding of the epithelium after stroke. Moreover, the lesion aggravated with time. In addition, there was a significant increase of T lymphocytes in Peyer's patches (PPs), especially at 12h and 24h after stroke, while no differences in the number of B lymphocytes and the intraepithelial lymphocytes (IELs) were found. The data displayed no alteration of CCL25 mRNA expression. In contrast, an upregulation of CCL19 mRNA expression was detected at 6h after stroke. This study showed that ischemic stroke significantly damaged the intestinal epithelium and activated intestinal immunity.
Collapse
Affiliation(s)
- Yaning Liu
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China; Currently in Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518106, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Li Kou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Chaogang Tang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Ruxun Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zhendong Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
38
|
Del Porto F, Cifani N, Proietta M, Perrotta S, Dito R, di Gioia C, Carletti R, Rizzo L, Orgera G, Rossi M, Ferri L, Tritapepe L, Taurino M. Regulatory T CD4 + CD25+ lymphocytes increase in symptomatic carotid artery stenosis. Ann Med 2017; 49:283-290. [PMID: 27690642 DOI: 10.1080/07853890.2016.1241427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Atherosclerosis is a multifactorial disease characterized by an immune-inflammatory remodeling of the arterial wall. Treg and Th17 subpopulations are detectable inside atherosclerotic plaque; however, their behavior in symptomatic carotid artery stenosis (CAS) is not fully elucidated. The aim of this study was to evaluate Th17 and Treg subsets and their ratio in patients affected by symptomatic and asymptomatic CAS. METHODS 14 patients with symptomatic CAS (CAS-S group), 41 patients with asymptomatic CAS (CAS-A group), 32 subjects with traditional cardiovascular risk factors (RF group), and 10 healthy subjects (HS group) were enrolled. Th17 and Treg frequency was determined by flow cytometry and by histology and immunohistochemistry. Interleukin (IL)-10, IL-17, and metalloproteinase (MMP)-12 levels were measured by ELISA. RESULTS Th17 were significantly increased in CAS-A versus RF and versus HS. Tregs were significantly increased in CAS-S versus CAS-A. Tregs/Th17 ratio was significantly reduced in CAS-A versus RF and versus HS, whereas it was significantly increased in CAS-S versus CAS-A. CONCLUSIONS The results of this study suggest that Th17 are related to the late stages of CAS but not to plaque instability. Moreover, Treg expansion seems to represent a specific cellular pattern displayed by patients with symptomatic CAS and associated with brain injury. KEY MESSAGES Tregs expansion seems to represent a specific cellular pattern displayed by patients with symptomatic CAS and associated with CD4+ effector depletion and brain ischemic injury. Th17 lymphocytes are related to the late stages of CAS but not to plaque instability.
Collapse
Affiliation(s)
- Flavia Del Porto
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,b UOC Medicina 3 , Ospedale Sant'Andrea , Rome , Italy
| | - Noemi Cifani
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy
| | - Maria Proietta
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,c UOS Aterosclerosi e Dislipidemia , Ospedale Sant'Andrea , Rome , Italy
| | - Sara Perrotta
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy
| | - Raffaele Dito
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,d UOC Chirurgia Vascolare , Ospedale Sant'Andrea , Rome , Italy
| | - Cira di Gioia
- e Dipartimento di Scienze Radiologiche Oncologiche ed Anatomopatologiche , Facoltà di Medicina ed Odontoiatria, "Sapienza" Università di Roma, Policlinico Umberto I , Rome , Italy
| | - Raffaella Carletti
- e Dipartimento di Scienze Radiologiche Oncologiche ed Anatomopatologiche , Facoltà di Medicina ed Odontoiatria, "Sapienza" Università di Roma, Policlinico Umberto I , Rome , Italy
| | - Luigi Rizzo
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,d UOC Chirurgia Vascolare , Ospedale Sant'Andrea , Rome , Italy
| | - Gianluigi Orgera
- f Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, UOC Radiodiagnostica, Ospedale Sant'Andrea , Rome , Italy
| | - Michele Rossi
- f Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma, UOC Radiodiagnostica, Ospedale Sant'Andrea , Rome , Italy
| | - Livia Ferri
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,b UOC Medicina 3 , Ospedale Sant'Andrea , Rome , Italy
| | - Luigi Tritapepe
- g Dipartimento di Scienze Anestesiologiche, Medicina Critica e Terapia del dolore , Facoltà di Medicina ed Odontoiatria, "Sapienza" Università di Roma, Policlinico Umberto I , Rome , Italy
| | - Maurizio Taurino
- a Dipartimento di Medicina Clinica e Molecolare , Facoltà di Medicina e Psicologia, "Sapienza" Università di Roma , Italy.,d UOC Chirurgia Vascolare , Ospedale Sant'Andrea , Rome , Italy
| |
Collapse
|
39
|
Bake S, Okoreeh AK, Alaniz RC, Sohrabji F. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats. Endocrinology 2016; 157:61-9. [PMID: 26556536 PMCID: PMC4701884 DOI: 10.1210/en.2015-1840] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.
Collapse
MESH Headings
- Aging
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Ischemia/drug therapy
- Brain Ischemia/immunology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Capillary Permeability/drug effects
- Cell Hypoxia/drug effects
- Cells, Cultured
- Cerebrum/drug effects
- Cerebrum/immunology
- Cerebrum/metabolism
- Cerebrum/pathology
- Drug Implants
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Humans
- Hypoglycemia/etiology
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/therapeutic use
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Microvessels/drug effects
- Microvessels/immunology
- Microvessels/metabolism
- Microvessels/pathology
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Stroke/drug therapy
- Stroke/immunology
- Stroke/metabolism
- Stroke/pathology
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Andre K Okoreeh
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Robert C Alaniz
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|