1
|
Vital Júnior AC, da Silva MB, Monteiro SS, Pasquali MADB. The Therapeutic Potential of Harpagophytum procumbens and Turnera subulata and Advances in Nutraceutical Delivery Systems in Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:660. [PMID: 38794230 PMCID: PMC11125440 DOI: 10.3390/ph17050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
This review article covers the therapeutic potential of the plants Harpagophytum procumbens and Turnera subulata in the treatment of neurodegenerative diseases. Despite the recognition of their beneficial properties, there is notable shortage of specific clinical and in vitro studies on these species regarding neurodegenerative diseases. Compounds such as harpagosides and vite-xin-2-O-rhamnoside, found in Harpagophytum procumbens and Turnera subulata, respectively, as well as other antioxidants and anti-inflammatory agents, are associated with mechanisms of action that involve reducing oxidative stress and modulating the inflammatory response, indicating their therapeutic potential in these pathologies. Additionally, the use of nutraceuticals derived from medicinal plants has emerged as a promising approach, offering natural therapeutic alternatives. However, the pressing need for studies focusing on the pharmacokinetics, safety, and pharmacological interactions of these extracts for the treatment of neurodegenerative diseases is emphasized. This review also evaluated advances in nutraceutical delivery systems, highlighting technological innovations that can optimize the precise delivery of these compounds to patients. Such findings highlight the gaps in the study of these plants for the treatment of neurodegenerative diseases and, at the same time, the potential for opening new perspectives in the treatment of neurodegenerative diseases, providing expectations for innovative solutions in this critical domain of medicine.
Collapse
Affiliation(s)
- Antonio Carlos Vital Júnior
- Post-Graduate Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Mikaelly Batista da Silva
- Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Shênia Santos Monteiro
- Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Post-Graduate Program in Biochemistry and Molecular Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| |
Collapse
|
2
|
Ethyl Acetate Fraction of Harpagophytum procumbens Prevents Oxidative Stress In Vitro and Amphetamine-Induced Alterations in Mice Behavior. Neurochem Res 2023; 48:1716-1727. [PMID: 36648708 DOI: 10.1007/s11064-022-03846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/17/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
Microglial activation has been associated to the physiopathology of neurodegenerative diseases, such as schizophrenia, and can occur during inflammation and oxidative stress. Pharmacological treatment is associated with severe side effects, and studies for use of plant extracts may offer alternatives with lower toxicity. Harpagophytum procumbens (HP) is a plant known for its anti-inflammatory properties. In the present study, we characterized the ethyl acetate fraction of HP (EAF HP) by ESI-ToF-MS and investigated the effects EAF HP in a lipopolysaccharide (LPS) induced inflammation model on microglial cells (BV-2 lineage). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DCFH-DA (2',7'-dichlorofluorescein diacetate) and cell cycle flow cytometer analysis were performed. In vivo was investigated the amphetamine-induced psychosis model through behavioral (locomotor and exploratory activities, stereotypies and working memory) and biochemical (DCFH-DA oxidation and protein thiols) parameters in cortex and striatum of mice. EAF HP reduced activation and proliferation of microglial cells in 48 h (300 µg/mL) and in 72 h after treatments (50-500 µg/mL). Reactive oxygen species levels were lower at the concentration of 100 µg/mL EAF HP. We detected a modulatory effect on the cell cycle, with reduction of cells in S and G2/M phases. In mice, the pre-treatment with EAF HP, for 7 days, protected against positive and cognitive symptoms, as well as stereotypies induced by amphetamine. No oxidative stress was observed in this amphetamine-induced model of psychosis. Such findings suggest that EAF HP can modulate the dopaminergic neurotransmission and be a promising adjuvant in the treatment of locomotor alterations, cognitive deficits, and neuropsychiatric disorders.
Collapse
|
3
|
Tsermpini EE, Redenšek S, Dolžan V. Genetic Factors Associated With Tardive Dyskinesia: From Pre-clinical Models to Clinical Studies. Front Pharmacol 2022; 12:834129. [PMID: 35140610 PMCID: PMC8819690 DOI: 10.3389/fphar.2021.834129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Tardive dyskinesia is a severe motor adverse event of antipsychotic medication, characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial areas. It affects two to ten patients under long-term administration of antipsychotics that do not subside for years even after the drug is stopped. Dopamine, serotonin, cannabinoid receptors, oxidative stress, plasticity factors, signaling cascades, as well as CYP isoenzymes and transporters have been associated with tardive dyskinesia (TD) occurrence in terms of genetic variability and metabolic capacity. Besides the factors related to the drug and the dose and patients’ clinical characteristics, a very crucial variable of TD development is individual susceptibility and genetic predisposition. This review summarizes the studies in experimental animal models and clinical studies focusing on the impact of genetic variations on TD occurrence. We identified eight genes emerging from preclinical findings that also reached statistical significance in at least one clinical study. The results of clinical studies are often conflicting and non-conclusive enough to support implementation in clinical practice.
Collapse
|
4
|
Brendler T. From Bush Medicine to Modern Phytopharmaceutical: A Bibliographic Review of Devil's Claw ( Harpagophytum spp.). Pharmaceuticals (Basel) 2021; 14:726. [PMID: 34451822 PMCID: PMC8398729 DOI: 10.3390/ph14080726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Devil's claw (Harpagophytum spp., Pedaliaceae) is one of the best-documented phytomedicines. Its mode of action is largely elucidated, and its efficacy and excellent safety profile have been demonstrated in a long list of clinical investigations. The author conducted a bibliographic review which not only included peer-reviewed papers published in scientific journals but also a vast amount of grey literature, such as theses and reports initiated by governmental as well as non-governmental organizations, thus allowing for a more holistic presentation of the available evidence. Close to 700 sources published over the course of two centuries were identified, confirmed, and cataloged. The purpose of the review is three-fold: to trace the historical milestones in devil's claw becoming a modern herbal medicine, to point out gaps in the seemingly all-encompassing body of research, and to provide the reader with a reliable and comprehensive bibliography. The review covers aspects of ethnobotany, taxonomy, history of product development and commercialization, chemistry, pharmacology, toxicology, as well as clinical efficacy and safety. It is concluded that three areas stand out in need of further investigation. The taxonomical assessment of the genus is outdated and lacking. A revision is needed to account for intra- and inter-specific, geographical, and chemo-taxonomical variation, including variation in composition. Further research is needed to conclusively elucidate the active compound(s). Confounded by early substitution, intermixture, and blending, it has yet to be demonstrated beyond a reasonable doubt that both (or all) Harpagophytum spp. are equally (and interchangeably) safe and efficacious in clinical practice.
Collapse
Affiliation(s)
- Thomas Brendler
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa;
- Plantaphile, Collingswood, NJ 08108, USA
| |
Collapse
|
5
|
Xu H, Zhuang X. Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: a critical review. Neuropsychiatr Dis Treat 2019; 15:2087-2099. [PMID: 31413575 PMCID: PMC6659786 DOI: 10.2147/ndt.s208061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
The atypical antipsychotics (AAPs) have been used as first-line drugs in psychiatric practice for a wide range of psychotic disorders, including schizophrenia and bipolar mania. While effectively exerting therapeutic effects on positive and negative symptoms, as well as cognitive impairments in schizophrenia patients, these drugs are less likely to induce extrapyramidal symptoms compared to typical antipsychotics. However, the increasing application of them has raised questions on their tolerability and adverse effects over the endocrine, metabolic, and cardiovascular axes. Specifically, AAPs are associated to different extents, with weight gain, metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD). This article summarized clinical evidence showing the metabolic side effects of AAPs in patients with schizophrenia, and experimental evidence of AAPs-induced metabolic side effects observed in animals and cell culture studies. In addition, it discussed potential mechanisms involved in the APPs-induced MetS and NAFLD.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Haiyun XuThe Mental Health Center, Shantou University Medical College, Shantou 515041, People’s Republic of ChinaEmail
| | - Xiaoyin Zhuang
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
| |
Collapse
|
6
|
Ferrante C, Recinella L, Locatelli M, Guglielmi P, Secci D, Leporini L, Chiavaroli A, Leone S, Martinotti S, Brunetti L, Vacca M, Menghini L, Orlando G. Protective Effects Induced by Microwave-Assisted Aqueous Harpagophytum Extract on Rat Cortex Synaptosomes Challenged with Amyloid β-Peptide. Phytother Res 2017. [PMID: 28635142 DOI: 10.1002/ptr.5850] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Harpagophytum procumbens is a plant species that displays anti-inflammatory properties in multiple tissues. The iridoid glycosides arpagoside, harpagide, and procumbide appear to be the most therapeutically important constituents. In addition, harpagoside treatment exerted neuroprotective effects both in vitro and in vivo. Considering these findings, the aim of the present work is to explore the possible protective role of the previously described microwave-assisted aqueous extract of H. procumbens on rat hypothalamic (Hypo-E22) cells, and in rat cortex challenged with amyloid β-peptide (1-40). In this context, we assayed the protective effects induced by H. procumbens by measuring the levels of malondialdehyde, 3-hydroxykynurenine (3-HK), brain-derived neurotrophic factor, and tumor necrosis factor-α, 3-HK. Finally, we evaluated the effects of H. procumbens treatment on cortex levels of dopamine, norepinephrine, and serotonin. H. procumbens extract was well tolerated by Hypo-E22 cells and upregulated brain-derived neurotrophic factor gene expression but down-regulated tumor necrosis factor-α gene expression. In addition, the extract reduced amyloid β-peptide stimulation of malondialdehyde and 3-HK and blunted the decrease of dopamine, norepinephrine, and serotonin, in the cortex. In this context, our work supports further studies for the evaluation and confirmation of Harpagophytum in the management of the clinical symptoms related to Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Marcello Locatelli
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lidia Leporini
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Sara Martinotti
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Michele Vacca
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
7
|
Locatelli M, Ferrante C, Carradori S, Secci D, Leporini L, Chiavaroli A, Leone S, Recinella L, Orlando G, Martinotti S, Brunetti L, Vacca M, Menghini L. Optimization of Aqueous Extraction and Biological Activity of Harpagophytum procumbens Root on Ex Vivo Rat Colon Inflammatory Model. Phytother Res 2017; 31:937-944. [PMID: 28447368 DOI: 10.1002/ptr.5821] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022]
Abstract
Harpagophytum procumbens has a long story of use for the treatment of inflammatory diseases. Considering both the antiinflammatory effects of H. procumbens in multiple tissues and the stability of harpagoside in artificial intestinal fluid, the aim of the present study was to explore the possible protective role of a microwave-assisted aqueous Harpagophytum extract (1-1000 μg/mL) on mouse myoblast C2C12 and human colorectal adenocarcinoma HCT116 cell lines, and isolated rat colon specimens challenged with lipopolysaccharide (LPS), a validated ex vivo model of acute ulcerative colitis. In this context, we evaluated the effects on C2C12 and HCT116 viability, and on LPS-induced production of serotonin (5-HT), tumor necrosis factor (TNF)-α, prostaglandin (PG)E2 and 8-iso-prostaglandin (8-iso-PG)F2α . Harpagophytum extract was well tolerated by C2C12 cells, while reduced HCT116 colon cancer cell viability. On the other hand, Harpagophytum extract reduced H2 O2 -induced (1 mM) reactive oxygen species (ROS) production, in both cell lines, and inhibited LPS-induced colon production of PGE2 , 8-iso-PGF2α , 5-HT and TNFα. Concluding, we demonstrated the efficacy of a microwave-assisted Harpagophytum aqueous extract in modulating the inflammatory, oxidative stress and immune response in an experimental model of inflammatory bowel diseases (IBD), thus suggesting a rational use of Harpagophytum in the management and prevention of ulcerative colitis in humans. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marcello Locatelli
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Lidia Leporini
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Sara Martinotti
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Michele Vacca
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, G. D'Annunzio University Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|