1
|
Geng Z, Peng F, Cheng Z, Su J, Song J, Han X, Li R, Li X, Cui R, Li B. Astrocytic FABP7 Alleviates Depression-Like Behaviors of Chronic Unpredictable Mild Stress Mice by Regulating Neuroinflammation and Hippocampal Spinogenesis. FASEB J 2025; 39:e70606. [PMID: 40331773 PMCID: PMC12057550 DOI: 10.1096/fj.202403417rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Fatty acid binding protein 7 (FABP7) is prominently expressed in astrocytes and is a critical regulator of inflammatory responses. Accumulating evidence suggests that FABP7 is crucial in neuropsychological disease through the modulation of spinogenesis. Nonetheless, the impact of FABP7 on depressive disorders and the underlying mechanisms is not fully understood. Here, we investigated the antidepressant properties of FABP7 using the chronic unpredictable mild stress (CUMS)-induced model of depression and possible mechanisms. Our results revealed that depressive-like behavior induced by CUMS was associated with decreased levels of FABP7 protein in the hippocampus (HP). Furthermore, the overexpression of FABP7 in the HP mitigated the depressive-like behavior and increased the expression of its downstream target caveolin-1 (Cav-1). FABP7 overexpression in the HP specifically regulates the expression of the astrocyte marker protein GFAP, as well as the blood-brain barrier (BBB)-associated proteins AQP4, CLDN-5, occludin, and LRP1. Notably, the CUMS-induced upregulation of the pro-inflammatory factors IL-1β and IL-6 was also significantly reversed by FABP7 overexpression in the HP. This intervention also led to increased levels of postsynaptic proteins, including PSD95 and GluA1, as well as an increase in brain-derived neurotrophic factor (BDNF) and enhanced neuronal dendritic spine density. The findings indicate that FABP7 exerts antidepressant-like properties by inhibiting inflammation, regulating spinogenesis, and modulating BBB-related proteins.
Collapse
Affiliation(s)
- Zihui Geng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Fanzhen Peng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Ziqian Cheng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Jingyun Su
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Jinfang Song
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Xu Han
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Runxin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Xin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Ranji Cui
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Bingjin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| |
Collapse
|
2
|
Estela-Zape JL, Sanclemente-Cardoza V, Noreña-Buitrón LD, Ordoñez-Mora LT. Utilization of Medicinal Plants in Mental Disorders: Neuroplasticity and Neuroprotection in Biomodels. Brain Sci 2025; 15:366. [PMID: 40309824 PMCID: PMC12026384 DOI: 10.3390/brainsci15040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES Mental disorders such as anxiety, schizophrenia, and depression are linked to alterations in neuroplasticity and neuroprotection within the central nervous system. While conventional drugs are widely used, medicinal plants are emerging as a promising alternative due to their potential therapeutic effects on neuronal function. This study aimed to explore and analyze the impact of medicinal plants on neuroplasticity and neuroprotection in relation to mental disorders using biomodels. METHODS Data were collected from Scopus, Dimensions, and PubMed by using the search terms "Medicinal plants", "Neuronal Plasticity", and "Mental Disorder" in accordance with the guidelines of the PRISMA checklist. RESULTS A total of twenty-three relevant studies were selected to investigate the association between medicinal plants and mental disorders, focusing on factors such as administered doses and the modulation of neurotransmitters in the context of neuroplasticity and neuroprotection. This review highlights the complexity of study designs, target populations, and methodologies. Of the studies, 86% investigated depression, while 13% focused on anxiety. Regarding neurotransmitter modulation, 47% found that medicinal plants influenced serotonin levels, followed by 27% which found that they affected dopamine; according to the remaining studies, medicinal plants impacted norepinephrine, GABA, and acetylcholine. These findings emphasize the importance of precise dosing and neurotransmitter modulation, suggesting that targeted interactions with neural systems may help clarify the specific effects of these plants on mental health. CONCLUSIONS Research on the effects of medicinal plants on psychiatric disorders in animal models suggests their potential to support neuroplasticity and neuroprotection. Positive impacts on mental health are indicated through the modulation of cytokines, neurotransmitters, and specific signaling pathways.
Collapse
Affiliation(s)
- Jose Luis Estela-Zape
- Faculty of Health, Universidad Santiago de Cali, Cali 760035, Colombia; (V.S.-C.); (L.D.N.-B.); (L.T.O.-M.)
- Faculty of Health, Posgrado en Ciencias Biomédicas, Universidad del Valle, Cali 760043, Colombia
| | | | | | - Leidy Tatiana Ordoñez-Mora
- Faculty of Health, Universidad Santiago de Cali, Cali 760035, Colombia; (V.S.-C.); (L.D.N.-B.); (L.T.O.-M.)
| |
Collapse
|
3
|
Sarhyal A, Chate S, Tubaki BR, Thakur R. Efficacy of Brahmi vati and Aswagandharista in major depressive disorder: A randomized controlled trial. J Ayurveda Integr Med 2024; 15:101022. [PMID: 39631219 DOI: 10.1016/j.jaim.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 04/29/2024] [Accepted: 06/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Role of Ayurveda medications in the management of Major depressive disorder (MDD) is explored. OBJECTIVE To evaluate the effect of Brahmi vati and Aswagandarista in the management of MDD. METHODS Study was a Randomized, Controlled, parallel group comparative clinical trial. Fifty patients meeting the MDD (DSM V) diagnostic criteria from teaching hospital were recruited in the study. They were divided in two 2 groups. Control group were administered with Escitalopram 10 mg twice a day. Ayurveda group were intervened with tablet Brahmi vati 500 mg thrice a day and Liquid Aswagandarista 10 ml thrice a day. Interventions were for 60 days. Assessments were done on every 15th day. Assessments criteria included Hamilton Depression Rating scale (HDRS), Hamilton Anxiety Rating scale (HARS), UKU Side effect scale (UKU), Brief Psychotic Rating Scale (BPRS), WHO quality of life -BREF (WHOQOL-BREF), Pittsburgh Sleep Quality Index (PSQI) and Clinical Global Impression scales (CGI) were assessed at all the time points. Blood parameters like Haemoglobin, Serum creatinine and Liver function tests were evaluated at pre and post study. RESULTS Between group comparison showed significant improvements in WHOQOL-Bref (p < 0.001), UKU (p = 0.04) favouring Ayurveda group and PSQI (p = 0.02) improvements in control group. Improvements in other parameters were comparable. Within group assessment showed significant (p < 0.001) improvement in HDRS, HARS, BPRS, CGI-S, CGI-GI in both the groups. Liver function tests and serum creatines were within normative limits. CONCLUSION Ayurveda medications produced significant improvements comparable to escitalopram with additional advantages in quality of life and side effects profile.
Collapse
Affiliation(s)
- Amit Sarhyal
- Department of Kaumarbhritya, Shri Satya Sai Murlidhar Ayurvedic College & Hospital, G.T. Road, Duneke Moga, Distt. Moga, Punjab, India
| | - Sameeran Chate
- Department of Psychiatry, J N Medical College. A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, India
| | - Basavaraj R Tubaki
- Department of Kayachikitsa, Shri BMK Ayurveda Mahavidyalaya, A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, India.
| | - Rajat Thakur
- Department of Kayachikitsa, Shri BMK Ayurveda Mahavidyalaya, A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, India
| |
Collapse
|
4
|
Prinholato da Silva C, Oliveira DD, Benincasa BI, Barbar B, Perri RGB, Fachin AL, Falconi-Sobrinho LL, Beleboni RO. New insights about the antidepressant-like effects of riparin A in a chronic murine model of depression. Behav Pharmacol 2024; 35:303-314. [PMID: 38869060 DOI: 10.1097/fbp.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Riparin A is a synthetic form of natural riparins. Acute scale studies that take into consideration the structure-activity relationship have shown preliminary evidence of antidepressant and anxiolytic effects of riparin A, similar to that already known for other riparins. However, for better pharmacological characterization of this new compound, further studies are required. The aim of this work was to evaluate the effect of chronic treatment with riparin A (10 mg/kg; intraperitoneally) on depressive-like behavior in the forced swimming test and tail suspension test, as well as the reduction of anhedonia in the sucrose preference test, and on anxiety-like behavior in the open field and elevated plus maze apparatus, triggered in rats previously subjected to unpredictable chronic mild stress by 4 weeks. In addition, a pentobarbital-induced sleep time test was also used. Riparin A reduced the duration of immobility in both the forced swimming test and tail suspension test, as well as attenuated the anhedonia in the sucrose preference test. Furthermore, riparin A appears to produce anxiolytic effects in rats exposed to an open field and elevated plus maze, while increasing the alertness/vigilance in rats submitted to pentobarbital-induced sleep time test, without altering their locomotor integrity. Our results suggest that chronic riparin A appears to be a potential pharmacological target for new studies on the control of depression- and anxiety-like behaviors in stressed rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Lúcia Fachin
- Department of Biotechnology
- School of Medicine, University of Ribeirão Preto, São Paulo, Brazil
| | | | - Rene Oliveira Beleboni
- Department of Biotechnology
- School of Medicine, University of Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Valotto Neto LJ, Reverete de Araujo M, Moretti Junior RC, Mendes Machado N, Joshi RK, dos Santos Buglio D, Barbalho Lamas C, Direito R, Fornari Laurindo L, Tanaka M, Barbalho SM. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants (Basel) 2024; 13:393. [PMID: 38671841 PMCID: PMC11047749 DOI: 10.3390/antiox13040393] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The aging of the global population has increased the prevalence of neurodegenerative conditions. Bacopa monnieri (BM), an herb with active compounds, such as bacosides A and B, betulinic acid, loliolide, asiatic acid, and quercetin, demonstrates the potential for brain health. Limited research has been conducted on the therapeutic applications of BM in neurodegenerative conditions. This systematic review aims to project BM's beneficial role in brain disorders. BM has anti-apoptotic and antioxidant actions and can repair damaged neurons, stimulate kinase activity, restore synaptic function, improve nerve transmission, and increase neuroprotection. The included twenty-two clinical trials demonstrated that BM can reduce Nuclear Factor-κB phosphorylation, improve emotional function, cognitive functions, anhedonia, hyperactivity, sleep routine, depression, attention deficit, learning problems, memory retention, impulsivity, and psychiatric problems. Moreover, BM can reduce the levels of pro-inflammatory biomarkers and oxidative stress. Here, we highlight that BM provides notable therapeutic benefits and can serve as a complementary approach for the care of patients with neurodegenerative conditions associated with brain disorders. This review adds to the growing interest in natural products and their potential therapeutic applications by improving our understanding of the mechanisms underlying cognitive function and neurodegeneration and informing the development of new therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Luiz José Valotto Neto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Matheus Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Renato Cesar Moretti Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Nathalia Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Rakesh Kumar Joshi
- Department of Education, Government of Uttarakhand, Nainital 263001, India;
| | - Daiane dos Santos Buglio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Medical School of Marilia (FAMEMA), Marília 17519-030, SP, Brazil;
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (L.J.V.N.); (M.R.d.A.); (R.C.M.J.); (N.M.M.); (D.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
6
|
Sivasangari K, Sivamaruthi BS, Chaiyasut C, Rajan KE. Maternal stress-induced changes in adolescent and adult offspring: Neurobehavioural improvement and telomere maintenance. Heliyon 2023; 9:e20385. [PMID: 37767490 PMCID: PMC10520813 DOI: 10.1016/j.heliyon.2023.e20385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Maternal stress (MS) during gestation is known to increase the risk for the development of behavioural and physiological disorders and advances cellular aging. In this study, we investigated whether the supplementation of standardized Bacopa monnieri extract (CDRI-08/BME) or l-Carnosine (L-C) to the mother exposed to social stress during gestation modify the effect on their offspring's neurobehaviour, antioxidant defence gene expression, telomere length, and telomere biology. To test this, timed pregnant rats were subjected to social stress during the gestational day (GD) 16-18. A subset of stressed pregnant rats received either BME [80 mg/kg in 0.5% gum acacia (per-orally; p.o)] or L-C [1 mg/kg (p.o)] every day from GD-10 to until their pup's attained postnatal day (PND)-23. We observed that MS induced anxiety-like behaviour, altered inter-limb coordination, antioxidant defence genes [Superoxide dismutase (SOD1,2), Catalase (CAT), Glutathione peroxidase-3 (GPX3)], telomerase reverse transcriptase (TERT), shelterin complex subunits (TRF1, RAP1B, POT1) protein level and shorten telomere length. Notably, supplementation of BME/L-C dampens the MS, thus the effect on neurobehaviour, antioxidant defence gene expression, and telomere biology is minimized in their offspring. Together, our results suggest that supplementation of BME/L-C during gestation dampens the MS and reduced oxidative stress-mediated changes in telomere shortening/biology and associated neurobehaviour in offspring born following MS.
Collapse
Affiliation(s)
- Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
7
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
8
|
Liao D, Shangguan D, Wu Y, Chen Y, Liu N, Tang J, Yao D, Shi Y. Curcumin protects against doxorubicin induced oxidative stress by regulating the Keap1-Nrf2-ARE and autophagy signaling pathways. Psychopharmacology (Berl) 2023; 240:1179-1190. [PMID: 36949340 PMCID: PMC10102057 DOI: 10.1007/s00213-023-06357-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Doxorubicin (DOX)-induced neurotoxicity is widely reported in previous studies. Oxidative stress has been validated as a critical event involved in DOX-induced neurotoxicity. As a selective autophagy adaptor protein, p62 is reported to regulate Keap1-Nrf2-ARE antioxidant pathway in response to oxidative stress. Curcumin (CUR) relieves depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway. However, the exact mechanism of CUR in alleviating DOX-induced neurotoxicity is still unknown. MATERIALS AND METHODS The rats were randomly divided into three groups: control group, DOX group, and DOX + CUR group. At the end of 3 weeks, the behavior tests as sucrose preference test (SPT), forced swimming test (FST), and novelty-suppressed feeding test (NSFT) were performed to assess anxiety- and depression-like behaviors. The rats were sacrificed after behavior tests, and the brain tissues were collected for biochemical analysis. RESULTS It was observed that the administration of CUR could effectively reverse DOX-induced depressive-like behaviors. The exposure of DOX activated autophagy and increased oxidative stress levels, and the administration of CUR could significantly inhibit DOX-induced autophagy and suppress oxidative stress. More importantly, we also found that Keap1-Nrf2-ARE signaling pathway was involved in DOX-induced neurotoxicity and oxidative stress regulated by autophagy. CONCLUSION Our study demonstrated that CUR could effectively reverse DOX-induced neurotoxicity through suppressing autophagy and mitigating oxidative stress and endoplasmic reticulum (ER) stress.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Danggang Shangguan
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Yi Wu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Yun Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Ni Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Jingyi Tang
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China
| | - Dunwu Yao
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
9
|
Zaazaa AM, Daoud NN, El-Gendy OA, Al-Shafei AI. Neuroprotective role of Bacopa monnieri extract in modulating depression in an experimental rat model. J Affect Disord 2022; 308:229-235. [PMID: 35413358 DOI: 10.1016/j.jad.2022.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is a common illness with no definite treatment. METHODS The study involved 2 experimental periods; 45-day (P1) followed by 30-day (P2). 40 adult albino rats were randomly divided into 4 groups. Grp 1 received saline orally while Grp 2 reserpine inraperitoneally (ip) during P1 and P2. Grps 3 and 4 received reserpine during P1, followed by reserpine plus B. monnieri, and reserpine plus citalopram ip during P2, respectively. Forced swimming test (FST) was performed at beginning and end of P1 and P2. Animals were sacrificed by end of P2 and brain taken for histopathological examination and ELISA estimation of serotonin, dopamine, norepinephrine, BDNF, MCP-1, FAS, and Bcl-2. RESULTS During P1, reserpine prolonged immobility time (IT) in FST in Grps 2, 3, and 4. IT was subsequently lowered in Grps 3 and 4 but remained elevated in Grp 2 by end of P2. Serotonin, dopamine and norepinephrine were lowered in Grps 2, 3, and 4, but in Grps 3 and 4, levels were comparable to Grp1. BDNF and Bc1-2 were reduced in Grps 2, 3, and 4, with higher levels in Grps 3 and 4 than Grp 2. MCP-1 and FAS were elevated in Grps 2, 3, and 4, but levels were lower in Grps 3 and 4 than in Grp 2. Histopathology showed congested cerebral cortex in Grp 2 and normal cortex in other groups. LIMITATIONS Only adult male rats were involved and effects of co-administration of B. monnieri and citalopram were not characterized. CONCLUSION B. monnieri improves depression comparable to citalopram in reserpine-induced depression.
Collapse
Affiliation(s)
- Asmaa M Zaazaa
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Nadia N Daoud
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ola A El-Gendy
- Basic Medical Sciences Department, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Ahmad I Al-Shafei
- Basic Medical Sciences Department, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Yu WS, Tse ACK, Guan L, Chiu JLY, Tan SZK, Khairuddin S, Agadagba SK, Lo ACY, Fung ML, Chan YS, Chan LLH, Lim LW. Antidepressant-like effects of transcorneal electrical stimulation in rat models. Brain Stimul 2022; 15:843-856. [DOI: 10.1016/j.brs.2022.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022] Open
|
11
|
Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence Based Neuroprotective Potential of Bacopa Monnieri Against Parkinson's Disease. Curr Drug Targets 2022; 23:889-901. [PMID: 35297345 DOI: 10.2174/1389450123666220316091734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's diseaseis a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantianigra pars compacta characterized by the motor symptoms such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations arethe hallmarks of Parkinson's disease. The bioactive components of Brahmi such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, aggregation inhibition of α-synuclein, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress, neuroinflammation and enhance the dopamine level. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - S Gopika
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Abhishek Kumar
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 (U.P.), India
| | - Debapriya Garabadu
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda- 151001, Punjab, India
| |
Collapse
|
12
|
Gu JY, Xu YW, Feng LP, Dong J, Zhao LQ, Liu C, Wang HY, Zhang XY, Song C, Wang CH. Enriched environment mitigates depressive behavior by changing the inflammatory activation phenotype of microglia in the hippocampus of depression model rats. Brain Res Bull 2021; 177:252-262. [PMID: 34653561 DOI: 10.1016/j.brainresbull.2021.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Inflammation mediated by microglia has been shown to be involved in the pathogenesis of depression. The enriched environment (EE) can improve depression-like behaviors and reduce inflammatory reactions, but it is unclear whether this is by changing the inflammatory activation phenotype of microglia. METHOD A depression rat model was established using chronic unpredictable stress (CUS) for four weeks. The rats were then treated with EE or fluoxetine administration during the following three weeks. Behavior tests including sucrose preference, forced swimming and open field were applied to evaluate the depression-like behaviors of rats at the baseline period prior to CUS, the end of fourth week and at the end of the seventh week. Microglial activation and hippocampal neuro-inflammation were detected on postmortem using immunofluorescence, western blotting, and real-time polymerase reaction (PCR). RESULT The results showed that severe depressive-like behavior was induced by four weeks of CUS. Changes in peripheral blood inflammatory cytokines were detected by ELISA. Immunofluorescent staining showed the IBA-1 of microglia activation marker level significantly increased in affected rats. The hippocampal microglial activation state was determined by measuring the increased levels of iNOS an M1 marker and the decreased levels of CD206, an M2 marker. The activation of NF-κB upregulation of inflammatory cytokines in the hippocampus and factors such as IL-10 were decreased. This study showed that EE and chronic fluoxetine treatment alleviated the depressive-like behavior induced by chronic stress and significantly inhibited microglial activation, activated NF-κB inflammasome and increased pro-inflammatory cytokines. CONCLUSION EE can alleviate depression-like behavior by modulating the phenotype of microglia, inhibiting pro-inflammatory genes, and promoting anti-inflammatory genes. Furthermore, EE can effectively reduce the phosphorylation and expression levels of NF-κB.
Collapse
Affiliation(s)
- Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yao-Wei Xu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Lai-Peng Feng
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Li-Qin Zhao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Cong Liu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hui-Ying Wang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.
| |
Collapse
|
13
|
Effects of a Bacopa monnieri extract (Bacognize®) on stress, fatigue, quality of life and sleep in adults with self-reported poor sleep: A randomised, double-blind, placebo-controlled study. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Bacopaside-I Alleviates the Detrimental Effects of Acute Paraquat Intoxication in the Adult Zebrafish Brain. Neurochem Res 2021; 46:3059-3074. [PMID: 34357519 DOI: 10.1007/s11064-021-03416-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ), an environmental neurotoxicant, causes acute fatal poisoning upon accidental or intentional ingestion (suicidal cases) worldwide. To date, an effective remedy for PQ toxicity is not available. In this study, we have evaluated the therapeutic efficacy of Bacopaside-I (BS-I), an active compound found in the plant extract of Bacopa monnieri (Brahmi), against acute PQ intoxication using zebrafish as a model organism. Adult zebrafish were injected with a dose of either 30 mg/kg or 50 mg/kg PQ. PQ-intoxicated zebrafish showed an increased rate of mortality and oxidative imbalance in their brain. Also, the proliferation of neural cells in the adult zebrafish brain was inhibited. However, when BS-I pretreated zebrafish were intoxicated with PQ, the toxic effects of PQ were ameliorated. PQ treatment also affected the expression of particular genes concerned with the apoptosis and dopamine signaling, which was not altered by BS-I administration. Our results highlight the efficiency of BS-I as a novel therapeutic agent for PQ intoxication. It further compels us to search and evaluate the molecular mechanisms targeted by BS-I to develop a potent therapy for acute PQ intoxication.
Collapse
|
15
|
Zhao A, Ma B, Xu L, Yao M, Zhang Y, Xue B, Ren J, Chang D, Liu J. Jiedu Tongluo Granules Ameliorates Post-stroke Depression Rat Model via Regulating NMDAR/BDNF Signaling Pathway. Front Pharmacol 2021; 12:662003. [PMID: 34093193 PMCID: PMC8173625 DOI: 10.3389/fphar.2021.662003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 01/26/2023] Open
Abstract
Post-stroke depression (PSD) is one of the most common stroke complications, which seriously affects stroke’s therapeutic effect and brings great pain for patients. The pathological mechanism of PSD has not been revealed. Jiedu Tongluo granules (JDTLG) is an effective traditional Chinese medicine for PSD treatment which is widely used in clinical treatment. JDTLG has a significant therapeutic effect against PSD, but the mechanism is still unclear. The PSD rat model was established by carotid artery embolization combined with chronic sleep deprivation followed by treating with JDTLG. Neurobehavioral and neurofunctional experiments were engaged in studying the neural function of rats. Histomorphology, proteomics, and western blotting researches were performed to investigate the potential molecular mechanisms related to JDTLG therapy. Oral treatment of JDTLG could significantly improve the symptoms of neurological deficit and depression symptoms of PSD rats. Proteomic analysis identified several processes that may involve the regulation of JDTLG on the PSD animal model, including energy metabolism, nervous system, and N-methyl-D-aspartate receptor (NMDAR)/brain-derived neurotrophic factor (BDNF) signal pathway. Our results showed that JDTLG could reduce glutamate (Glu) level and increase gamma-aminobutyric acid (GABA) level via regulating the NMDAR/BDNF pathway, which may play a vital role in the occurrence and development of PSD.
Collapse
Affiliation(s)
- Aimei Zhao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingjie Xue
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- NICM, Western Sydney University, Penrith, NSW, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Zhu X, Sun-Waterhouse D, Cui C. A red pomegranate fruit extract-based formula ameliorates anxiety/depression-like behaviors via enhancing serotonin (5-HT) synthesis in C57BL/6 male mice. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Neuroprotection with Bacopa monnieri-A review of experimental evidence. Mol Biol Rep 2021; 48:2653-2668. [PMID: 33675463 DOI: 10.1007/s11033-021-06236-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/12/2021] [Indexed: 01/17/2023]
Abstract
Brahmi or aindri is a popular herb in the vast and rich compendium of herbs of Ayurveda and is botanically identified as Bacopa monnieri Linn. (BM). It is extensively used in Ayurveda and other traditional systems of medicine in the management of neurological psychiatric disorders. BM possess active principles belonging to alkaloids, glycosides, flavonoids, saponins categories. Numerous research have been undertaken across the globe to evaluate the neuroprotective potential of this herb. This review collates and summarises current (as on May 2020) published literature on Brahmi as a neuroprotective in neurological and psychiatric disorders. English language articles from databases PubMed, Scopus and Google scholar were searched using appropriate free keywords and MeSH terms related to the topic. The review demonstrates the neuroprotective potential of the Ayurveda herb Brahmi in several disorders including Alzheimer's disease, epilepsy, Parkinson's disease, Huntington's disease, cerebral ischemia and infarct and neoplasms.
Collapse
|
18
|
Subba R, Sandhir R, Singh SP, Mallick BN, Mondal AC. Pathophysiology linking depression and type 2 diabetes: Psychotherapy, physical exercise, and fecal microbiome transplantation as damage control. Eur J Neurosci 2021; 53:2870-2900. [PMID: 33529409 DOI: 10.1111/ejn.15136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Diabetes increases the likelihood of developing depression and vice versa. Research on this bidirectional association has somewhat managed to delineate the interplay among implicated physiological processes. Still, further exploration is required in this context. This review addresses the comorbidity by investigating suspected common pathophysiological mechanisms. One such factor is psychological stress which disturbs the hypothalamic-pituitary-adrenal axis causing hormonal imbalance. This includes elevated cortisol levels, a common biomarker of both depression and diabetes. Disrupted insulin signaling drives the hampered neurotransmission of serotonin, dopamine, and norepinephrine. Also, adipokine hormones such as adiponectin, leptin, and resistin and the orexigenic hormone, ghrelin, are involved in both depression and T2DM. This disarray further interferes with physiological processes encompassing sleep, the gut-brain axis, metabolism, and mood stability. Behavioral coping mechanisms, such as unhealthy eating, mediate disturbed glucose homeostasis, and neuroinflammation. This is intricately linked to oxidative stress, redox imbalance, and mitochondrial dysfunction. However, interventions such as psychotherapy, physical exercise, fecal microbiota transplantation, and insulin-sensitizing agents can help to manage the distressing condition. The possibility of glucagon-like peptide 1 possessing a therapeutic role has also been discussed. Nonetheless, there stands an urgent need for unraveling new correlating targets and biological markers for efficient treatment.
Collapse
Affiliation(s)
- Rhea Subba
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajat Sandhir
- Dept. of Biochemistry, Panjab University, Chandigarh, Punjab, India
| | - Surya Pratap Singh
- Dept. of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
19
|
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 2021; 11:596. [PMID: 33436817 PMCID: PMC7803732 DOI: 10.1038/s41598-020-80045-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.
Collapse
Affiliation(s)
- James M. Brimson
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirikalaya Brimson
- grid.7922.e0000 0001 0244 7875Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Mani Iyer Prasanth
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Premrutai Thitilertdecha
- grid.10223.320000 0004 1937 0490Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
20
|
Sivasangari K, Rajan KE. Standardized Bacopa monnieri Extract Ameliorates Learning and Memory Impairments through Synaptic Protein, Neurogranin, Pro-and Mature BDNF Signaling, and HPA Axis in Prenatally Stressed Rat Offspring. Antioxidants (Basel) 2020; 9:antiox9121229. [PMID: 33291595 PMCID: PMC7761874 DOI: 10.3390/antiox9121229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Prenatal stress (PNS) influences offspring neurodevelopment, inducing anxiety-like behavior and memory deficits. We investigated whether pretreatment of Bacopa monnieri extract (CDRI-08/BME) ameliorates PNS-induced changes in signaling molecules, and changes in the behavior of Wistar rat offspring. Pregnant rats were randomly assigned into control (CON)/prenatal stress (PNS)/PNS and exposed to BME treatment (PNS + BME). Dams were exposed to stress by placing them in a social defeat cage, where they observed social defeat from gestational day (GD)-16–18. Pregnant rats in the PNS + BME group were given BME treatment from GD-10 to their offspring’s postnatal day (PND)-23, and to their offspring from PND-15 to -30. PNS led to anxiety-like behavior; impaired memory; increased the level of corticosterone (CORT), adrenocorticotropic hormone, glucocorticoid receptor, pro-apoptotic Casepase-3, and 5-HT2C receptor; decreased anti-apoptotic Bcl-2, synaptic proteins (synaptophysin, synaptotagmin-1), 5-HT1A, receptor, phosphorylation of calmodulin-dependent protein kinase II/neurogranin, N-methyl-D-aspartate receptors (2A,2B), postsynaptic density protein 95; and conversion of pro and mature brain derived neurotropic factor in their offspring. The antioxidant property of BME possibly inhibiting the PNS-induced changes in observed molecules, anxiety-like behavior, and memory deficits. The observed results suggest that pretreatment of BME could be an effective coping strategy to prevent PNS-induced behavioral impairments in their offspring.
Collapse
|
21
|
Mao L, Lv FF, Yang WF, Zhang TF, Li ZC, Li DQ, Chen ZB. Effects of Baihui electroacupuncture in a rat model of depression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1646. [PMID: 33490158 PMCID: PMC7812171 DOI: 10.21037/atm-20-7459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background This study aimed to investigate the effect of electroacupuncture (EA) on behavior in a rat model of chronic unpredictable mild stress (CUMS) and to explore the underlying molecular mechanisms. Methods A total of 45 adult male Sprague-Dawley rats were randomly divided into three groups: the control, CUMS, and CUMS plus EA groups. Rats in the CUMS and EA groups were subjected to a 3-week CUMS condition, while rats in the EA group received EA at the Baihui (GV 20) acupoint (2 Hz, 0.6 mA) for 10 min once daily before being subjected to the CUMS condition. The sucrose preference test (SPT) was used as a measure to infer activation of the pleasure response to depression-like behaviour. After the behavioral test, 5-bromodeoxyuridine (BrdU) was intraperitoneally injected (100 mg/kg) and brain samples were collected 24 h later for the detection of hippocampal BrdU. Cell proliferation was determined according to the proportion of BrdU-positive cells. Brain-derived neurotrophic factor (BDNF) expression was detected. Results The severity of anhedonia, BDNF+ cells, and BrdU+ neurons in DG significantly decreased in CUMS rats, and was accompanied by a reduced BDNF and BrdU+ expression (P<0.05). After EA, the low levels of BDNF+ cells and BrdU+ expression and the depression-like behavior increased markedly (P<0.05). Conclusions EA contributes to neuroprotection against CUMS by enhancing BDNF expression and improving hippocampal neurogenesis.
Collapse
Affiliation(s)
- Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fei-Fei Lv
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wen-Fu Yang
- Department of Breast Surgery, Shanxi Hospital of Oncology, Taiyuan, China
| | - Tian-Fang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhong-Chun Li
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - De-Qiang Li
- Department of Integrated Internal Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zuo-Bing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Liao D, Lv C, Cao L, Yao D, Wu Y, Long M, Liu N, Jiang P. Curcumin Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors via Restoring Changes in Oxidative Stress and the Activation of Nrf2 Signaling Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9268083. [PMID: 33014280 PMCID: PMC7520007 DOI: 10.1155/2020/9268083] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
Accumulating evidence has demonstrated that oxidative stress is associated with depression. Our present study aimed at investigating the antidepressant effect and the possible mechanisms of curcumin (CUR) in chronic unpredictable mild stress- (CUMS-) induced depression model in rats. After exposure to CUMS for four weeks, the rats showed depressive-like behavior, and the depressive-like behaviors in CUMS-treated rats were successfully corrected after administration of CUR. In addition, CUR could effectively decrease protein expression of oxidative stress markers (Nox2, 4-HNE, and MDA) and increase the activity of CAT. CUR treatment also reversed CUMS-induced inhibition of Nrf2-ARE signaling pathway, along with increasing the mRNA expression of NQO-1 and HO-1. Furthermore, the supplementation of CUR also increased the ratio of pCREB/CREB and synaptic-related protein (BDNF, PSD-95, and synaptophysin). In addition, CUR could effectively reverse CUMS-induced reduction of spine density and total dendritic length. In conclusion, the study revealed that CUR relieves depressive-like state through the mitigation of oxidative stress and the activation of Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Chuanfeng Lv
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, 272000 Shandong, China
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Dunwu Yao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Yi Wu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Minghui Long
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Ni Liu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, 410013 Hunan, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, 272000 Shandong, China
| |
Collapse
|
23
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
24
|
Mo F, Tang Y, Du P, Shen Z, Yang J, Cai M, Zhang Y, Li H, Shen H. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway. J Affect Disord 2020; 272:474-484. [PMID: 32553391 DOI: 10.1016/j.jad.2020.03.137] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/11/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The release of zinc from glutamatergic terminals in the hippocampal CA3 region can activate postsynaptic GPR39 receptors and regulate cognition and depression. However, the role and mechanism of GPR39 in the stress-induced depression is still poorly understood. METHODS In this study, hippocampal cells (HT-22) were treated with corticosterone (CORT). Then the effects of stress on the activity, mitochondrial function and apoptosis of HT-22 cells were observed. The effects of GPR39 on CORT-induced stress injury were analyzed by both siRNA and agonist (TC-G-1008). RESULTS Compared with the 500 nM CORT group, the cell viability, apoptosis, mitochondrial membrane potential, and expression levels of BCL-2, CREB and BDNF mRNA were significantly decreased in the GPR39 siRNA+500 nM CORT group, while the expression levels of caspase3, caspase9, AIF and BAX mRNA were significantly increased in the GPR39 siRNA+500 nM CORT group. Compared with the 1 μM CORTgroup, the cell viability, apoptosis, mitochondrial membrane potential, and expression levels of BCL-2, CREB and BDNF were significantly increased in the GPR39 agonist+1 μΜ CORT group, while the expression levels of caspase3, caspase9, AIF and BAX mRNA were significantly decreased in the GPR39 siRNA+500 nM CORT group. Compared with the control group, the mRNA and protein levels of GPR39, CREB and BDNF were significantly increased, and the mRNA and protein levels of CREB and BDNF were significantly decreased after 50 μM zinc sulfate treatment for 6 h. CONCLUSIONS GPR39 may play a neuroprotective role in CORT-induced cell injury via the improvement of CREB-BDNF expression, by inhibiting pro-apoptotic proteins and by upregulating anti-apoptotic proteins.
Collapse
Affiliation(s)
- Fengfeng Mo
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Peng Du
- Institute of Aviation Medicine, 28 Fucheng Rd, 100142 Beijing, China
| | - Zhilei Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Jianxin Yang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Mengyu Cai
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Yinyin Zhang
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China.
| | - Hui Shen
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Rd, 200433 Shanghai, China.
| |
Collapse
|
25
|
Liao D, Chen Y, Guo Y, Wang C, Liu N, Gong Q, Fu Y, Fu Y, Cao L, Yao D, Jiang P. Salvianolic Acid B Improves Chronic Mild Stress-Induced Depressive Behaviors in Rats: Involvement of AMPK/SIRT1 Signaling Pathway. J Inflamm Res 2020; 13:195-206. [PMID: 32494183 PMCID: PMC7231775 DOI: 10.2147/jir.s249363] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction Depression is one of the most common neuropsychiatric illnesses which leads to a huge social and economic burden on modern society. So, it is necessary to develop an effective and safe pharmacological intervention for depression. Accumulating evidence has shown that adenosine monophosphate-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway plays a pivotal role in the development of depression. Our present study aimed to investigate the antidepressant effect and possible mechanisms of salvianolic acid B (SalB) in a chronic mild stress (CMS)-induced depression model in rats. Materials and Methods The rats were randomly divided into three groups: control group with no stressor, CMS group and CMS+SalB (30 mg/kg/d) group. After administration for 28 consecutive days, the behavior tests were performed. The rats were sacrificed after behavior tests, and the brain tissues were collected for biochemical analysis. Results It was observed that the administration of SalB for 28 consecutive days successfully corrected the depressive-like behaviors in CMS-treated rats. SalB could effectively reduce the gene expression of pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), as well as nuclear factor-kappa B (NF-κB) p65 protein. In addition, inhibitor of NF-κB (IκB) protein expression was significantly increased after the administration of SalB. Moreover, SalB could effectively decrease protein expression of oxidative stress markers such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) and increase the activity of catalase (CAT). SalB treatment also reversed CMS-induced inhibition of Nrf2 signaling pathway, along with increasing the mRNA expression of NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1 (HO-1). Regarding the endoplasmic reticulum (ER) stress markers, the protein expressions of C/EBP-homologous protein (CHOP) and glucose-regulated protein 78 kD (GRP78) were also significantly reduced after SalB administration. Furthermore, the supplementation of SalB could effectively activate the AMPK/SIRT1 signaling pathway, which indicated significant increase in pAMPK/AMPK ratio and SIRT1 protein expression. Conclusion Our study demonstrated that SalB relieved CMS-induced depressive-like state through the mitigation of inflammatory status, oxidative stress, and the activation of AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China.,Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong 272000, People's Republic of China
| | - Changshui Wang
- Department of Clinical Translational Medicine, Jining Life Science Center, Jining, Shandong 272000, People's Republic of China
| | - Ni Liu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Yingzhou Fu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Dunwu Yao
- Department of Pharmacy, Hunan Cancer Hospital, Changsha, Hunan 410013, People's Republic of China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong 272000, People's Republic of China
| |
Collapse
|
26
|
Bhandari P, Sendri N, Devidas SB. Dammarane triterpenoid glycosides in Bacopa monnieri: A review on chemical diversity and bioactivity. PHYTOCHEMISTRY 2020; 172:112276. [PMID: 32058865 DOI: 10.1016/j.phytochem.2020.112276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bacopa monnieri (L.) is a reputed medicinal herb in traditional system of medicine of India, where it is used as nervine tonic to sharpen intellect and memory. This review discusses chemical characterization of dammarane triterpenoid glycosides which are well accepted for improvement in memory and for potential pharmacological activities. In addition, this review provides information on the chemical composition of specialized metabolites of B. monnieri and in the formulations by different analytical techniques. This comprehensive review covers literature up to 2019 with an emphasis on structural characterization of dammarane triterpenoid glycosides by spectroscopic techniques, chemical composition by analytical methods and pharmacological activities.
Collapse
Affiliation(s)
- Pamita Bhandari
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| | - Nitisha Sendri
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Shinde Bhagatsing Devidas
- Natural Product Chemistry & Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
27
|
Micheli L, Spitoni S, Di Cesare Mannelli L, Bilia AR, Ghelardini C, Pallanti S. Bacopa monnieri
as augmentation therapy in the treatment of anhedonia, preclinical and clinical evaluation. Phytother Res 2020; 34:2331-2340. [DOI: 10.1002/ptr.6684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/01/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Silvia Spitoni
- Department Neurofarba, Psychiatry Section University of Florence Florence Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” University of Florence Florence Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section University of Florence Florence Italy
| | - Stefano Pallanti
- Department Neurofarba, Psychiatry Section University of Florence Florence Italy
- Department of Psychiatry and Behavioral Sciences Albert Einstein College of Medicine New York New York USA
- Institute of Neuroscience Florence Italy
| |
Collapse
|
28
|
Zhu X, Sun-Waterhouse D, Tao Q, Li W, Shu D, Cui C. The enhanced serotonin (5-HT) synthesis and anti-oxidative roles of Trp oligopeptide in combating anxious depression C57BL/6 mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Bharti V, Tan H, Deol J, Wu Z, Wang JF. Upregulation of antioxidant thioredoxin by antidepressants fluoxetine and venlafaxine. Psychopharmacology (Berl) 2020; 237:127-136. [PMID: 31473777 DOI: 10.1007/s00213-019-05350-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/09/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are the most commonly used drugs for the treatment of depression. Studies have shown that chronic treatment with SSRIs and SNRIs produces a protective effect against oxidative stress. Thioredoxin (Trx) is an antioxidant protein that reverses protein cysteine oxidation and facilitates scavenging reactive oxygen species. OBJECTIVES The current study is to determine whether the SSRI fluoxetine and the SNRI venlafaxine regulate Trx and protect neuronal cells against protein cysteine oxidation. METHODS HT22 mouse hippocampal cells were incubated with fluoxetine or venlafaxine for 5 days. Protein levels of Trx, Trx reductase (TrxR), and Trx-interacting protein (Txnip) were measured by immunoblotting analysis. Trx and TrxR activities were analyzed by spectrophotometric method. Protein cysteine sulfenylation was measured by dimedone-conjugation assay, while nitrosylation was measured by biotin-switch assay. RESULTS We found that treatment with fluoxetine or venlafaxine for 5 days increased Trx and TrxR protein levels but produced no effect on Txnip protein levels. These treatments also increased Trx and TrxR activities. Although treatment with fluoxetine or venlafaxine alone had no effect on sulfenylated and nitrosylated protein levels, both drugs inhibited H2O2-increased sulfenylated protein levels and nitric oxide donor nitrosoglutathione-increased nitrosylated protein levels. Stress increases risk of depression. We also found that treatment with fluoxetine or venlafaxine for 5 days inhibited stress hormone corticosterone-increased total sulfenylated and nitrosylated protein levels. CONCLUSIONS Our findings suggest that chronic treatment with antidepressants may upregulate Trx, subsequently inhibiting protein sulfenylation and nitrosylation, which may contribute to the protective effect of antidepressants against oxidative stress. Our findings also indicate that thioredoxin is a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Veni Bharti
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, SR436-710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, SR436-710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada
| | - Jaspreet Deol
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, SR436-710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada
| | - Zijian Wu
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, SR436-710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada. .,Kleysen Institute for Advanced Medicine, Health Sciences Centre, SR436-710 William Avenue, Winnipeg, MB, R3E 0Z3, Canada. .,Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
30
|
Dutta S, Roy S, Roy S. Functional foods for mental health promotion. JOURNAL OF MAHATMA GANDHI INSTITUTE OF MEDICAL SCIENCES 2020. [DOI: 10.4103/jmgims.jmgims_15_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Bharti V, Tan H, Zhou H, Wang JF. Txnip mediates glucocorticoid-activated NLRP3 inflammatory signaling in mouse microglia. Neurochem Int 2019; 131:104564. [DOI: 10.1016/j.neuint.2019.104564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/24/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
|
32
|
Sekhar VC, Viswanathan G, Baby S. Insights Into the Molecular Aspects of Neuroprotective Bacoside A and Bacopaside I. Curr Neuropharmacol 2019; 17:438-446. [PMID: 29676230 PMCID: PMC6520587 DOI: 10.2174/1570159x16666180419123022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/19/2018] [Accepted: 04/18/2018] [Indexed: 12/29/2022] Open
Abstract
Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in the liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode 695562, Thiruvananthapuram, Kerala, India
| |
Collapse
|
33
|
Bacopa monnieri abrogates alcohol abstinence-induced anxiety-like behavior by regulating biochemical and Gabra1, Gabra4, Gabra5 gene expression of GABAA receptor signaling pathway in rats. Biomed Pharmacother 2019; 111:1417-1428. [DOI: 10.1016/j.biopha.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
|
34
|
Zhou H, Tan H, Letourneau L, Wang JF. Increased thioredoxin-interacting protein in brain of mice exposed to chronic stress. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:320-326. [PMID: 30138646 DOI: 10.1016/j.pnpbp.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Chronic stress is a key contributor to depression. Previous studies have shown that oxidative stress and inflammation are increased by chronic stress and in subjects with depression. Thioredoxin is a small redox protein that regulates cellular redox balance and signaling. This protein can reverse protein cysteine oxidative modifications such as sulfenylation and nitrosylation, and inhibit stress-regulated apoptosis signal-regulating kinase 1 pathway. Therefore thioredoxin plays an important role in cellular defense against oxidative stress. Thioredoxin-interacting protein is an endogenous thioredoxin inhibitor. In the present study, to understand the role of thioredoxin in chronic stress and depression, we have investigated thioredoxin, thioredoxin-interacting protein, sulfenylation, nitrosylation and apoptosis signal-regulating kinase 1 phosphorylation in brain of mice exposed to chronic unpredictable stress (CUS). We found that mice exposed to CUS displayed decreased exploratory, increased anhedonic and increased despair depressive-like behaviours. We also found that although CUS had no effect on thioredoxin protein levels, it significantly increased levels of thioredoxin-interacting protein in mouse hippocampus and frontal cortex. CUS also increased protein cysteine sulfenylation, protein cysteine nitrosylation and apoptosis signal-regulating kinase 1 phosphorylation in mouse hippocampus and frontal cortex. These findings suggest that chronic stress may upregulate thioredoxin-interacting protein, subsequently inhibiting thioredoxin activity and enhancing oxidative protein cysteine modification and apoptosis signal-regulating kinase 1 pathway. These results also indicate that thioredoxin-interacting protein may have potential for depression treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Lucien Letourneau
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
35
|
Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus. Lab Anim Res 2018; 34:239-247. [PMID: 30671111 PMCID: PMC6333610 DOI: 10.5625/lar.2018.34.4.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/22/2023] Open
Abstract
Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.
Collapse
|
36
|
Huang Q, Ye X, Wang L, Pan J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J Food Biochem 2018; 43:e12742. [PMID: 31353549 DOI: 10.1111/jfbc.12742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
This study was framed to investigate the molecular mechanism behind the anti-depressant effect of salvianolic acid B (SB) against unpredictable chronic mild stress (CMS) induced depression rat model. Control rats received only saline without CMS exposure, whereas CMS model rats were induced to several stress (CMS) for 6 weeks. Treatment group rats were induced with CMS for 6 weeks but received either 20 or 40 mg/kg of SB or 20 mg/kg imipramine (CMS+IMP) from the 4th week to 6th week. Treatment with SB or IMP significantly ameliorated body weight, sucrose consumption rate with shorter immobility time than the control group. Also, administration with SB or IMP could reverse the hyperactivity of hypothalamic-pituitary-adrenal axis as well as decreased inflammatory cytokines with improved antioxidant status. Furthermore, the protein expression of NLRP3 (inflammasome) was markedly downregulated upon treatment with SB (both 20 and 40 mg) or IMP and thereby confirming its potent anti-depressant activity. PRACTICAL APPLICATIONS: Salvianolic acid B (SB) is a phenolic acid extracted from Salvia militiorrhiza Bunge, a popular Chinese herb, which has been prescribed for various pathological conditions. SB has been previously reported with anti-depressant activity but, the in-depth mechanism behind the anti-depressant effect of SB against CMS is still elusive. Hence, the current study was plotted to explore the in-depth mechanism behind the anti-depressant effect of SB against CMS model of depression in rats. The outcome of the current study has confirmed the anti-depressant activity by abolishing oxidative stress, and neuroinflammatory response in the hippocampus through inhibiting NLRP3 inflammasome activation. Hence, SB can be prescribed to major depression patients with standard anti-depressant agents to abolish oxidative stress, neuro-inflammatory response, and related neurological changes.
Collapse
Affiliation(s)
- Qiaoting Huang
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xunda Ye
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijun Wang
- Department of Nutrition, Medical School, Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int 2018; 121:98-107. [PMID: 30296463 DOI: 10.1016/j.neuint.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ) is an organic chemical compound and a member of redox active family of heterocycles. In spite of its high toxicities, it is used as one of the potent herbicide throughout the world. Though its toxic manifestations are observed in different organs, its principal toxic effect is manifested in the brain leading to the development of Parkinsonian symptoms. PQ exposure adversely affects dopaminergic (DA-ergic) neuron-rich region in the substantia nigra pars compacta (SNPC) of brain in the animal models of Parkinson's disease (PD), thereby mimicking PD like symptoms. Currently, lack of a potential drug to counter the toxic effect of PQ makes the management difficult. Bacopa monnieri extract (BME) has been shown to have promising effect against neurodegenerative disorders. Therefore, the present study evaluated the role of BME against PQ induced toxicity in Drosophila model of PD, the results of which are reproducible in higher animal models including human subjects. Here, we showed that BME treatment attenuates acute PQ induced toxicity in Drosophila by decreasing mortality and improving climbing ability. BME functions by optimizing redox equilibrium, mitochondrial function and depreciating apoptosis level. The underlying mechanisms were attributed to optimization of active JNK and cleaved Caspase-3 activity along with transcriptional stabilization of the genes regulating oxidative stress and apoptosis (jnk, caspase-3, damb and nrf-2). These results showed therapeutic efficacy of BME against PQ toxicity in the brain. Our results pave the way for further detailed analysis of BME to combat the development of Parkinson's like symptoms following exposure to PQ toxicity in the brain of higher animal models.
Collapse
|
38
|
Bharti V, Tan H, Chow D, Wang Y, Nagakannan P, Eftekharpour E, Wang JF. Glucocorticoid Upregulates Thioredoxin-interacting Protein in Cultured Neuronal Cells. Neuroscience 2018; 384:375-383. [PMID: 29894818 DOI: 10.1016/j.neuroscience.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 01/17/2023]
Abstract
Previous studies have shown that chronic stress and chronic stress hormone treatment induce oxidative damage in rodents. Thioredoxin (Trx) is a small redox protein that plays an important role in regulation of oxidative protein cysteine modification. A Trx reduced state is maintained by thioredoxin reductase (TrxR), and the thioredoxin-interacting protein (Txnip) is an endogenous inhibitor of Trx. The purpose of this study was to investigate the effects of chronic treatment with stress hormone corticosterone on Trx, TrxR and Txnip in cultured neuronal cells. Using immunoblotting analysis we found that although chronic corticosterone treatment had no effect on Trx and TrxR protein levels, this treatment significantly increased Txnip protein levels. Using immunocytochemistry we also found that chronic corticosterone treatment increased Txnip in both nucleus and cytosol, while glucocorticoid receptor inhibitor RU486 can block corticosterone-increased Txnip protein levels. Using biotin switch, dimedone conjugation and CRISPR/Cas9 methods we found that chronic corticosterone treatment increased protein nitrosylation and sulfenylation, while knocking out Txnip blocked corticosterone-induced protein nitrosylation and sulfenylation. Since Trx can reduce cysteine oxidative protein modification such as nitrosylation and sulfenylation, our findings suggest that chronic corticosterone treatment may upregulate Txnip by targeting glucocorticoid receptor, subsequently inhibiting Trx activity and enhancing oxidative protein cysteine modification, which contributes to corticosterone-caused oxidative damage.
Collapse
Affiliation(s)
- Veni Bharti
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Desiree Chow
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yiran Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada; Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada; Department of Psychiatry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
39
|
Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:395-407. [PMID: 28842257 DOI: 10.1016/j.pnpbp.2017.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Agmatine is an endogenous neuromodulator that has been shown to have beneficial effects in the central nervous system, including antidepressant-like effects in animals. In this study, we investigated the ability of agmatine (0.1mg/kg, p.o.) and the conventional antidepressant fluoxetine (10mg/kg, p.o.) to reverse the behavioral effects and morphological alterations in the hippocampus of mice exposed to chronic corticosterone (20mg/kg, p.o.) treatment for a period of 21days as a model of stress and depressive-like behaviors. Chronic corticosterone treatment increased the immobility time in the tail suspension test (TST), but did not cause anhedonic-like and anxiety-related behaviors, as assessed with the splash test and the open field test (OFT), respectively. Of note, the depressive-like behaviors induced by corticosterone were accompanied by a decrease in hippocampal cell proliferation, although no changes in hippocampal neuronal differentiation were observed. Our findings provide evidence that, similarly to fluoxetine, agmatine was able to reverse the corticosterone-induced depressive-like behaviors in the TST as well as the deficits in hippocampal cell proliferation. Additionally, fluoxetine but not agmatine, increased hippocampal differentiation. Agmatine, similar to fluoxetine, was capable of increasing both dendritic arborization and length in the entire dentate hippocampus, an effect more evident in the ventral portion of the hippocampus, as assessed with the modified Sholl analysis. Altogether, our results suggest that the increase in hippocampal proliferation induced by agmatine may contribute, at least in part, to the antidepressant-like response of this compound in this mouse model of stress induced by chronic exposure to corticosterone.
Collapse
Affiliation(s)
- Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dayane P Azevedo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Sangiovanni E, Brivio P, Dell'Agli M, Calabrese F. Botanicals as Modulators of Neuroplasticity: Focus on BDNF. Neural Plast 2017; 2017:5965371. [PMID: 29464125 PMCID: PMC5804326 DOI: 10.1155/2017/5965371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Enriched environment combined with fluoxetine ameliorates depression-like behaviors and hippocampal SYP expression in a rat CUS model. Brain Res Bull 2017; 135:33-39. [DOI: 10.1016/j.brainresbull.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
|
42
|
Yan T, He B, Wan S, Xu M, Yang H, Xiao F, Bi K, Jia Y. Antidepressant-like effects and cognitive enhancement of Schisandra chinensis in chronic unpredictable mild stress mice and its related mechanism. Sci Rep 2017; 7:6903. [PMID: 28761074 PMCID: PMC5537344 DOI: 10.1038/s41598-017-07407-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate whether Schisandra chinensis extract (SCE) administration influences chronic unpredictable mild stress (CUMS)-induced depression and cognitive impairment, and explores underlying mechanisms. Sucrose preference test (SPT) and forced swimming test (FST) were used for assessing depressive symptoms, and Y-maze, Morris water maze were used for evaluating cognition processes. The results showed that CUMS (4 weeks) was effective in producing both depression and memory deficits in mice. Additionally, CUMS exposure significantly decreased brain derived neurotrophic factor (BDNF) levels in hippocampus as indicated by ELISA, immunohistochemistry and immunofluorescence assays, accompanied by down-regulated tyrosine kinase receptor B (TrkB)/cAMP-response element binding protein (CREB)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (AKT)/ glycogen synthase kinase-3β (GSK-3β) signaling pathways. Chronic administration of SCE (600 or 1200 mg/kg, i.g.) significantly prevented all these CUMS-induced behavioral and biochemical alterations. It suggested that SCE could improve the depression-like emotional status and associated cognitive deficits in CUMS mice, which might be mediated by regulation of BDNF levels in hippocampus, as well as up-regulating of TrkB/CREB/ERK and PI3K/AKT/GSK-3β pathways.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Bosai He
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Shutong Wan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Mengjie Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Huilin Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
43
|
Qiu ZK, Zhang GH, Zhong DS, He JL, Liu X, Chen JS, Wei DN. Puerarin ameliorated the behavioral deficits induced by chronic stress in rats. Sci Rep 2017; 7:6266. [PMID: 28740098 PMCID: PMC5524961 DOI: 10.1038/s41598-017-06552-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to investigate the mechanisms underlying the antidepressant-like effects of puerarin via the chronic unpredictable stress (CUS) procedure in rats. Similar to Sertraline (Ser), Chronic treatment of puerarin (60 and 120 mg/kg, i.g) elicited the antidepressant-like effects by reversing the decreased sucrose preference in sucrose preference test (SPT), by blocking the increased latency to feed in novelty-suppressed feeding test (NSFT) and the increased immobility time in forced swimming test (FST) without affecting locomotor activity. However, acute puerarin treatment did not ameliorate the antidepressant- and anxiolytic- like effects in FST and NSFT, respectively. In addition, enzyme linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemical detection (HPLC-ECD) showed that chronic treatment of puerarin (60 and 120 mg/kg, i.g) reversed the decreased levels of progesterone, allopregnanolone, serotonin (5-HT) and 5-Hydroxyindoleacetic acid (5-HIAA) in prefrontal cortex and hippocampus of post-CUS rats. Furthermore, puerarin (60 and 120 mg/kg, i.g) blocked the increased corticotropin releasing hormone (CRH), corticosterone (Cort) and adrenocorticotropic hormone (ACTH). Collectively, repeated administration of puerarin alleviated the behavioral deficits induced by chronic stress which was associated with the biosynthesis of neurosteroids, normalization of serotonergic system and preventing HPA axis dysfunction.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Guan-Hua Zhang
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China
| | - De-Sheng Zhong
- Department of Pharmacy, Hui Zhou Municipal Centre Hospital, Huizhou, Guangdong, P.R. China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, P.R. China.
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, P.R. China
- Academy of Military Medical Sciences, Beijing, 100850, P.R. China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China.
| | - Da-Nian Wei
- Neurosurgery Department of the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
44
|
Srivastav S, Fatima M, Mondal AC. Important medicinal herbs in Parkinson's disease pharmacotherapy. Biomed Pharmacother 2017; 92:856-863. [PMID: 28599249 DOI: 10.1016/j.biopha.2017.05.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/10/2017] [Accepted: 05/28/2017] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder affecting more than 10 million people worldwide. The characteristic hallmark of PD involves progressive loss of dopaminergic (DA-ergic) neuron in Substantia Nigra pars compacta (SNpc) region of the brain, however, aetiology of the disease still remains unclear. Mitochondrial dysfunction and oxidative insult are considered to be the key culprit. The current therapy available for PD primarily relies on Levodopa that offers the potential of slowing down disease progression to some extent but includes lot of side effects. Any potential drug capable of treating or halting the disease still remains to be identified. It is evident that redox stabilization and replenishment of mitochondrial function seem to be an important therapeutic approach against PD as both are required for optimal neuronal functioning. Enormous research done in this field has shown that some natural and synthetic products exhibit neuroprotective and anti-apoptotic potential by improving mitochondrial function and alleviating oxidative stress. Therefore, the present review aims to discuss some of the important medicinal natural herbs (Bacopa monnieri, Mucuna pruriens, Withania somnifera, Curcuma longa, Gingko Biloba, and Camellia sinensis) in context to their neuroprotective potential and also in the development of novel therapeutic strategies against PD.
Collapse
Affiliation(s)
- Saurabh Srivastav
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mahino Fatima
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|