1
|
Xia J, Gao X, Yao J, Fei Y, Song D, Gu Z, Zheng G, Gu Y, Tu C. Injectable Brain Extracellular Matrix Hydrogels Enhance Neuronal Migration and Functional Recovery After Intracerebral Hemorrhage. Biomater Res 2025; 29:0192. [PMID: 40265103 PMCID: PMC12012376 DOI: 10.34133/bmr.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/09/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Neural repair within the lesion cavity caused by intracerebral hemorrhage (ICH) remains a major therapeutic challenge. Hydrogels hold great potential in regenerative medicine as functional scaffolds. However, inadequate host cell infiltration and suboptimal delivery methods have limited their application in tissue engineering. Here, we describe an optimized decellularization approach to create injectable brain extracellular matrix (ECM) hydrogels for the treatment of ICH. The hydrogel exhibits excellent biodegradability and biocompatibility. In an ICH rat model, the hydrogel implanted into the stroke cavity promoted neural recovery, facilitated cell recruitment, enhanced angiogenesis, and inhibited inflammation in the peri-cavity region at 14 d post-implantation. Furthermore, the hydrogel improved cell proliferation and migration, reversed cell apoptosis, and modulated transcriptomic changes in vitro. Notably, the hydrogel may promote neuronal migration and neural functional recovery after ICH through the slit guidance ligand 2-receptor roundabout guidance receptor 1 (Slit2-Robo1) signaling pathway. These findings highlight the potential of brain ECM hydrogels as a promising strategy for brain tissue regeneration.
Collapse
Affiliation(s)
- Jiajie Xia
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Jun Yao
- Department of Orthopedic Surgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Dagang Song
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Zhiwei Gu
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Gang Zheng
- Department of Neurosurgery, Shaoxing Central Hospital, The Central Affiliated Hospital,
Shaoxing University, Shaoxing, Zhejiang 312030, China
| | - Yuxiang Gu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital,
Fujian Medical University, Fuzhou, Fujian 350005, China
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science,
Fudan University, Shanghai 200000, China
| | - Chuanjian Tu
- Department of Neurosurgery, Shaoxing Central Hospital,
China Medical University, Shaoxing, Zhejiang 312030, China
| |
Collapse
|
2
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
3
|
Huang G, Wang S, Yan J, Li C, Feng J, Chen Q, Zheng X, Li H, He Y, Young AJ, Li H, Li W, Li J, Wang L. Depression-/Anxiety-Like Behavior Alterations in Adult Slit2 Transgenic Mice. Front Behav Neurosci 2021; 14:622257. [PMID: 33613201 PMCID: PMC7892588 DOI: 10.3389/fnbeh.2020.622257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Slit2 is a member of the Slit family of secreted glycoproteins that plays highly conserved roles in neuronal axon guidance and cellular migration. Our previous experimental results showed Alzheimer's disease-like alterations and increased permeability of the blood–brain barrier in Slit2-overexpressing transgenic (Slit2-Tg) mice aged 8–9 months. Nevertheless, relatively little is known about behavioral alterations in adult Slit2-Tg mice (2–6 months of age). To observe the age-related behavioral effects of Slit2 overexpression in adult mice, we performed a battery of behavioral tests with adult Slit2-Tg mice at 2–6 months of age. Results: The body weight of Slit2-Tg mice was lower than that of the wild-type mice from 15 weeks of age. Compared with the control mice, depression-like behaviors were found in Slit2-Tg mice from 15 to 21 weeks of age in the sucrose preference test, although Slit2-Tg mice were hyperactive in the tail suspension test. The anxiety-like behaviors were found in Slit2-Tg mice in the open field test, as well as increased locomotor activity. The anxiety-like behaviors were also found in adult Slit2-Tg mice in the elevated plus maze. Compared to wild-type mice at 23 weeks old, impairment of the hippocampal neurons were found in Slit2-Tg mice at the same age in hematoxylin–eosin staining (H&E), including some eccentric dispersion and expansion of neuronal bodies. In addition, the messenger RNA (mRNA) expression of TNF-α was elevated in the hippocampus of adult Slit2-Tg mice. Conclusions: Slit2 overexpression causes depression-/anxiety-like behaviors in adult mice that may be related to an increase in inflammatory factors and damage to hippocampal neurons.
Collapse
Affiliation(s)
- Guilan Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sheng Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changxi Li
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwen Feng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaomeng Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huimin Li
- Department of Applied Psychology, School of Humanities and Communication, Guangdong University of Finance & Economics, Guangzhou, China
| | - Yajun He
- Department of Pathology, Bao'an People's Hospital of Shenzhen, Guangdong, China
| | | | - Haobin Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weidong Li
- School of Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Sherchan P, Travis ZD, Tang J, Zhang JH. The potential of Slit2 as a therapeutic target for central nervous system disorders. Expert Opin Ther Targets 2020; 24:805-818. [PMID: 32378435 PMCID: PMC7529836 DOI: 10.1080/14728222.2020.1766445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Slit2 is an extracellular matrix protein that regulates migration of developing axons during central nervous system (CNS) development. Roundabout (Robo) receptors expressed by various cell types in the CNS, mediate intracellular signal transduction pathways for Slit2. Recent studies indicate that Slit2 plays important protective roles in a myriad of processes such as cell migration, immune response, vascular permeability, and angiogenesis in CNS pathologies. Areas covered: This review provides an overview of the diverse functions of Slit2 in CNS disorders and discusses the potential of Slit2 as a therapeutic target. We reviewed preclinical studies reporting the role of Slit2 in various CNS disease models, transgenic animal research, and rodent models that utilized Slit2 as a therapy. Expert opinion: Slit2 exerts a wide array of beneficial effects ranging from anti-migration, blood-brain barrier (BBB) protection, inhibition of peripheral immune cell infiltration, and anti-apoptosis in various disease models. However, a dual role of Slit2 in endothelial permeability has been observed in transgenic animals. Further research on Slit2 will be crucial including key issues such as effects of transgenic overexpression versus exogenous Slit2, function of Slit2 dependent on cellular expression of Robo receptors and the underlying pathology for potential clinical translation.
Collapse
Affiliation(s)
- Prativa Sherchan
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Zachary D. Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA and Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Center for Neuroscience Research, Department of Physiology and Pharmacology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
5
|
Li X, Zheng S, Tan W, Chen H, Li X, Wu J, Luo T, Ren X, Pyle WG, Wang L, Backx PH, Huang R, Yang FH. Slit2 Protects Hearts Against Ischemia-Reperfusion Injury by Inhibiting Inflammatory Responses and Maintaining Myofilament Contractile Properties. Front Physiol 2020; 11:228. [PMID: 32292352 PMCID: PMC7135862 DOI: 10.3389/fphys.2020.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The secreted glycoprotein Slit2, previously known as an axon guidance cue, has recently been found to protect tissues in pathological conditions; however, it is unknown whether Slit2 functions in cardiac ischemia-reperfusion (IR) injury. Methods Langendorff-perfused isolated hearts from Slit2-overexpressing (Slit2-Tg) mice and C57BL/6J mice (background strain) were subjected to 20 min of global ischemia followed by 40 min of reperfusion. We compared Slit2-Tg with C57BL/6J mice in terms of left ventricular function and infarct size of post-IR hearts along with tissue histological and biochemical assessments (mRNA and protein expression, phosphorylation status, and myofilament contractile properties). Results Slit2 played cardioprotective roles in maintaining contractile function and reducing infarct size in post-IR hearts. IR increased the expression of the Slit2 receptor Robo4 and the membrane receptor Slamf7, but these increases were suppressed by Slit2 overexpression post IR. This suppression was associated with inhibition of the nuclear translocation of NFκB p65 and reductions in IL-1β and IL-18 release into perfusates. Furthermore, Slit2 overexpression attenuated the increases in myofilament-associated PKCs and phosphorylation of cTnI at Ser43 in the post-IR myocardium. The myofilament calcium sensitivity and actomyosin MgATPase activity were preserved in the post-IR Slit2 myocardium. Conclusion Our work demonstrates that Slit2 inhibits inflammatory responses and maintains myofilament contractile properties, thus contributing, at least in part, to the prevention of structural and functional damage during IR.
Collapse
Affiliation(s)
- Xiang Li
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuang Zheng
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Weijiang Tan
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Hongqi Chen
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaohui Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ting Luo
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xuecong Ren
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - W Glen Pyle
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lijing Wang
- School of Basic Medicine, Vascular Biology Institute, Guangdong Pharmaceutical University, Guanghzou, China
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Division of Cardiology and the Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ren Huang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Feng Hua Yang
- Guangdong Province Key Laboratory of Laboratory Animals, Cardiovascular Model Research Center, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,Department of Cardiovascular Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Inhibition of miR-200b-3p alleviates hypoxia-ischemic brain damage via targeting Slit2 in neonatal rats. Biochem Biophys Res Commun 2020; 523:931-938. [PMID: 31964527 DOI: 10.1016/j.bbrc.2020.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Brain damage in premature infants often occurs in very low birth weight infants (VLBW) as a result of hypoxia-ischemia and can lead to cognitive impairment and movement disorders. Many miRNAs have been demonstrated to participate in hypoxia-ischemic brain damage (HIBD). This study was designed to investigate the roles of miR-200b-3p in brain damage of neonatal rats induced by hypoxia-ischemia. METHODS AND RESULTS Three-day-old SD rats were used to establish the model of hypoxia-ischemic brain injury mimicking premature infants. RT-qPCR showed that miR-200b-3p was up-regulated in rat brains at the early stage following hypoxia-ischemic treatment. Bioinformatics analysis identified that Slit2 is a target gene of miR-200b-3p and luciferase reporter gene assay confirmed that miR-200b-3p can interact with and target Slit2 mRNA. Inhibition of miR-200b-3p by antagomir increased Slit2 expression at both the mRNA and protein levels in rat brains. TUNEL assay and transmission electron microscopy (TEM) analysis showed decreased numbers of apoptotic neurons in the hypoxia-ischemia-treated animals as a result of administration of miR-200b-3p antagomir. Administration of miR-200b-3p antagomir attenuated spatial and learning memory loss in the animals induced by hypoxia-ischemia as compared to controls. CONCLUSION Our study has demonstrated that Slit2 is a target gene of miR-200b-3p and that the hypoxia-ischemic brain damage in neonatal rats was alleviated by inhibiting miR-200b-3p via Slit2. miR-200b-3p may be a potential therapeutic target of HIBD for further investigation.
Collapse
|
8
|
Pilling D, Chinea LE, Consalvo KM, Gomer RH. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:239-248. [PMID: 30510066 PMCID: PMC6310129 DOI: 10.4049/jimmunol.1800681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
The movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils. In this report, we show that the ∼140-kDa N-terminal Slit2 fragment (Slit2-N) is a chemoattractant and the ∼110-kDa N-terminal Slit2 fragment (Slit2-S) is a chemorepellent for human neutrophils. The effects of both Slit2 fragments were blocked by Abs to the Slit2 receptor Roundabout homolog 1 or the Slit2 coreceptor Syndecan-4. Slit2-N did not appear to activate Ras but increased phosphatidylinositol 3,4,5-triphosphate levels. Slit2-N-induced chemoattraction was unaffected by Ras inhibitors, reversed by PI3K inhibitors, and blocked by Cdc42 and Rac inhibitors. In contrast, Slit2-S activated Ras but did not increase phosphatidylinositol 3,4,5-triphosphate levels. Slit2-S-induced chemorepulsion was blocked by Ras and Rac inhibitors, not affected by PI3K inhibitors, and reversed by Cdc42 inhibitors. Slit2-N, but not Slit2-S, increased neutrophil adhesion, myosin L chain 2 phosphorylation, and polarized actin formation and single pseudopods at the leading edge of cells. Slit2-S induced multiple pseudopods. These data suggest that Slit2 isoforms use similar receptors but different intracellular signaling pathways and have different effects on the cytoskeleton and pseudopods to induce neutrophil chemoattraction or chemorepulsion.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
9
|
Zhu YM, Gao X, Ni Y, Li W, Kent TA, Qiao SG, Wang C, Xu XX, Zhang HL. Sevoflurane postconditioning attenuates reactive astrogliosis and glial scar formation after ischemia-reperfusion brain injury. Neuroscience 2017; 356:125-141. [PMID: 28501505 DOI: 10.1016/j.neuroscience.2017.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
Abstract
Cerebral ischemia leads to astrocyte's activation and glial scar formation. Glial scar can inhibit axonal regeneration during the recovery phase. It has demonstrated that sevoflurane has neuroprotective effects against ischemic stroke, but its effects on ischemia-induced formation of astrogliosis and glial scar are unknown. This study was designed to investigate the effect of sevoflurane postconditioning on astrogliosis and glial scar formation in ischemic stroke model both in vivo and in vitro. The results showed that 2.5% of sevoflurane postconditioning could significantly reduce infarction volume and improve neurologic deficits. And it could also decrease the expression of the glial scar marker glial fibrillary acidic protein (GFAP), neurocan and phosphacan in the peri-infarct region and markedly reduce the thickness of glial scar after ischemia/reperfusion (I/R). Consistent with the in vivo data, in the oxygen and glucose deprivation/reoxygenation (OGD/Re) model, sevoflurane postconditioning could protect astrocyte against OGD/Re-induced injury, decrease the expression of GFAP, neurocan and phosphacan. Further studies demonstrated that sevoflurane postconditioning could down-regulate the expression of Lamp1 and active cathepsin B, and block I/R or OGD/Re-induced release of cathepsin B from the lysosomes into cytoplasm. In order to confirm whether inhibition of cathepsin B could attenuate the formation of glial scar, we used cathepsin B inhibitor CA-074Me as a positive control. The results showed that inhibition of cathepsin B could decrease the expression of GFAP, neurocan and phosphacan. Taken together, sevoflurane postconditioning can attenuate astrogliosis and glial scar formation after ischemic stroke, associating with inhibition of the activation and release of lysosomal cathepsin B.
Collapse
Affiliation(s)
- Yong-Ming Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Wei Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Thomas A Kent
- Stroke Outcomes Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, United States; and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston 77030, TX, United States
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital; and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Chen Wang
- Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital; and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, PR China
| | - Xiao-Xuan Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|