1
|
Mohammadi M, Eskandari K, Azizbeigi R, Haghparast A. The inhibitory effect of cannabidiol on the rewarding properties of methamphetamine in part mediates by interacting with the hippocampal D1-like dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110778. [PMID: 37100273 DOI: 10.1016/j.pnpbp.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Cannabidiol (CBD) is a potential treatment to decrease the rewarding properties of psychostimulants. However, the exact mechanism and distinct neuroanatomical areas responsible for the CBD's effects remain unclear. Indicatively, the D1-like dopamine receptors (D1R) in the hippocampus (HIP) are essential for expressing and acquiring drug-associated conditioned place preference (CPP). Therefore, given that involving D1Rs in reward-related behaviors and the encouraging results of CBD in attenuating the psychostimulant's rewarding effects, the present study sought to investigate the role of D1Rs of the hippocampal dentate gyrus (DG) in the inhibitory effects of CBD on the acquisition and expression of METH-induced CPP. To this end, over a 5-day conditioning period by METH (1 mg/kg; sc), different groups of rats were given intra-DG SCH23390 (0.25, 1, or 4 μg/0.5 μl, saline) as a D1Rs antagonist before ICV administration of CBD (10 μg/5 μl, DMSO12%). In addition, a different set of animals, after the conditioning period, received a single dose of SCH23390 (0.25, 1, or 4 μg/0.5 μl) before CBD (50 μg/5 μl) administration on the expression day. The results showed that SCH23390 (1 and 4 μg) significantly reduced the suppressive effects of CBD on the acquisition of METH place preference (P < 0.05 and P < 0.001, respectively). Furthermore, the highest dose of SCH23390 (4 μg) in the expression phase remarkably abolished the preventive effects of CBD on the expression of METH-seeking behavior (P < 0.001). In conclusion, the current study revealed that CBD's inhibitory effect on rewarding properties of METH partially acts through D1Rs in the DG area of the HIP.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Kiarash Eskandari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sex-Dependent Effect of Chronic Piromelatine Treatment on Prenatal Stress-Induced Memory Deficits in Rats. Int J Mol Sci 2023; 24:ijms24021271. [PMID: 36674787 PMCID: PMC9864968 DOI: 10.3390/ijms24021271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prenatal stress impairs cognitive function in rats, while Piromelatine treatment corrects memory decline in male rats with chronic mild stress. In the present study, we aimed to evaluate the effect of chronic treatment with the melatonin analogue Piromelatine on the associative and spatial hippocampus-dependent memory of male and female offspring with a history of prenatal stress (PNS). We report that male and female young adult offspring with PNS treated with a vehicle had reduced memory responses in an object recognition test (ORT). However, the cognitive performance in the radial arm maze test (RAM) was worsened only in the male offspring. The 32-day treatment with Piromelatine (20 mg/kg, i.p.) of male and female offspring with PNS attenuated the impaired responses in the ORT task. Furthermore, the melatonin analogue corrected the disturbed spatial memory in the male offspring. While the ratio of phosphorylated and nonphosphorylated adenosine monophosphate response element binding protein (pCREB/CREB) was reduced in the two sexes with PNS and treated with a vehicle, the melatonin analogue elevated the ratio of these signaling molecules in the hippocampus of the male rats only. Our results suggest that Piromelatine exerts a beneficial effect on PNS-induced spatial memory impairment in a sex-dependent manner that might be mediated via the pCREB/CREB pathway.
Collapse
|
3
|
Arzuaga AL, Edmison DD, Mroczek J, Larson J, Ragozzino ME. Prenatal stress and fluoxetine exposure in mice differentially affect repetitive behaviors and synaptic plasticity in adult male and female offspring. Behav Brain Res 2023; 436:114114. [DOI: 10.1016/j.bbr.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
4
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
5
|
Chen Y, Mao G, Zhang Z, Zhao T, Feng W, Yang L, Wu X. The protective effect of C3G against Pb-induced learning and memory impairments through cAMP-PKA-CREB signaling pathway in rat hippocampus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Yao D, Mu Y, Lu Y, Li L, Shao S, Zhou J, Li J, Chen S, Zhang D, Zhang Y, Zhu Z, Li H. Hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring rats. J Psychiatr Res 2022; 151:17-24. [PMID: 35427874 DOI: 10.1016/j.jpsychires.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Numerous studies have shown that prenatal stress (PS) induces learning and memory deficits in offspring, yet the specific mechanisms and effective interventions remain limited. Chewing has been known as one of the active coping strategies to suppress stress, but its effects during PS on learning and memory are unknown. The purpose of this study was to investigate the role of hippocampal AMPA receptors in the adverse effects of PS on spatial learning and memory, and whether chewing during PS could prevent these effects in prenatally stressed adult offspring rats. Prenatal restraint stress with or without chewing to dams during the day 11-20 of pregnancy was used to analyze the impact of different treatments for offspring. The spatial learning and memory were tested by the Morris water maze. The mRNA and protein expression of AMPA receptors in the hippocampus were measured by qRT-PCR and Western blot, respectively. The methylation of AMPA receptors was detected by bisulfite sequencing PCR. Our results revealed that PS impaired spatial learning acquisition and memory retrieval in adult offspring rats, but chewing could relieve this effect. Hippocampal GluA1-4 expression was significantly reduced in prenatally stressed offspring, while there were no changes in the methylation level of GluA2 and GluA4 promoters. Moreover, chewing increased PS-induced suppression of AMPA receptors in the hippocampus. In short, hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring, whereas chewing during PS could ameliorate PS-induced memory deficits.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Li Li
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jiahao Zhou
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Dan Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifan Zhang
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
7
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Razavinasab M, Parsania S, Nikootalab M, Khaleghi M, Saleki K, Banazadeh M, Shabani M. Early environmental enrichment prevents cognitive impairments and developing addictive behaviours in a mouse model of prenatal psychological and physical stress. Int J Dev Neurosci 2022; 82:72-84. [PMID: 34845740 DOI: 10.1002/jdn.10161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
Environmental enrichment (EE) has shown remarkable effects in improving cognition and addictive behaviour. We tested whether EE could help recover from prenatal stress exposure. Mature Swiss Webster male and virgin female mice were placed together until vaginal plugs were detectable. Next, pregnant rodents were randomized into the control, physically and psychologically stressed groups. The application of stress was initiated on the 10th day of pregnancy and persisted for a week to induce stress in the mice. Open field and elevated plus-maze (EPM) tests were utilized as explorative and anxiety assays, respectively. A passive avoidance shuttle-box test was carried out to check anxiety-modulated behaviour. Morris water maze (MWM) test was undertaken to evaluate spatial learning and memory. Conditioned place preference (CPP) test was selected for evaluation of tendency to morphine consumption. Our results showed that prenatal stress elevated anxiety-like behaviour in the offspring which EE could significantly alleviate after weaning. We also found a higher preference for morphine use in the physical stress and psychological stress offspring group. However, no difference was observed among the genders. Application of EE for the stress group improved several parameters of the cognitive behaviour significantly. Although prenatal stress can lead to detrimental behavioural and cognitive outcomes, it can in part be relieved by early exposure to EE. However, some outcomes linked to prenatal stress exposure may not be diminished by EE therapy. In light of such irreversible effects, large-scale preventive actions promoting avoidance from stress during pregnancy should be advised.
Collapse
Affiliation(s)
- Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahnaz Parsania
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdi Nikootalab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Khaleghi
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Kaneko T, Hara R, Amano T, Minami M. Diverse intracellular signaling pathways mediate the effects of neurotensin on the excitability of type II neurons in the rat dorsolateral bed nucleus of the stria terminalis. J Pharmacol Sci 2021; 147:86-94. [PMID: 34294377 DOI: 10.1016/j.jphs.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022] Open
Abstract
We examined the effects of neurotensin (NTS) on the excitability of type II neurons in the rat dorsolateral bed nucleus of the stria terminalis (dlBNST) using whole-cell patch-clamp electrophysiology. Bath-application of NTS depolarized type II dlBNST neurons. Analyses of the steady-state I-V relationships implied that the depolarizing effect of NTS is due to potassium conductance blocking. The depolarizing effect of NTS was abolished in the presence of a PLC inhibitor, but not affected by a protein kinase C inhibitor. In the presence of a CaMKII inhibitor, NTS showed depolarizing effects via the increase in non-selective cation conductance in addition to the decrease in potassium conductance. Unexpectedly, in the presence of a PKA inhibitor, NTS hyperpolarized type II dlBNST neurons. These results reveal that diverse signaling pathways mediate the effects of NTS on the excitability of type II dlBNST neurons. The elevation of intracellular Ca2+ levels via the inositol phosphate-mediated signaling activates both Ca2+-dependent adenylate cyclase (AC) and CaMKII. Activation of the AC-cAMP-PKA pathway exerts depolarizing effects on type II dlBNST neurons by decreasing potassium conductance and increasing non-selective cation conductance, whereas activation of the CaMKII pathway exerts hyperpolarizing effects on dlBNST neurons by decreasing non-selective cation conductance.
Collapse
Affiliation(s)
- Tomoyuki Kaneko
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryuto Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
10
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
11
|
Yang G, Liu L, Zhang R, Li J, Leung CK, Huang J, Li Y, Shen B, Zeng X, Zhang D. Cannabidiol attenuates methamphetamine-induced conditioned place preference via the Sigma1R/AKT/GSK-3β/CREB signaling pathway in rats. Toxicol Res (Camb) 2020; 9:202-211. [PMID: 32670551 DOI: 10.1093/toxres/tfaa021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant. Cannabidiol (CBD) is an exogenous cannabinoid without psychostimulating activity, which has potential therapeutic effects on opioid addiction. However, it is unclear whether CBD has therapeutic effects on METH-induced motivational effects. The present study examines whether CBD has a protective effect on METH-induced conditioned place preference (CPP) in rats by regulating the Sigma1R and AKT-GSK3β-CREB signaling pathway. Seventy rats were equally and randomly divided into seven groups. The rat CPP model was established via the intraperitoneal injection (IP) of 2 mg/kg of METH. Next, the intraperitoneal injection of 10, 20, 40, and 80 mg/kg CBD was performed 1 h prior to the injection of saline or METH. The protein expression levels of Sigma1R, AKT, p-AKT, GSK-3β, p-GSK-3β, CREB, and p-CREB in the rats' prefrontal cortex, nucleus accumbens, and hippocampus and ventral tegmental were detected using western blot analysis. CBD was found to inhibit METH-induced CPP in a dose-dependent fashion. The expression levels of Sigma1R, p-AKT, p-GSK3β, and p-CREB increased significantly in the METH-induced CPP model. Treatment involving different doses of CBD caused differential inhibitory responses in the cellular protein abundance of Sigma1R, p-AKT, p-GSK3β, and p-CREB across various brain regions. The present study found that METH can induce CPP in rats. When a pretreatment of CBD is applied, the CBD can weaken CPP in METH-induced rats by regulating the SigmaR1/AKT/GSK-3β/CREB signaling pathway. The results of this study indicate that CBD has a potential therapeutic effect on METH-induced rewarding effects.
Collapse
Affiliation(s)
- Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Liu Liu
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Ruilin Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Yuanyuan Li
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Baoyu Shen
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| | - Dongxian Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan 650500, China
| |
Collapse
|
12
|
Zheng XX, Zhang KY, Li YC, Chen YW, Yue YS, Xia SZ, Li Y, Deng HH, Jing HL, Cao YJ. Imperatorin ameliorates learning and memory deficits through
BDNF
/
TrkB
and
ERK
/
CaMKIIα
/
CREB
signaling in prenatally‐stressed female offspring. Phytother Res 2020; 34:2408-2418. [DOI: 10.1002/ptr.6692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xing X. Zheng
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Kai Y. Zhang
- School of Computer Science and Technology (SCST), Xidian University Xi'an China
| | - Ying C. Li
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Yi W. Chen
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Yi S. Yue
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Si Z. Xia
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Yang Li
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Huan H. Deng
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| | - Hui L. Jing
- Department of Dermatology Xi'an Hospital of Traditional Chinese Medicine Xi'an China
| | - Yan J. Cao
- Shaanxi Province Biomedicine Key Laboratory, School of Pharmacy Northwest University Xi'an China
- Key Laboratory of Resource Biology and Biotechnology in Western China Northwest University, Ministry of Education Xi'an China
| |
Collapse
|
13
|
Zhang S, Xue R, Geng Y, Wang H, Li W. Fisetin Prevents HT22 Cells From High Glucose-Induced Neurotoxicity via PI3K/Akt/CREB Signaling Pathway. Front Neurosci 2020; 14:241. [PMID: 32265642 PMCID: PMC7096699 DOI: 10.3389/fnins.2020.00241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
Hyperglycemia has been widely considered as a key risk factor for diabetic encephalopathy which can cause neuronal apoptosis and cognitive deficits. The flavonoid compound, fisetin, possesses potential neuroprotective effects and also enhances learning and memory. However, the role of fisetin in hyperglycemia-induced neuronal cytotoxicity has not been fully elucidated. In the present study, HT22 murine hippocampal neuronal cell line was used to establish the injured cell model. Cell proliferation and cytotoxicity assay, Hoechst 33258 staining, qRT-PCR, western blot analysis, and specific inhibitor were used to investigate the effect and molecular mechanisms of fisetin on high glucose (HG)-induced neurotoxicity in HT22 cells. Our results showed that 125 μM and 48 h of treatment was identified as optimal damage parameter of HG. Fisetin significantly improved HG-inhibited cell viability. The levels of LDH, malondialdehyde (MDA), and superoxide dismutase (SOD) were noticeably modulated by fisetin, which alleviated HG-induced HT22 cell oxidative damage. Besides, the apoptosis of HT22 cells was rescued by fisetin pretreatment. In addition, fisetin also prevented HG-induced downregulation of the mRNA expression of Bdnf, Gdnf, synaptophysin (Syp), and glutamate ionotropic receptor AMPA type subunit 1 (Gria1) in cells. More importantly, the decreased phosphorylation of phosphoinositide 3 kinase (PI3K), Akt, and cAMP-response element binding protein (CREB) was rescued by fisetin treatment and that neuroprotective effect of fisetin was partially blocked by PI3K inhibitor, LY294002. These findings indicate that fisetin has potent neuroprotective effect and prevents HG-induced neurotoxicity by activation of PI3K/Akt/CREB pathway.
Collapse
Affiliation(s)
- Shenshen Zhang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ran Xue
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yaping Geng
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, College of Public Health, Zhengzhou University, Zhengzhou, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Zhang H, He W, Huang Y, Zeng Z, Yang X, Huang H, Wen J, Cao Y, Sun H. Hippocampal metabolic alteration in rat exhibited susceptibility to prenatal stress. J Affect Disord 2019; 259:458-467. [PMID: 31611004 DOI: 10.1016/j.jad.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Numerous studies have shown that prenatal stress (PS) can cause emotional and behavioral abnormalities including depression and depressive-like behaviors in offspring. However, the mechanism underlying the pathophysiology of depression remains largely unknown. In recent years, small metabolic molecules have played an increasingly important role in explaining the pathogenesis of depression. Thus, we detected hippocampal metabolic alteration in rat of depression caused by PS. METHODS To explore the potential molecular markers and pathways that link the metabolic to the pathogenesis of depression, we monitored changes in hippocampus metabolites during the development of depressive-like behaviors in rats exposed to PS via UHPLC-Q-TOF/MS approach. Sucrose preference test (SPT) was used to screen out the susceptibility rats exposed to PS, open field test (OFT), forced swimming test (FST) and tail suspension test (TST) were used to verify the validity of animal model of depression. RESULTS A total of 38 differential metabolites were detected in the susceptibility rats exposed to PS compared with that in controls. Most of these differential metabolites were related to Retrograde endocannabinoid signaling, Central carbon metabolism in cancer, Arginine biosynthesis, Choline metabolism in cancer, ABC transporters, Alanine, aspartate and glutamate metabolism pathways. In addition, the results of Spearman correlation analysis indicated that L-aspartate, N-Acetylaspartylglutamate, choline and betaine aldehyde were most associated with depressive-like behaviors. CONCLUSION This study demonstrates that hippocampal metabolites in the Alanine, aspartate and glutamate metabolism pathways may play a crucial role in the depressive-like behaviors.
Collapse
Affiliation(s)
- Huifang Zhang
- Department of Emergency, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Zhu Zeng
- Department of Emergency, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Xiangdi Yang
- Department of Stomatology, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Huimei Huang
- Department of Nephrology, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Jun Wen
- Department of Emergency, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China
| | - Yanjun Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, 86-710069, PR China
| | - Hongli Sun
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 86-710003, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 86-710061, PR China.
| |
Collapse
|
15
|
Zheng XX, Chen YW, Yue YS, Li YC, Xia SZ, Li Y, Deng HH, He J, Cao YJ. Icariin ameliorates learning and memory impairments through ERK/CaMKIIα/CREB signaling and HPA axis in prenatally stressed female offspring. Biomed Pharmacother 2019; 117:109077. [DOI: 10.1016/j.biopha.2019.109077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022] Open
|
16
|
Hippocampal Protein Kinase C Gamma Signaling Mediates the Impairment of Spatial Learning and Memory in Prenatally Stressed Offspring Rats. Neuroscience 2019; 414:186-199. [DOI: 10.1016/j.neuroscience.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
|
17
|
Bai L, Zhang S, Zhou X, Li Y, Bai J. Brain-derived neurotrophic factor induces thioredoxin-1 expression through TrkB/Akt/CREB pathway in SH-SY5Y cells. Biochimie 2019; 160:55-60. [DOI: 10.1016/j.biochi.2019.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022]
|
18
|
The role of calcium-calmodulin-dependent protein kinase II in modulation of spatial memory in morphine sensitized rats. Behav Brain Res 2018; 359:298-303. [PMID: 30428335 DOI: 10.1016/j.bbr.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Abstract
It has been shown that drug addiction and memory system are related but the signaling cascades underlying this interaction is not completely revealed yet. It has been demonstrated that binding of Calcium-calmodulin-dependent protein kinase II (CaMKII) to NMDA receptor is important in the memory process. The main objective of the study was to evaluate the role of CaMKII on the spatial memory of rats which previously were sensitized by morphine. The effect of CaMKII inhibitor (KN-93) on memory changes was investigated by hippocampal microinjection of KN-93 on the morphine-sensitized rats. Also, the role of the NMDA receptor in memory retention by KN-93 on the morphine sensitized rat was investigated with NMDA agonist and antagonist. Sensitization was induced by morphine injection (once daily for 3 days) followed by 5 days free of the drug before the trial phase. For the evaluation of spatial memory, the Morris Water Maze test (MWM) was used. Results showed that pre-trial administration of morphine, induced amnesia in MWM (p < 0.05). Also, three days pretreatment with morphine (20 mg/kg) followed by five days washout period, caused to enhance memory retrieval in confront with a pre-trial challenging dose of morphine (5 mg/kg). In addition, KN-93 administration during induction phase in morphine sensitization phenomena facilitated morphine-induced memory retention. In addition, inhibition of the NMDA receptor and KN-93 during the induction phase did not improve memory. However; intra-CA1 co-administration of KN-93 and NMDA during the induction phase of morphine sensitization resulted in improving spatial memory. It can be concluded that the effect of CaMKII on memory retention in morphine-sensitized rats depends on NMDA receptor.
Collapse
|
19
|
Wu X, Liang Y, Jing X, Lin D, Chen Y, Zhou T, Peng S, Zheng D, Zeng Z, Lei M, Huang K, Tao E. Rifampicin Prevents SH-SY5Y Cells from Rotenone-Induced Apoptosis via the PI3K/Akt/GSK-3β/CREB Signaling Pathway. Neurochem Res 2018; 43:886-893. [PMID: 29435803 DOI: 10.1007/s11064-018-2494-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 12/23/2022]
Abstract
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.
Collapse
Affiliation(s)
- Xia Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
- Department of Neurology, Shenzhen Nanshan District Xili People's Hospital, No. 2051 Xili Liuxian Avenue, Shenzhen, 518055, China
| | - Yanran Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Xiuna Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Danyu Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ying Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Tianen Zhou
- Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, China
| | - Sudan Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Dezhi Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Zhifen Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Ming Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Kaixun Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China
| | - Enxiang Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|