1
|
Martins F, Arada R, Barros H, Matos P, Ramalho J, Ceña V, Bonifácio VDB, Gonçalves LG, Serpa J. Lactate-coated polyurea-siRNA dendriplex: a gene therapy-directed and metabolism-based strategy to impair glioblastoma (GBM). Cancer Gene Ther 2025:10.1038/s41417-025-00906-8. [PMID: 40289180 DOI: 10.1038/s41417-025-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma (GBM) is a highly lethal disease with limited treatment options due to its infiltrative nature and the lack of efficient therapy able to cross the protective blood-brain barrier (BBB). GBMs are metabolically characterized by increased glycolysis and glutamine dependence. This study explores a novel metabolism-based therapeutic approach using a polyurea generation 4 dendrimer (PUREG4) surface functionalized with lactate (LA) (PUREG4-LA24), to take advantage of glucose-dependent monocarboxylate transporters (MCTs) overexpression, loaded with selenium-chrysin (SeChry) and temozolomide (TMZ) or complexed with anti-glutaminase (GLS1) siRNAs to abrogate glutamine dependence. The nanoparticles (PUREG4-LA24) were efficient vehicles for cytotoxic compounds delivery, since SeChry@PUREG4-LA24 and TMZ@PUREG4-LA24 induced significant cell death in GBM cell lines, particularly in U251, which exhibits higher MCT1 expression. The anti-GLS1 siRNA-dendriplex with PUREG4-LA12 (PUREG4-LA12-anti-GLS1-siRNA) knocked down GLS1 in the GBM cell lines. In two in vitro BBB models, these dendriplexes successfully crossed the BBB, decreased GLS1 expression and altered the exometabolome of GBM cell lines, concomitantly with autophagy activation. Our findings highlight the potential of targeting glucose and glutamine pathways in GBM using dendrimer-based nanocarriers, overcoming the BBB and disrupting key metabolic processes in GBM cells. PUREG4-LA12-anti-GLS1-siRNA dendriplexes cross the blood-brain barrier (BBB) and impair glioblastoma (GBM) metabolism. The BBB is formed by a thin monolayer of specialized brain microvascular endothelial cells joined together by tight junctions that selectively control the passage of substances from the blood to the brain. It is a major obstacle in the treatment of GBM, since many chemotherapeutic drugs are unable to penetrate the brain. Therefore, we developed a strategy to overcome this obstacle: a lactate-coated polyurea dendrimer generation 4 (PUREG4) able to cross the BBB in vitro, that act as a nanocarrier of drugs and siRNA to the GBM cells. PUREG4-LA12 are nanoparticles functionalized with lactate (LA) to target MCT1, a lactate transporter highly expressed by GBM cells. Moreover, a complex of this nanoparticle with anti-GLS1 (glutaminase) siRNA (PUREG4-LA12-anti-GLS1-siRNA) was made, to target glutamine metabolism. It efficiently knocked down GLS1. Moreover, PUREG4-LA24 loaded with SeChry led to BBB disruption.
Collapse
Affiliation(s)
- Filipa Martins
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Renata Arada
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Hélio Barros
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Paulo Matos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal
- BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - José Ramalho
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - Valentín Ceña
- Centro de Investigación Biomédica en Red (CIBER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad Asociada Neurodeath, Institute of Molecular Nanoscience (INAMOL), Facultad de Medicina, Universidad de Castilla-La Mancha, 02006, Albacete, Spain
| | - Vasco D B Bonifácio
- IBB - Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Jacinta Serpa
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
2
|
Sahu U, Mullarkey MP, Murphy SA, Anderson JC, Putluri V, Kamal AHM, Park JH, Lee TJ, Ling AL, Kaipparettu BA, Sharma A, Putluri N, Wenzel PL, Willey CD, Chiocca EA, Markert JM, Kaur B. IDH status dictates oHSV mediated metabolic reprogramming affecting anti-tumor immunity. Nat Commun 2025; 16:3874. [PMID: 40274791 PMCID: PMC12022073 DOI: 10.1038/s41467-025-58911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Identification of isocitrate dehydrogenase (IDH) mutations has uncovered the crucial role of metabolism in gliomagenesis. Oncolytic herpes virus (oHSV) initiates direct tumor debulking by tumor lysis and activates anti-tumor immunity, however, little is known about the role of glioma metabolism in determining oHSV efficacy. Here we identify that oHSV rewires central carbon metabolism increasing glucose utilization towards oxidative phosphorylation and shuttling glutamine towards reductive carboxylation in IDH wildtype glioma. The switch in metabolism results in increased lipid synthesis and cellular ROS. PKC induces ACSL4 in oHSV treated cells leading to lipid peroxidation and ferroptosis. Ferroptosis is critical to launch an anti-tumor immune response which is important for viral efficacy. Mutant IDH (IDHR132H) gliomas are incapable of reductive carboxylation and hence ferroptosis. Pharmacological blockade of IDHR132H induces ferroptosis and anti-tumor immunity. This study provides a rationale to use an IDHR132H inhibitor to treat high grade IDH-mutant glioma patients undergoing oHSV treatment.
Collapse
Affiliation(s)
- Upasana Sahu
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Georgia Cancer Center at Augusta University, Augusta, GA, USA.
| | - Matthew P Mullarkey
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara A Murphy
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Georgia Cancer Center at Augusta University, Augusta, GA, USA
- University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, Marnix E. Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vasanta Putluri
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Abu Hena Mostafa Kamal
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Alexander L Ling
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Benny A Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Nagireddy Putluri
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher D Willey
- Department of Radiation Oncology, Marnix E. Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Markert
- Department of Neurosurgery, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Balveen Kaur
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Georgia Cancer Center at Augusta University, Augusta, GA, USA.
| |
Collapse
|
3
|
Xiao Y, Zhao M, Wang R, Liu L, Xiang C, Li T, Qian C, Xiao H, Liu H, Zou Y, Tang X, Yang K. Bulk and single-cell transcriptome revealed the metabolic heterogeneity in human glioma. Heliyon 2025; 11:e41241. [PMID: 39844970 PMCID: PMC11750464 DOI: 10.1016/j.heliyon.2024.e41241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation. Methods Energy-related features of glioma were characterized through integrative analyses of multiple datasets, including bulk, single-cell, and spatial transcriptome profiling. The glioma energy metabolic subtypes were constructed using the R package ConsensusClusterPlus. Kaplan-Meier analysis was conducted to compare clinical outcomes between different metabolic groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological functions of genes of interest. Cell-cell communication analysis was performed at single-cell resolution using the R package CellChat and at spatial resolution using the standard stLearn pipeline. Results Glioma samples were stratified into two prognostic subtypes. Group 1, enriched in the glutaminolysis pathway, had better clinical outcomes. In contrast, Group 2 exhibited high activities in glycolysis, the pentose phosphate pathway, and fatty acid oxidation, correlating with decreased survival time. Group 1 samples were predominantly located in the peripheral region and had a high composition of neuron cells. Group 2, however, had increased infiltration of tumor-promoting immune cells, such as M2 macrophages, and was characterized by traits of invasion, hypoxia, and immunity. Lastly, cell-cell communications were compared across different tumor regions, and the CX3CL1/CX3CR1 ligand-receptor pair was validated using spatial transcriptomic data. Conclusions Our work revealed the metabolic heterogeneity in glioma by developing a new classification system with significant prognostic and therapeutic value. Single-cell transcriptional profiles offer novel insights into tumor metabolic reprogramming, which could enhance therapies tailored to cell- or patient-specific metabolic patterns.
Collapse
Affiliation(s)
- Yong Xiao
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Ran Wang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chong Xiang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neurosurgery, Changzhou Wujin People's Hospital, Changzhou, 213004, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Yuanjie Zou
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xianglong Tang
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kun Yang
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neuro-Psychiatric Institute, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
4
|
De los Santos-Jiménez J, Campos-Sandoval JA, Rosales T, Ko B, Alonso FJ, Márquez J, DeBerardinis RJ, Matés JM. Glutaminase-2 Expression Induces Metabolic Changes and Regulates Pyruvate Dehydrogenase Activity in Glioblastoma Cells. Int J Mol Sci 2025; 26:427. [PMID: 39796278 PMCID: PMC11721818 DOI: 10.3390/ijms26010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor. Glioblastoma cells usually lack GLS2 while they express high GLS. We investigated how GLS2 expression modifies the metabolism of glioblastoma cells, looking for changes that may explain GLS2's potential tumour suppressive role. We developed LN-229 glioblastoma cells stably expressing GLS2 and performed isotope tracing using U-13C-glutamine and metabolomic quantification to analyze metabolic changes. Treatment with GLS inhibitor CB-839 was also included to concomitantly inhibit endogenous GLS. GLS2 overexpression resulted in extensive metabolic changes, altering the TCA cycle by upregulating part of the cycle but blocking the synthesis of the 6-carbon intermediates from acetyl-CoA. Expression of GLS2 caused downregulation of PDH activity through phosphorylation of S293 of PDHA1. GLS2 also altered nucleotide levels and induced the accumulation of methylated metabolites and S-adenosyl methionine. These changes suggest that GLS2 may be a key regulator linking glutamine and glucose metabolism, also impacting nucleotides and epigenetics. Future research should ascertain the mechanisms involved and the generalizability of these findings in cancer or physiological conditions.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29071 Málaga, Spain
| | - José A. Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29071 Málaga, Spain
| | - Tracy Rosales
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center (UTSMC), Dallas, TX 75390, USA; (T.R.); (B.K.); (R.J.D.)
| | - Bookyung Ko
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center (UTSMC), Dallas, TX 75390, USA; (T.R.); (B.K.); (R.J.D.)
| | - Francisco J. Alonso
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29071 Málaga, Spain
| | - Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29071 Málaga, Spain
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center (UTSMC), Dallas, TX 75390, USA; (T.R.); (B.K.); (R.J.D.)
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSMC), Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSMC), Dallas, TX 75390, USA
| | - José M. Matés
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain; (J.A.C.-S.); (F.J.A.); (J.M.)
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
5
|
Lee DC, Ta L, Mukherjee P, Duraj T, Domin M, Greenwood B, Karmacharya S, Narain NR, Kiebish M, Chinopoulos C, Seyfried TN. Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells. ASN Neuro 2024; 16:2422268. [PMID: 39621724 PMCID: PMC11792161 DOI: 10.1080/17590914.2024.2422268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
Energy is necessary for tumor cell viability and growth. Aerobic glucose-driven lactic acid fermentation is a common metabolic phenotype seen in most cancers including malignant gliomas. This metabolic phenotype is linked to abnormalities in mitochondrial structure and function. A luciferin-luciferase bioluminescence ATP assay was used to measure the influence of amino acids, glucose, and oxygen on ATP content and viability in mouse (VM-M3 and CT-2A) and human (U-87MG) glioma cells that differed in cell biology, genetic background, and species origin. Oxygen consumption was measured using the Resipher system. Extracellular lactate and succinate were measured as end products of the glycolysis and glutaminolysis pathways, respectively. The results showed that: (1) glutamine was a source of ATP content irrespective of oxygen. No other amino acid could replace glutamine in sustaining ATP content and viability; (2) ATP content persisted in the absence of glucose and under hypoxia, ruling out substantial contribution through either glycolysis or oxidative phosphorylation (OxPhos) under these conditions; (3) Mitochondrial complex IV inhibition showed that oxygen consumption was not an accurate measure for ATP production through OxPhos. The glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON), reduced ATP content and succinate export in cells grown in glutamine. The data suggests that mitochondrial substrate level phosphorylation in the glutamine-driven glutaminolysis pathway contributes to ATP content in these glioma cells. A new model is presented highlighting the synergistic interaction between the high-throughput glycolysis and glutaminolysis pathways that drive malignant glioma growth and maintain ATP content through the aerobic fermentation of both glucose and glutamine.
Collapse
Affiliation(s)
- Derek C. Lee
- Department of Biology, Boston College, Massachusetts, USA
| | - Linh Ta
- Department of Biology, Boston College, Massachusetts, USA
| | | | - Tomas Duraj
- Department of Biology, Boston College, Massachusetts, USA
| | - Marek Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wang D, Duan JJ, Guo YF, Chen JJ, Chen TQ, Wang J, Yu SC. Targeting the glutamine-arginine-proline metabolism axis in cancer. J Enzyme Inhib Med Chem 2024; 39:2367129. [PMID: 39051546 PMCID: PMC11275534 DOI: 10.1080/14756366.2024.2367129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic abnormalities are an important feature of tumours. The glutamine-arginine-proline axis is an important node of cancer metabolism and plays a major role in amino acid metabolism. This axis also acts as a scaffold for the synthesis of other nonessential amino acids and essential metabolites. In this paper, we briefly review (1) the glutamine addiction exhibited by tumour cells with accelerated glutamine transport and metabolism; (2) the methods regulating extracellular glutamine entry, intracellular glutamine synthesis and the fate of intracellular glutamine; (3) the glutamine, proline and arginine metabolic pathways and their interaction; and (4) the research progress in tumour therapy targeting the glutamine-arginine-proline metabolic system, with a focus on summarising the therapeutic research progress of strategies targeting of one of the key enzymes of this metabolic system, P5CS (ALDH18A1). This review provides a new basis for treatments targeting the metabolic characteristics of tumours.
Collapse
Affiliation(s)
- Di Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Jiang-jie Duan
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Yu-feng Guo
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jun-jie Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
| | - Tian-qing Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| | - Shi-cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, China
- Jin-feng Laboratory, Chongqing, China
| |
Collapse
|
8
|
Veeramachaneni RK, Suter RK, Rowland E, Jermakowicz A, Ayad NG. Glutaminase 2 as a therapeutic target in glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189182. [PMID: 39293549 DOI: 10.1016/j.bbcan.2024.189182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary adult brain tumor. Despite standard-of-care treatment, which consists of surgical resection, temozolomide (TMZ) treatment, and radiotherapy, the prognosis for GBM patients remains poor with a five-year survival rate of 5 %. With treatment, the median survival time is 14 months, suggesting the dire need for new, more effective therapies. Glutaminolysis, the metabolic pathway by which cells can convert glutamine to ATP, is essential for the survival of GBM cells and represents a putative target for treatment. Glutamine replenishes tricarboxylic acid (TCA) cycle intermediates through glutaminolysis. The first step of glutaminolysis, the deamination of glutamine, can be carried out by either glutaminase 1 (GLS) or glutaminase 2 (GLS2). However, it is becoming increasingly clear that these enzymes have opposing functions in GBM; GLS induces deamination of glutamine, thereby acting in an oncogenic fashion, while GLS2 has non-enzymatic, tumor-suppressive functions that are repressed in GBM. In this review, we explore the important role of glutaminolysis and the opposing roles of GLS and GLS2 in GBM. Further, we provide a detailed discussion of GLS2's newly discovered non-enzymatic functions that can be targeted in GBM. We conclude by considering therapeutic approaches that have emerged from the understanding of GLS and GLS2's opposing roles in GBM.
Collapse
Affiliation(s)
- Rithvik K Veeramachaneni
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Robert K Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Emma Rowland
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
9
|
Isakova AA, Druzhkova IN, Mozherov AM, Mazur DV, Antipova NV, Krasnov KS, Fadeev RS, Gasparian ME, Yagolovich AV. Glioblastoma Sensitization to Therapeutic Effects by Glutamine Deprivation Depends on Cellular Phenotype and Metabolism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1744-1758. [PMID: 39523113 DOI: 10.1134/s0006297924100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Glutamine plays an important role in tumor metabolism. It is known that the core region of solid tumors is deprived of glutamine, which affects tumor growth and spread. Here we investigated the effect of glutamine deprivation on cellular metabolism and sensitivity of human glioblastoma cells U87MG and T98G to drugs of various origin: alkylating cytostatic agent temozolomide; cytokine TRAIL DR5-B - agonist of the DR5 receptor; and GMX1778 - a targeted inhibitor of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), limiting NAD biosynthesis. Bioinformatics analysis of the cell transcriptomes showed that U87MG cells have a more differentiated phenotype than T98G, and also differ in the expression profile of the genes associated with glutamine metabolism. Upon glutamine deprivation, growth rate of the U87MG and T98G cells decreased. Analysis of cellular metabolism by FLIM microscopy of NADH as well as assessment of lactate content in the medium showed that glutamine deprivation shifted metabolic status of the U87MG cells towards glycolysis. This was accompanied by the increase in expression of the stemness marker CD133, which collectively could indicate de-differentiation of these cells. At the same time, we observed increase in both expression of the DR5 receptor and sensitivity of the U87MG cells to DR5-B. On the contrary, glutamine deprivation of T98G cells induced metabolic shift towards oxidative phosphorylation, decrease in the DR5 expression and resistance to DR5-B. The effects of NAMPT inhibition also differed between the two cell lines and were opposite to the effects of DR5-B: upon glutamine deprivation, U87MG cells acquired resistance, while T98G cells were sensitized to GMX1778. Thus, phenotypic and metabolic differences between the two human glioblastoma cell lines caused divergent metabolic changes and contrasting responses to different targeted drugs during glutamine deprivation. These data should be considered when developing treatment strategies for glioblastoma via drug-mediated deprivation of amino acids, as well as when exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina N Druzhkova
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Artem M Mozherov
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
10
|
Galvan C, Flores AA, Cerrilos V, Avila I, Murphy C, Zheng W, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. SCIENCE ADVANCES 2024; 10:eadn2806. [PMID: 39303037 PMCID: PMC11414736 DOI: 10.1126/sciadv.adn2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.
Collapse
Affiliation(s)
- Carlos Galvan
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Aimee A. Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Victoria Cerrilos
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Itzetl Avila
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Conor Murphy
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Wilson Zheng
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, DGSOM, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - William E. Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, DGSOM, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Chai X, Zhang Y, Zhang W, Feng K, Jiang Y, Zhu A, Chen X, Di L, Wang R. Tumor Metabolism: A New Field for the Treatment of Glioma. Bioconjug Chem 2024; 35:1116-1141. [PMID: 39013195 DOI: 10.1021/acs.bioconjchem.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The clinical treatment of glioma remains relatively immature. Commonly used clinical treatments for gliomas are surgery combined with chemotherapy and radiotherapy, but there is a problem of drug resistance. In addition, immunotherapy and targeted therapies also suffer from the problem of immune evasion. The advent of metabolic therapy holds immense potential for advancing more efficacious and tolerable therapies against this aggressive disease. Metabolic therapy alters the metabolic processes of tumor cells at the molecular level to inhibit tumor growth and spread, and lead to better outcomes for patients with glioma that are insensitive to conventional treatments. Moreover, compared with conventional therapy, it has less impact on normal cells, less toxicity and side effects, and higher safety. The objective of this review is to examine the changes in metabolic characteristics throughout the development of glioma, enumerate the current methodologies employed for studying tumor metabolism, and highlight the metabolic reprogramming pathways of glioma along with their potential molecular mechanisms. Importantly, it seeks to elucidate potential metabolic targets for glioblastoma (GBM) therapy and summarize effective combination treatment strategies based on various studies.
Collapse
Affiliation(s)
- Xiaoqian Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingjie Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Kuanhan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Anran Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Xiaojin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing 210023, China
| |
Collapse
|
12
|
Tambay V, Raymond VA, Voisin L, Meloche S, Bilodeau M. Reprogramming of Glutamine Amino Acid Transporters Expression and Prognostic Significance in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7558. [PMID: 39062801 PMCID: PMC11277143 DOI: 10.3390/ijms25147558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy and is a major cause of cancer-related mortality in the world. This study aimed to characterize glutamine amino acid transporter expression profiles in HCC compared to those of normal liver cells. In vitro and in vivo models of HCC were studied using qPCR, whereas the prognostic significance of glutamine transporter expression levels within patient tumors was analyzed through RNAseq. Solute carrier (SLC) 1A5 and SLC38A2 were targeted through siRNA or gamma-p-nitroanilide (GPNA). HCC cells depended on exogenous glutamine for optimal survival and growth. Murine HCC cells showed superior glutamine uptake rate than normal hepatocytes (p < 0.0001). HCC manifested a global reprogramming of glutamine transporters compared to normal liver: SLC38A3 levels decreased, whereas SLC38A1, SLC7A6, and SLC1A5 levels increased. Also, decreased SLC6A14 and SLC38A3 levels or increased SLC38A1, SLC7A6, and SLC1A5 levels predicted worse survival outcomes (all p < 0.05). Knockdown of SLC1A5 and/or SLC38A2 expression in human Huh7 and Hep3B HCC cells, as well as GPNA-mediated inhibition, significantly decreased the uptake of glutamine; combined SLC1A5 and SLC38A2 targeting had the most considerable impact (all p < 0.05). This study revealed glutamine transporter reprogramming as a novel hallmark of HCC and that such expression profiles are clinically significant.
Collapse
Affiliation(s)
- Vincent Tambay
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Laure Voisin
- Institut de Recherche en Immunologie et en Cancérologie de l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sylvain Meloche
- Institut de Recherche en Immunologie et en Cancérologie de l’Université de Montréal, Montréal, QC H3T 1J4, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marc Bilodeau
- Laboratoire d’Hépatologie cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
13
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
14
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
15
|
Trejo-Solis C, Silva-Adaya D, Serrano-García N, Magaña-Maldonado R, Jimenez-Farfan D, Ferreira-Guerrero E, Cruz-Salgado A, Castillo-Rodriguez RA. Role of Glycolytic and Glutamine Metabolism Reprogramming on the Proliferation, Invasion, and Apoptosis Resistance through Modulation of Signaling Pathways in Glioblastoma. Int J Mol Sci 2023; 24:17633. [PMID: 38139462 PMCID: PMC10744281 DOI: 10.3390/ijms242417633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Reprogramación Celular, Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (D.S.-A.); (N.S.-G.); (R.M.-M.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Elizabeth Ferreira-Guerrero
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (E.F.-G.); (A.C.-S.)
| | | |
Collapse
|
16
|
Galvan C, Flores A, Cerrillos V, Avila I, Murphy C, Zheng W, To TT, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562128. [PMID: 37905122 PMCID: PMC10614763 DOI: 10.1101/2023.10.16.562128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Among the numerous changes associated with the transformation to cancer, cellular metabolism is one of the first discovered and most prominent[1, 2]. However, despite the knowledge that nearly every cancer is associated with the strong upregulation of various metabolic pathways, there has yet to be much clinical progress on the treatment of cancer by targeting a single metabolic enzyme directly[3-6]. We previously showed that inhibition of glycolysis through lactate dehydrogenase (LDHA) deletion in cancer cells of origin had no effect on the initiation or progression of cutaneous squamous cell carcinoma[7], suggesting that these cancers are metabolically flexible enough to produce the necessary metabolites required for sustained growth in the absence of glycolysis. Here we focused on glutaminolysis, another metabolic pathway frequently implicated as important for tumorigenesis in correlative studies. We genetically blocked glutaminolysis through glutaminase (GLS) deletion in cancer cells of origin, and found that this had little effect on tumorigenesis, similar to what we previously showed for blocking glycolysis. Tumors with genetic deletion of glutaminolysis instead upregulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We also found that the metabolic flexibility observed upon inhibition of glycolysis or glutaminolysis is due to post-transcriptional changes in the levels of plasma membrane lactate and glutamine transporters. To define the limits of metabolic flexibility in cancer initiating hair follicle stem cells, we genetically blocked both glycolysis and glutaminolysis simultaneously and found that frank carcinoma was not compatible with abrogation of both of these carbon utilization pathways. These data point towards metabolic flexibility mediated by regulation of nutrient consumption, and suggest that treatment of cancer through metabolic manipulation will require multiple interventions on distinct pathways.
Collapse
|
17
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Ferroptosis, a subtle talk between immune system and cancer cells: To be or not to be? Biomed Pharmacother 2023; 165:115251. [PMID: 37523985 DOI: 10.1016/j.biopha.2023.115251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Ferroptosis, an established form of programmed cell death discovered in 2012, is characterized by an imbalance in iron metabolism, lipid metabolism, and antioxidant metabolism. Activated CD8 + T cells can trigger ferroptosis in tumor cells by releasing interferon-γ, which initiates the ferroptosis program. Despite the remarkable progress made in treating various tumors with immunotherapy, such as anti-PD1/PDL1, there are still significant challenges to overcome, including limited treatment options and drug resistance. In this review, we exam the potential biological significance of the ferroptosis phenotype using bioinformatics and review the latest advancements in understanding the mechanism of ferroptosis-mediated anti-tumor immunotherapy. Furthermore, we revisit the host immune system, immune microenvironment, ferroptotic defense system, metabolic reprogramming, and key genes that regulate the occurrence and resistance of ferroptosis of tumor cell. Additionally, several immune-combined ferroptosis treatment strategies were put forward to improve immunotherapy efficacy and to provide new insights into reversing anti-tumor immune drug resistance.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Chunyu Tao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Jiakai Yuan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Fan Pan
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China.
| |
Collapse
|
18
|
Pan M, Cheng L, Wang Y, Lyu C, Hou C, Zhang Q. Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma. Front Pharmacol 2023; 14:1249041. [PMID: 37719847 PMCID: PMC10501407 DOI: 10.3389/fphar.2023.1249041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2 cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.
Collapse
Affiliation(s)
- Meichen Pan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxue Cheng
- Department of Gastroenterology, 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Yiguo Wang
- Medical Laboratory Center, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Hou
- Department of Gastroenterology, 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Qiming Zhang
- Medical Laboratory Center, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
20
|
Shi Y, Li Z, Du Q, Li W, Liu J, Jia Q, Xue L, Zhang X, Sun Z. UHPLC-HRMS-based metabolomic and lipidomic characterization of glioma cells in response to anlotinib. Sci Rep 2023; 13:8044. [PMID: 37198251 DOI: 10.1038/s41598-023-34902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Anlotinib, as a promising oral small-molecule antitumor drug, its role in glioma has been only reported in a small number of case reports. Therefore, anlotinib has been considered as a promising candidate in glioma. The aim of this study was to investigate the metabolic network of C6 cells after exposure to anlotinib and to identify anti-glioma mechanism from the perspective of metabolic reprogramming. Firstly, CCK8 method was used to evaluate the effects of anlotinib on cell proliferation and apoptosis. Secondly, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomic and lipidomic were developed to characterize the metabolite and lipid changes in cell and cell culture medium (CCM) caused by anlotinib in the treatment of glioma. As a result, anlotinib had concentration-dependent inhibitory effect with the concentration range. In total, twenty-four and twenty-three disturbed metabolites in cell and CCM responsible for the intervention effect of anlotinib were screened and annotated using UHPLC-HRMS. Altogether, seventeen differential lipids in cell were identified between anlotinib exposure and untreated groups. Metabolic pathways, including amino acid metabolism, energy metabolism, ceramide metabolism, and glycerophospholipid metabolism, were modulated by anlotinib in glioma cell. Overall, anlotinib has an effective treatment against the development and progression of glioma, and these remarkable pathways can generate the key molecular events in cells treated with anlotinib. Future research into the mechanisms underlying the metabolic changes is expected to provide new strategies for treating glioma.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhuolun Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Qiuzheng Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Wenxi Li
- Department of Pharmacy, Zhengzhou Traditional Chinese Hospital of Orthopaedics, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Jiyun Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Qingquan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Lianping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China.
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
21
|
Glutamine Starvation Affects Cell Cycle, Oxidative Homeostasis and Metabolism in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030683. [PMID: 36978930 PMCID: PMC10045305 DOI: 10.3390/antiox12030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer cells adjust their metabolism to meet energy demands. In particular, glutamine addiction represents a distinctive feature of several types of tumors, including colorectal cancer. In this study, four colorectal cancer cell lines (Caco-2, HCT116, HT29 and SW480) were cultured with or without glutamine. The growth and proliferation rate, colony-forming capacity, apoptosis, cell cycle, redox homeostasis and metabolomic analysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test (MTT), flow cytometry, high-performance liquid chromatography and gas chromatography/mass spectrometry techniques. The results show that glutamine represents an important metabolite for cell growth and that its deprivation reduces the proliferation of colorectal cancer cells. Glutamine depletion induces cell death and cell cycle arrest in the GO/G1 phase by modulating energy metabolism, the amino acid content and antioxidant defenses. Moreover, the combined glutamine starvation with the glycolysis inhibitor 2-deoxy-D-glucose exerted a stronger cytotoxic effect. This study offers a strong rationale for targeting glutamine metabolism alone or in combination with glucose metabolism to achieve a therapeutic benefit in the treatment of colon cancer.
Collapse
|
22
|
Murugesan A, Kari S, Shrestha A, Assoah B, Saravanan KM, Murugesan M, Thiyagarajan R, Candeias NR, Kandhavelu M. Methanodibenzo[ b, f][1,5]dioxocins as Novel Glutaminase Inhibitor with Anti-Glioblastoma Potential. Cancers (Basel) 2023; 15:cancers15041010. [PMID: 36831355 PMCID: PMC9954004 DOI: 10.3390/cancers15041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Glutamine metabolism is an important hallmark of several cancers with demonstrated antitumor activity in glioblastoma cancer cells (GBM). GBM cells regulate glutamine and use it as a major energy source for their proliferation through the glutaminolysis process. Enzymes, such as glutaminase in glutaminolysis, can be targeted by small-molecule inhibitors, thus exhibiting promising anticancer properties. The resistance to glutaminolysis demands the development of new therapeutic molecules to overcome drug resistance. Herein, we have reported a novel library of constrained methanodibenzo[b,f][1,5]dioxocin derivatives as glutaminase (GLS) inhibitors and their anti-GBM potential. The library consisting of seven molecules was obtained through self-condensation of 2'-hydroxyacetophenones, out of which three molecules, namely compounds 3, 5, and 6, were identified with higher binding energy values ranging between -10.2 and -9.8 kcal/mol with GLS (PDB ID; 4O7D). Pharmacological validation of these compounds also showed a higher growth inhibition effect in GBM cells than the standard drug temozolomide (TMZ). The most promising compound, 6, obeyed Lipinski's rule of five and was identified to interact with key residues Arg307, Asp326, Lys328, Lys399, and Glu403 of GLS. This compound exhibited the best cytotoxic effect with IC50 values of 63 µM and 83 µM in LN229 and SNB19 cells, respectively. The potential activation of GLS by the best-constrained dibenzo[b,f][1,5]dioxocin in the tested series increased apoptosis via reactive oxygen species production in both GBM cells, and exhibited anti-migratory and anti-proliferative properties over time in both cell lines. Our results highlight the activation mechanism of a dibenzo[b,f][1,5]dioxocin from the structural basis and demonstrate that inhibition of glutaminolysis may facilitate the pharmacological intervention for GBM treatment.
Collapse
Affiliation(s)
- Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Sana Kari
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Anita Shrestha
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
| | - Benedicta Assoah
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai 600073, India
| | - Monica Murugesan
- Department of Biotechnology, Lady Doak College, Thallakulam, Madurai 625002, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, 33101 Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, 33101 Tampere, Finland
- Correspondence:
| |
Collapse
|
23
|
De los Santos-Jiménez J, Rosales T, Ko B, Campos-Sandoval JA, Alonso FJ, Márquez J, DeBerardinis RJ, Matés JM. Metabolic Adjustments following Glutaminase Inhibition by CB-839 in Glioblastoma Cell Lines. Cancers (Basel) 2023; 15:531. [PMID: 36672480 PMCID: PMC9856342 DOI: 10.3390/cancers15020531] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We studied the metabolic effects of inhibiting GLS activity in T98G, LN229, and U87MG human glioblastoma cell lines by using the inhibitor CB-839. We performed metabolomics and isotope tracing experiments using U-13C-labeled Gln, as well as 15N-labeled Gln in the amide group, to determine the metabolic fates of Gln carbon and nitrogen atoms. In the presence of the inhibitor, the results showed an accumulation of Gln and lower levels of tricarboxylic acid cycle intermediates, and aspartate, along with a decreased oxidative labeling and diminished reductive carboxylation-related labeling of these metabolites. Additionally, CB-839 treatment caused decreased levels of metabolites from pyrimidine biosynthesis and an accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. The levels of some acetylated and methylated metabolites were significantly increased, including acetyl-carnitine, trimethyl-lysine, and 5-methylcytosine. In conclusion, we analyzed the metabolic landscape caused by the GLS inhibition of CB-839 in human glioma cells, which might lead to the future development of new combination therapies with CB-839.
Collapse
Affiliation(s)
- Juan De los Santos-Jiménez
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29010 Málaga, Spain
| | - Tracy Rosales
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - José A. Campos-Sandoval
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29010 Málaga, Spain
| | - Francisco J. Alonso
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29010 Málaga, Spain
| | - Javier Márquez
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29010 Málaga, Spain
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - José M. Matés
- Canceromics Laboratory, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
24
|
Ruiz-Rodado V, Dowdy T, Lita A, Kramp T, Zhang M, Shuboni-Mulligan D, Herold-Mende C, Armstrong TS, Gilbert MR, Camphausen K, Larion M. Metabolic biomarkers of radiotherapy response in plasma and tissue of an IDH1 mutant astrocytoma mouse model. Front Oncol 2022; 12:979537. [DOI: 10.3389/fonc.2022.979537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytomas are the most common subtype of brain tumors and no curative treatment exist. Longitudinal assessment of patients, usually via Magnetic Resonance Imaging (MRI), is crucial since tumor progression may occur earlier than clinical progression. MRI usually provides a means for monitoring the disease, but it only informs about the structural changes of the tumor, while molecular changes can occur as a treatment response without any MRI-visible change. Radiotherapy (RT) is routinely performed following surgery as part of the standard of care in astrocytomas, that can also include chemotherapy involving temozolomide. Monitoring the response to RT is a key factor for the management of patients. Herein, we provide plasma and tissue metabolic biomarkers of treatment response in a mouse model of astrocytoma that was subjected to radiotherapy. Plasma metabolic profiles acquired over time by Liquid Chromatography Mass Spectrometry (LC/MS) were subjected to multivariate empirical Bayes time-series analysis (MEBA) and Receiver Operating Characteristic (ROC) assessment including Random Forest as the classification strategy. These analyses revealed a variation of the plasma metabolome in those mice that underwent radiotherapy compared to controls; specifically, fumarate was the best discriminatory feature. Additionally, Nuclear Magnetic Resonance (NMR)-based 13C-tracing experiments were performed at end-point utilizing [U-13C]-Glutamine to investigate its fate in the tumor and contralateral tissues. Irradiated mice displayed lower levels of glycolytic metabolites (e.g. phosphoenolpyruvate) in tumor tissue, and a higher flux of glutamine towards succinate was observed in the radiation cohort. The plasma biomarkers provided herein could be validated in the clinic, thereby improving the assessment of brain tumor patients throughout radiotherapy. Moreover, the metabolic rewiring associated to radiotherapy in tumor tissue could lead to potential metabolic imaging approaches for monitoring treatment using blood draws.
Collapse
|
25
|
Chen S, Jiang J, Shen A, Miao Y, Cao Y, Zhang Y, Cong P, Gao P. Rewired Metabolism of Amino Acids and Its Roles in Glioma Pathology. Metabolites 2022; 12:918. [PMID: 36295820 PMCID: PMC9611130 DOI: 10.3390/metabo12100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Amino acids (AAs) are indispensable building blocks of diverse bio-macromolecules as well as functional regulators for various metabolic processes. The fact that cancer cells live with a voracious appetite for specific AAs has been widely recognized. Glioma is one of the most lethal malignancies occurring in the central nervous system. The reprogrammed metabolism of AAs benefits glioma proliferation, signal transduction, epigenetic modification, and stress tolerance. Metabolic alteration of specific AAs also contributes to glioma immune escape and chemoresistance. For clinical consideration, fluctuations in the concentrations of AAs observed in specific body fluids provides opportunities to develop new diagnosis and prognosis markers. This review aimed at providing an extra dimension to understanding glioma pathology with respect to the rewired AA metabolism. A deep insight into the relevant fields will help to pave a new way for new therapeutic target identification and valuable biomarker development.
Collapse
Affiliation(s)
- Sirui Chen
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ao Shen
- HE University, Shenyang 110163, China
| | - Ying Miao
- E&M College, Shenyang Aerospace University, Shenyang 110136, China
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Ying Zhang
- Internal Medicine Department, Dalian Public Health Clinical Center, Dalian 116033, China
| | - Peiyu Cong
- Neurosurgery Department, Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116022, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
26
|
Lodi A, Pandey R, Chiou J, Bhattacharya A, Huang S, Pan X, Burgman B, Yi SS, Tiziani S, Brenner AJ. Circulating metabolites associated with tumor hypoxia and early response to treatment in bevacizumab-refractory glioblastoma after combined bevacizumab and evofosfamide. Front Oncol 2022; 12:900082. [PMID: 36226069 PMCID: PMC9549210 DOI: 10.3389/fonc.2022.900082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive form of primary malignant brain tumor in the adult population, and, despite modern therapies, patients often develop recurrent disease, and the disease remains incurable with median survival below 2 years. Resistance to bevacizumab is driven by hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which we tested in a phase 2, dual center (University of Texas Health Science Center in San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To identify circulating metabolic biomarkers of tumor hypoxia in patients, we used a high-resolution liquid chromatography-mass spectrometry-based approach to profile blood metabolites and their specific enantiomeric forms using untargeted approaches. Moreover, to evaluate early response to treatment, we characterized changes in circulating metabolite levels during treatment with combined bevacizumab and evofosfamide in recurrent GBM after bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as its enantiomeric form D-glutamic acid all inversely correlated with tumor hypoxia. Intermediates of the serine synthesis pathway, which is known to be modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and serine). Moreover, following treatment, lactic acid was modulated by treatment, likely in response to a hypoxia mediated modulation of oxidative vs glycolytic metabolism. In summary, although our results require further validation in larger patients’ cohorts, we have identified candidate metabolic biomarkers that could evaluate the extent of tumor hypoxia and predict the benefit of combined bevacizumab and evofosfamide treatment in GBM following bevacizumab failure.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| | - Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ayon Bhattacharya
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Shiliang Huang
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xingxin Pan
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Brandon Burgman
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Andrew J. Brenner
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| |
Collapse
|
27
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
28
|
CCL18 Expression Is Higher in a Glioblastoma Multiforme Tumor than in the Peritumoral Area and Causes the Migration of Tumor Cells Sensitized by Hypoxia. Int J Mol Sci 2022; 23:ijms23158536. [PMID: 35955670 PMCID: PMC9369326 DOI: 10.3390/ijms23158536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with a very poor prognosis. For this reason, researchers worldwide study the impact of the tumor microenvironment in GBM, such as the effect of chemokines. In the present study, we focus on the role of the chemokine CCL18 and its receptors in the GBM tumor. We measured the expression of CCL18, CCR8 and PITPNM3 in the GMB tumor from patients (16 men and 12 women) using quantitative real-time polymerase chain reaction. To investigate the effect of CCL18 on the proliferation and migration of GBM cells, experiments were performed using U-87 MG cells. The results showed that CCL18 expression was higher in the GBM tumor than in the peritumoral area. The women had a decreased expression of PITPNM3 receptor in the GBM tumor, while in the men a lower expression of CCR8 was observed. The hypoxia-mimetic agent, cobalt chloride (CoCl2), increased the expression of CCL18 and PITPNM3 and thereby sensitized U-87 MG cells to CCL18, which did not affect the proliferation of U-87 MG cells but increased the migration of the test cells. The results indicate that GBM cells migrate from hypoxic areas, which may be important in understanding the mechanisms of tumorigenesis.
Collapse
|
29
|
Cai X, Liang C, Zhang M, Xu Y, Weng Y, Li X, Yu W. N6-methyladenosine modification and metabolic reprogramming of digestive system malignancies. Cancer Lett 2022; 544:215815. [DOI: 10.1016/j.canlet.2022.215815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
|
30
|
Li Y, Jiang H, Wang X, Liu X, Huang Y, Wang Z, Ma Q, Dong L, Qi Y, Zhang H, Lu G. Crosstalk Between the Gut and Brain: Importance of the Fecal Microbiota in Patient With Brain Tumors. Front Cell Infect Microbiol 2022; 12:881071. [PMID: 35782130 PMCID: PMC9247299 DOI: 10.3389/fcimb.2022.881071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Variations in the gut microbiota may affect the metabolism, inflammation and immune response of the host. Microbiota dysbiosis has been extensively investigated in neurological disorders and diseases of the central nervous system (CNS). However, the alterations of the gut microbiota in patients suffering from brain tumors and the associations of the gut microbiota with these diseases remain unknown. Herein, we investigate the alterations of the gut microbiota community in patients with brain tumors and the associations between the two and further explore microbial markers used for the diagnosis of brain tumors. Methods In our study, we recruited 158 participants, consisting of 101 brain tumor patients (65 benign and 36 malignant cases) and 57 age- and sex-matched healthy controls (HCs). We characterized the gut microbial community by using 16S rRNA gene amplicon sequencing and investigated its correlations with clinical features. Results The results showed remarkably less microbial ecosystem richness and evenness in patients with brain tumors than in HCs. The gut microbiota community structure underwent profound changes in the brain tumor group, including an increase in the abundances of pathogenic bacteria, such as Fusobacteriota and Proteobacteria and a reduction in the abundances of probiotic bacteria, such as Bifidobacterium or Lachnospira. Moreover, our study indicated more significant correlations and clustering of pathogens in the malignant brain tumor group. Furthermore, a biomarker panel was used to discriminate the brain tumor patients from the healthy controls (AUC: 0.77). Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed an accumulation of harmful metabolites and disorders of the basic physiological pathways in the brain tumor group. Conclusions Our study revealed that brain tumor patients may possess divergent host-microbe interactions from those of healthy controls, especially in malignant brain tumor patients. In addition, the intestinal flora may be involved in immune responses and metabolism in the microenvironment of brain tumors. All evidence, including the biomarker panel, suggests that the intestinal flora may be a useful diagnostic and predictive tool and an important preventive target for brain tumors.
Collapse
Affiliation(s)
- Yuping Li
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
- Department of Neurosurgery, Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou, China
| | - Haixiao Jiang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaolin Wang
- Department of Thoracic Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoguang Liu
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Huang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhiyao Wang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Qiang Ma
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lun Dong
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yajie Qi
- Neuro Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guangyu Lu
- School of Public Health, Yangzhou University, Yangzhou, China
| |
Collapse
|
31
|
Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation. Sci Rep 2022; 12:5143. [PMID: 35332210 PMCID: PMC8948292 DOI: 10.1038/s41598-022-08984-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Glycolytic and mitochondrial oxidative metabolism, which are two major energy sources in tumors, are potential targets in cancer treatment. Metabolic reprogramming from glycolysis to mitochondrial oxidative metabolism and vice versa is an adaptive strategy with which tumor cells obtain energy to survive and thrive under the compromised conditions of glycolysis and mitochondrial respiration. Developing highly potent, nontoxic, and tumor-selective oxidative phosphorylation (OXPHOS) inhibitors may help advance therapeutic targeting of mitochondrial drugs in cancer. The FDA-approved antimalarial drug atovaquone (ATO), a mitochondrial complex III inhibitor, was repurposed in cancer treatment. Here, we developed a new class of PEGylated mitochondria-targeted ATO (Mito-(PEG)n-ATO). Depending on the PEGylation chain length (n), Mito-PEG-ATO analogs inhibit both mitochondrial complex I- and complex III-induced oxygen consumption in human pancreatic (MiaPaCa-2) and brain (U87MG) cancer cells. Mito-PEG5-ATO is one of the most potent antiproliferative mitochondria-targeted compounds (IC50 = 38 nM) in MiaPaCa-2 cells, and is more effective than other inhibitors of OXPHOS in MiaPaCa-2 and U87MG cells. Furthermore, we show that the combined use of the most potent OXPHOS-targeted inhibitors (Mito-PEG5-ATO) and inhibitors of monocarboxylate transporters (MCT-1 and MCT-4), Krebs cycle redox metabolism, or glutaminolysis will synergistically abrogate tumor cell proliferation. Potential clinical benefits of these combinatorial therapies are discussed.
Collapse
|
32
|
Kim S, Jeon JS, Choi YJ, Baek GH, Kim SK, Kang KW. Heterogeneity of glutamine metabolism in acquired-EGFR-TKI-resistant lung cancer. Life Sci 2022; 291:120274. [PMID: 34990648 DOI: 10.1016/j.lfs.2021.120274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS The purpose of this study was to evaluate the heterogeneities of glutamine metabolism in EGFR-TKI-resistant lung cancer cells and its potential as a therapeutic target. MAIN METHODS Cell proliferation and cell cycle assays was performed by IncuCyte real-time analysis and flow cytometry, respectively. Tumor growth was assessed in xenografts implanted with HCC827 GR. An isotopologue analysis was conducted by LC-MS/MS using 13C-(U)-glutamine labeling to determine the amounts of metabolites. Cellular ATP and mitochondrial oxidative phosphorylation were determined by XFp analysis. KEY FINDINGS We found that the cell growth of the two acquired EGFR-TKI-resistant lung cancer cells lines (HCC827 GR and H292 ER) depends on glutamine. In HCC827 GR, glutamine deficiency caused reduced GSH synthesis and, subsequently, enhanced ROS generation relative to their parental cells, HCC827. On the other hand, in H292 ER, glutamine mainly acted as a carbon source for TCA-cycle intermediates, and its depletion led to reduced mitochondrial ATP production. CB-839, a specific GLS inhibitor, inhibited the latter's conversion of glutamine to glutamate and exerted enhanced anti-proliferating effects on the two acquired EGFR-TKI-resistant lung cancer cell lines versus their parental cell lines. Moreover, oral administration of CB-839 significantly suppressed HCC827 GR tumor growth in the xenograft model. SIGNIFICANCE These findings suggest that glutamine dependency in acquired EGFR-TKI-resistant lung cancer is heterogeneous and that inhibition of glutamine metabolism by CB-839 may serve as a therapeutic tool for acquired EGFR-TKI-resistant lung cancer.
Collapse
Affiliation(s)
- Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ga Hee Baek
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
33
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Troisi J, Tafuro M, Lombardi M, Scala G, Richards SM, Symes SJK, Ascierto PA, Delrio P, Tatangelo F, Buonerba C, Pierri B, Cerino P. A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites 2022; 12:110. [PMID: 35208185 PMCID: PMC8878838 DOI: 10.3390/metabo12020110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a high incidence disease, characterized by high morbidity and mortality rates. Early diagnosis remains challenging because fecal occult blood screening tests have performed sub-optimally, especially due to hemorrhoidal, inflammatory, and vascular diseases, while colonoscopy is invasive and requires a medical setting to be performed. The objective of the present study was to determine if serum metabolomic profiles could be used to develop a novel screening approach for colorectal cancer. Furthermore, the study evaluated the metabolic alterations associated with the disease. Untargeted serum metabolomic profiles were collected from 100 CRC subjects, 50 healthy controls, and 50 individuals with benign colorectal disease. Different machine learning models, as well as an ensemble model based on a voting scheme, were built to discern CRC patients from CTRLs. The ensemble model correctly classified all CRC and CTRL subjects (accuracy = 100%) using a random subset of the cohort as a test set. Relevant metabolites were examined in a metabolite-set enrichment analysis, revealing differences in patients and controls primarily associated with cell glucose metabolism. These results support a potential use of the metabolomic signature as a non-invasive screening tool for CRC. Moreover, metabolic pathway analysis can provide valuable information to enhance understanding of the pathophysiological mechanisms underlying cancer. Further studies with larger cohorts, including blind trials, could potentially validate the reported results.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
| | - Maria Tafuro
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| | - Martina Lombardi
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
| | - Giovanni Scala
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
- Hosmotic srl, Via R. Bosco 178, 80069 Vico Equense, Italy
| | - Sean M. Richards
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 960 East Third Street, Suite 100, 902 McCallie Avenue, Chattanooga, TN 37403, USA; (S.M.R.); (S.J.K.S.)
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Steven J. K. Symes
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 960 East Third Street, Suite 100, 902 McCallie Avenue, Chattanooga, TN 37403, USA; (S.M.R.); (S.J.K.S.)
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Paolo Delrio
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Carlo Buonerba
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| | - Biancamaria Pierri
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| | - Pellegrino Cerino
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| |
Collapse
|
35
|
Ekici S, Nye J, Neill S, Allen J, Shu HK, Fleischer C. Glutamine Imaging: A New Avenue for Glioma Management. AJNR Am J Neuroradiol 2022; 43:11-18. [PMID: 34737183 PMCID: PMC8757564 DOI: 10.3174/ajnr.a7333] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023]
Abstract
The glutamine pathway is emerging as an important marker of cancer prognosis and a target for new treatments. In gliomas, the most common type of brain tumors, metabolic reprogramming leads to abnormal consumption of glutamine as an energy source, and increased glutamine concentrations are associated with treatment resistance and proliferation. A key challenge in the development of glutamine-based biomarkers and therapies is the limited number of in vivo tools to noninvasively assess local glutamine metabolism and monitor its changes. In this review, we describe the importance of glutamine metabolism in gliomas and review the current landscape of translational and emerging imaging techniques to measure glutamine in the brain. These techniques include MRS, PET, SPECT, and preclinical methods such as fluorescence and mass spectrometry imaging. Finally, we discuss the roadblocks that must be overcome before incorporating glutamine into a personalized approach for glioma management.
Collapse
Affiliation(s)
- S. Ekici
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.)
| | - J.A. Nye
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.)
| | - S.G. Neill
- Pathology and Laboratory Medicine (S.G.N.), Emory University School of Medicine, Atlanta, Georgia
| | - J.W. Allen
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.),Neurology (J.W.A.), Emory University School of Medicine, Atlanta, Georgia
| | - H.-K. Shu
- Radiation Oncology (H.-K.S.), Emory University School of Medicine, Atlanta, Georgia
| | - C.C. Fleischer
- From the Departments of Radiology and Imaging Sciences (S.E., J.A.N., J.W.A., C.C.F.),Wallace H. Coulter Department of Biomedical Engineering (C.C.F.), Geogria Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
36
|
Voss M, Wenger KJ, von Mettenheim N, Bojunga J, Vetter M, Diehl B, Franz K, Gerlach R, Ronellenfitsch MW, Harter PN, Hattingen E, Steinbach JP, Rödel C, Rieger J. Short-term fasting in glioma patients: analysis of diet diaries and metabolic parameters of the ERGO2 trial. Eur J Nutr 2021; 61:477-487. [PMID: 34487222 PMCID: PMC8783850 DOI: 10.1007/s00394-021-02666-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
Purpose The prospective, randomized ERGO2 trial investigated the effect of calorie-restricted ketogenic diet and intermittent fasting (KD-IF) on re-irradiation for recurrent brain tumors. The study did not meet its primary endpoint of improved progression-free survival in comparison to standard diet (SD). We here report the results of the quality of life/neurocognition and a detailed analysis of the diet diaries. Methods 50 patients were randomized 1:1 to re-irradiation combined with either SD or KD-IF. The KD-IF schedule included 3 days of ketogenic diet (KD: 21–23 kcal/kg/d, carbohydrate intake limited to 50 g/d), followed by 3 days of fasting and again 3 days of KD. Follow-up included examination of cognition, quality of life and serum samples. Results The 20 patients who completed KD-IF met the prespecified goals for calorie and carbohydrate restriction. Substantial decreases in leptin and insulin and an increase in uric acid were observed. The SD group, of note, had a lower calorie intake than expected (21 kcal/kg/d instead of 30 kcal/kg/d). Neither quality of life nor cognition were affected by the diet. Low glucose emerged as a significant prognostic parameter in a best responder analysis. Conclusion The strict caloric goals of the ERGO2 trial were tolerated well by patients with recurrent brain cancer. The short diet schedule led to significant metabolic changes with low glucose emerging as a candidate marker of better prognosis. The unexpected lower calorie intake of the control group complicates the interpretation of the results. Clinicaltrials.gov number: NCT01754350; Registration: 21.12.2012. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02666-1.
Collapse
Affiliation(s)
- Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany. .,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany. .,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.
| | - Katharina J Wenger
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Nina von Mettenheim
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Jörg Bojunga
- Department of Medicine 1, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Manuela Vetter
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Bianca Diehl
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Kea Franz
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Ruediger Gerlach
- Department of Neurosurgery, HELIOS Hospital Erfurt, Nordhäuser Straße 74, 99089, Erfurt, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Patrick N Harter
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann Strasse 7, 60528, Frankfurt/Main, Germany
| | - Elke Hattingen
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany
| | - Claus Rödel
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.,Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Stiftung Des Öffentlichen Rechts, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Georg-Speyer-Haus, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt/Main, Germany.,Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Schleusenweg 2-16, 60528, Frankfurt/Main, Germany.,Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| |
Collapse
|
37
|
Firdous S, Abid R, Nawaz Z, Bukhari F, Anwer A, Cheng LL, Sadaf S. Dysregulated Alanine as a Potential Predictive Marker of Glioma-An Insight from Untargeted HRMAS-NMR and Machine Learning Data. Metabolites 2021; 11:507. [PMID: 34436448 PMCID: PMC8402070 DOI: 10.3390/metabo11080507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Metabolic alterations play a crucial role in glioma development and progression and can be detected even before the appearance of the fatal phenotype. We have compared the circulating metabolic fingerprints of glioma patients versus healthy controls, for the first time, in a quest to identify a panel of small, dysregulated metabolites with potential to serve as a predictive and/or diagnostic marker in the clinical settings. High-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HRMAS-NMR) was used for untargeted metabolomics and data acquisition followed by a machine learning (ML) approach for the analyses of large metabolic datasets. Cross-validation of ML predicted NMR spectral features was done by statistical methods (Wilcoxon-test) using JMP-pro16 software. Alanine was identified as the most critical metabolite with potential to detect glioma with precision of 1.0, recall of 0.96, and F1 measure of 0.98. The top 10 metabolites identified for glioma detection included alanine, glutamine, valine, methionine, N-acetylaspartate (NAA), γ-aminobutyric acid (GABA), serine, α-glucose, lactate, and arginine. We achieved 100% accuracy for the detection of glioma using ML algorithms, extra tree classifier, and random forest, and 98% accuracy with logistic regression. Classification of glioma in low and high grades was done with 86% accuracy using logistic regression model, and with 83% and 79% accuracy using extra tree classifier and random forest, respectively. The predictive accuracy of our ML model is superior to any of the previously reported algorithms, used in tissue- or liquid biopsy-based metabolic studies. The identified top metabolites can be targeted to develop early diagnostic methods as well as to plan personalized treatment strategies.
Collapse
Affiliation(s)
- Safia Firdous
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
- Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore 54770, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
| | - Zubair Nawaz
- Department of Data Science, Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (F.B.)
| | - Faisal Bukhari
- Department of Data Science, Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan; (Z.N.); (F.B.)
| | - Ammar Anwer
- Punjab Institute of Neurosciences (PINS), Lahore General Hospital, Lahore 54000, Pakistan;
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan; (S.F.); (R.A.)
| |
Collapse
|
38
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
39
|
Shen YA, Chen CL, Huang YH, Evans EE, Cheng CC, Chuang YJ, Zhang C, Le A. Inhibition of glutaminolysis in combination with other therapies to improve cancer treatment. Curr Opin Chem Biol 2021; 62:64-81. [PMID: 33721588 PMCID: PMC8570367 DOI: 10.1016/j.cbpa.2021.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Targeting glutamine catabolism has been attracting more research attention on the development of successful cancer therapy. Catalytic enzymes such as glutaminase (GLS) in glutaminolysis, a series of biochemical reactions by which glutamine is converted to glutamate and then alpha-ketoglutarate, an intermediate of the tricarboxylic acid (TCA) cycle, can be targeted by small molecule inhibitors, some of which are undergoing early phase clinical trials and exhibiting promising safety profiles. However, resistance to glutaminolysis targeting treatments has been observed, necessitating the development of treatments to combat this resistance. One option is to use synergy drug combinations, which improve tumor chemotherapy's effectiveness and diminish drug resistance and side effects. This review will focus on studies involving the glutaminolysis pathway and diverse combination therapies with therapeutic implications.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Hsuan Huang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Emily Elizabeth Evans
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chia Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jie Chuang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering Baltimore, MD 21218, USA.
| |
Collapse
|
40
|
Li M, Thorne RF, Shi R, Zhang XD, Li J, Li J, Zhang Q, Wu M, Liu L. DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative Phosphorylation during Glutamine Deprivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003732. [PMID: 34105294 PMCID: PMC8188220 DOI: 10.1002/advs.202003732] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/29/2021] [Indexed: 05/26/2023]
Abstract
Extracellular glutamine represents an important energy source for many cancer cells and its metabolism is intimately involved in maintaining redox homeostasis. The heightened metabolic activity within tumor tissues can result in glutamine deficiency, necessitating metabolic reprogramming responses. Here, dual mechanisms involving the stress-responsive transcription factor DDIT3 (DNA damage induced transcript 3) that establishes an interrelationship between glycolysis and mitochondrial respiration are revealed. DDIT3 is induced during glutamine deprivation to promote glycolysis and adenosine triphosphate production via suppression of the negative glycolytic regulator TIGAR. In concert, a proportion of the DDIT3 pool translocates to the mitochondria and suppresses oxidative phosphorylation through LONP1-mediated down-regulation of COQ9 and COX4. This in turn dampens the sustained levels of reactive oxygen species that follow glutamine withdrawal. Together these mechanisms constitute an adaptive survival mechanism permitting tumor cells to survive metabolic stress induced by glutamine starvation.
Collapse
Affiliation(s)
- Mingyue Li
- Heifei National Laboratory for Physical Sciences at the Microscale of USTCCAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhui230027China
| | - Rick Francis Thorne
- Translational Research InstituteHenan Provincial People's HospitalSchool of Clinical MedicineHenan UniversityZhengzhouHenan450003China
| | - Ronghua Shi
- Heifei National Laboratory for Physical Sciences at the Microscale of USTCCAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhui230027China
| | - Xu Dong Zhang
- Translational Research InstituteHenan Provincial People's HospitalSchool of Clinical MedicineHenan UniversityZhengzhouHenan450003China
| | - Jingmin Li
- Translational Research InstituteHenan Provincial People's HospitalSchool of Clinical MedicineHenan UniversityZhengzhouHenan450003China
- Harbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Jingtong Li
- Harbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Qingyuan Zhang
- Harbin Medical University Cancer HospitalHarbinHeilongjiang150081China
| | - Mian Wu
- Heifei National Laboratory for Physical Sciences at the Microscale of USTCCAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhui230027China
- Translational Research InstituteHenan Provincial People's HospitalSchool of Clinical MedicineHenan UniversityZhengzhouHenan450003China
| | - Lianxin Liu
- Heifei National Laboratory for Physical Sciences at the Microscale of USTCCAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
41
|
Fang YJ, Wu M, Chen HN, Wen TT, Lyu JX, Shen Y. Carnosine suppresses human glioma cells under normoxic and hypoxic conditions partly via inhibiting glutamine metabolism. Acta Pharmacol Sin 2021; 42:767-779. [PMID: 32782394 PMCID: PMC8115031 DOI: 10.1038/s41401-020-0488-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/19/2020] [Indexed: 12/28/2022]
Abstract
L-Carnosine (β-alanyl-L-histidine) is a naturally occurring dipeptide, which has shown broad-spectrum anticancer activity. But the anticancer mechanisms and regulators remain unknown. In this study, we investigated the effects of carnosine on human glioma U87 and U251 cell lines under normoxia (21% O2) and hypoxia (1% O2). We showed that carnosine (25-75 mM) dose-dependently inhibited the proliferation of the glioma cells; carnosine (50 mM) inhibited their colony formation, migration, and invasion capacity. But there was no significant difference in the inhibitory effects of carnosine under normoxia and hypoxia. Treatment with carnosine (50 mM) significantly decreased the expression of glutamine synthetase (GS) at the translation level rather than the transcription level in U87 and U251 cells, both under normoxia and hypoxia. Furthermore, the silencing of GS gene with shRNA and glutamine (Gln) deprivation significantly suppressed the growth, migratory, and invasive potential of the glioma cells. The inhibitory effect of carnosine on U87 and U251 cells was partly achieved by inhibiting the Gln metabolism pathway. Carnosine reduced the expression of GS in U87 and U251 cells by promoting the degradation of GS through the proteasome pathway, shortening the protein half-life, and reducing its stability. Given that targeting tumor metabolism is a proven efficient therapeutic tactic, our results may present new treatment strategies and drugs for improving the prognosis of gliomas.
Collapse
Affiliation(s)
- Yu-Jia Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ming Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hai-Ni Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tian-Tian Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian-Xin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
42
|
Glutaminolysis dynamics during astrocytoma progression correlates with tumor aggressiveness. Cancer Metab 2021; 9:18. [PMID: 33910646 PMCID: PMC8082835 DOI: 10.1186/s40170-021-00255-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. Methods In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. Results We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII–AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. Conclusions In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1mut AGII and AGIII progression towards secondary GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00255-8.
Collapse
|
43
|
Shi Y, Ding D, Liu L, Li Z, Zuo L, Zhou L, Du Q, Jing Z, Zhang X, Sun Z. Integrative Analysis of Metabolomic and Transcriptomic Data Reveals Metabolic Alterations in Glioma Patients. J Proteome Res 2021; 20:2206-2215. [PMID: 33764076 DOI: 10.1021/acs.jproteome.0c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glioma is a malignant brain tumor. There is growing evidence that its progression involves altered metabolism. This study's objective was to understand how those metabolic perturbations were manifested in plasma and urine. Metabolic signatures in blood and urine were characterized by liquid chromatography-tandem mass spectrometry. The results were linked to gene expression using data from the Gene Expression Omnibus database. Genes and pathways associated with the disease were thus identified. Forty metabolites were identified, which were differentially expressed in the plasma of glioma patients, and 61 were identified in their urine. Twenty-two metabolites and five disturbed pathways were found both in plasma and urine. Twelve metabolites in plasma and three in urine exhibited good diagnostic potential for glioma. Transcriptomic analyses revealed specific changes in the expression of 1437 genes associated with glioma. Seventeen differentially expressed genes were found to be correlated with four of the metabolites. Enrichment analysis indicated that dysregulation of glutamatergic synapse pathway might affect the pathology of glioma. Integration of metabolomics with transcriptomics can provide both a broad picture of novel cancer signatures and preliminary information about the molecular perturbations underlying glioma. These results may suggest promising targets for developing effective therapies.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Daling Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Ziwei Jing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China.,Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou University, Zhengzhou, Henan Province 450052, P. R. China
| |
Collapse
|
44
|
Feuerecker B, Biechl P, Seidl C, Bruchertseifer F, Morgenstern A, Schwaiger M, Eisenreich W. Diverse metabolic response of cancer cells treated with a 213Bi-anti-EGFR-immunoconjugate. Sci Rep 2021; 11:6227. [PMID: 33737524 PMCID: PMC7973706 DOI: 10.1038/s41598-021-84421-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Evaluation of treatment response is among the major challenges in modern oncology. We herein used a monoclonal antibody targeting the EGF receptor (EGFR) labelled with the alpha emitter 213Bi (213Bi-anti-EGFR-MAb). EJ28Luc (bladder) and LN18 (glioma) cancer cells, both overexpressing EGFR, were incubated for 3 h with the radioimmunoconjugate. To assess the responses in the core carbon metabolism upon this treatment, these cancer cell lines were subsequently cultivated for 18 h in the presence of [U-13C6]glucose. 13C-enrichment and isotopologue profiles of key amino acids were monitored by gas chromatography–mass spectrometry (GC/MS), in order to monitor the impacts of the radionuclide-treatment upon glucose metabolism. In comparison to untreated controls, treatment of EJ28Luc cells with 213Bi-anti-EGFR-MAb resulted in a significantly decreased incorporation of 13C from [U-13C6]glucose into alanine, aspartate, glutamate, glycine, proline and serine. In sharp contrast, the same amino acids did not display less 13C-enrichments during treatment of the LN18 cells. The data indicate early treatment response of the bladder cancer cells, but not of the glioma cells though cell lines were killed following 213Bi-anti-EGFR-MAb treatment. The pilot study shows that the 13C-labelling approach is a valid tool to assess the responsiveness of cancer cells upon radionuclide-treatment in considerable metabolic detail.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany. .,Deutsches Konsortium für translationale Krebsforschung (DKTK), Heidelberg, partnersite München and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiology, School of Medicine, Technische Universität München, Munich, Germany.
| | - Philipp Biechl
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| | - Christof Seidl
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Bavarian NMR Center-Structural Membrane Biochemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
45
|
Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci 2021; 28:14. [PMID: 33610185 PMCID: PMC7897386 DOI: 10.1186/s12929-021-00712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Glutaminase isoenzymes GLS and GLS2 play apparently opposing roles in cancer: GLS acts as an oncoprotein, while GLS2 (GAB isoform) has context specific tumour suppressive activity. Some microRNAs (miRNAs) have been implicated in progression of tumours, including gliomas. The aim was to investigate the effect of GLS and GAB expression on both miRNAs and oxidative status in glioblastoma cells. Methods
Microarray profiling of miRNA was performed in GLS-silenced LN229 and GAB-transfected T98G human glioblastoma cells and their wild-type counterparts. Results were validated by real-time quantitative RT-PCR. Oxidative status and antioxidant enzymes were determined by spectrophotometric or fluorescence assays in GLS-silenced LN229 and T98G, and GAB-transfected LN229 and T98G. Results MiRNA-146a-5p, miRNA-140-3p, miRNA-21-5p, miRNA-1260a, and miRNA-92a-3p were downregulated, and miRNA-1246 was upregulated when GLS was knocked down. MiRNA-140-3p, miRNA-1246, miRNA-1260a, miRNA-21-5p, and miRNA-146a-5p were upregulated when GAB was overexpressed. Oxidative status (lipid peroxidation, protein carbonylation, total antioxidant capacity, and glutathione levels), as well as antioxidant enzymes (catalase, superoxide dismutase, and glutathione reductase) of silenced GLS glioblastoma cells and overexpressed GAB glioblastoma cells significantly changed versus their respective control glioblastoma cells. MiRNA-1246, miRNA-1260a, miRNA-146a-5p, and miRNA-21-5p have been characterized as strong biomarkers of glioblastoma proliferation linked to both GLS silencing and GAB overexpression. Total glutathione is a reliable biomarker of glioblastoma oxidative status steadily associated to both GLS silencing and GAB overexpression. Conclusions Glutaminase isoenzymes are related to the expression of some miRNAs and may contribute to either tumour progression or suppression through certain miRNA-mediated pathways, proving to be a key tool to switch cancer proliferation and redox status leading to a less malignant phenotype. Accordingly, GLS and GAB expression are especially involved in glutathione-dependent antioxidant defence.
Collapse
|
46
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
47
|
Márquez J, Matés JM. Tumor Metabolome: Therapeutic Opportunities Targeting Cancer Metabolic Reprogramming. Cancers (Basel) 2021; 13:cancers13020314. [PMID: 33467031 PMCID: PMC7830791 DOI: 10.3390/cancers13020314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
The study of cancer metabolism is regaining center stage and becoming a hot topic in tumor biology and clinical research, after a period where such kind of experimental approaches were somehow forgotten or disregarded in favor of powerful functional genomic and proteomic studies [...].
Collapse
Affiliation(s)
- Javier Márquez
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Correspondence: (J.M.); (J.M.M.); Tel.: +34-95-213-2024 (J.M.); +34-95-213-3430 (J.M.M.)
| | - José M. Matés
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain
- Correspondence: (J.M.); (J.M.M.); Tel.: +34-95-213-2024 (J.M.); +34-95-213-3430 (J.M.M.)
| |
Collapse
|
48
|
Caniglia JL, Jalasutram A, Asuthkar S, Sahagun J, Park S, Ravindra A, Tsung AJ, Guda MR, Velpula KK. Beyond glucose: alternative sources of energy in glioblastoma. Theranostics 2021; 11:2048-2057. [PMID: 33500708 PMCID: PMC7797684 DOI: 10.7150/thno.53506] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. With a designation of WHO Grade IV, it is also the most lethal primary brain tumor with a median survival of just 15 months. This is often despite aggressive treatment that includes surgical resection, radiation therapy, and chemotherapy. Based on the poor outcomes and prevalence of the tumor, the demand for innovative therapies continues to represent a pressing issue for clinicians and researchers. In terms of therapies targeting metabolism, the prevalence of the Warburg effect has led to a focus on targeting glucose metabolism to halt tumor progression. While glucose is the dominant source of growth substrate in GBM, a number of unique metabolic pathways are exploited in GBM to meet the increased demand for replication and progression. In this review we aim to explore how metabolites from fatty acid oxidation, the urea cycle, the glutamate-glutamine cycle, and one-carbon metabolism are shunted toward energy producing pathways to meet the high energy demand in GBM. We will also explore how the process of autophagy provides a reservoir of nutrients to support viable tumor cells. By so doing, we aim to establish a foundation of implicated metabolic mechanisms supporting growth and tumorigenesis of GBM within the literature. With the sparse number of therapeutic interventions specifically targeting metabolic pathways in GBM, we hope that this review expands further insight into the development of novel treatment modalities.
Collapse
Affiliation(s)
- John L. Caniglia
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Anvesh Jalasutram
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Joseph Sahagun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Simon Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Aditya Ravindra
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Andrew J. Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Illinois Neurological Institute, Peoria, IL
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Department of Pediatrics, University of Illinois College of Medicine at Peoria
| |
Collapse
|
49
|
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA. Targeting Metabolism in Cancer Cells and the Tumour Microenvironment for Cancer Therapy. Molecules 2020; 25:molecules25204831. [PMID: 33092283 PMCID: PMC7588013 DOI: 10.3390/molecules25204831] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer treatment. The metabolic reprogramming that accompanies the development of malignancy creates targetable differences between cancer cells and normal cells, which may be exploited for therapy. There is also emerging evidence regarding the role of stromal components, creating an intricate metabolic network consisting of cancer cells, cancer-associated fibroblasts, endothelial cells, immune cells, and cancer stem cells. This metabolic rewiring and crosstalk with the tumour microenvironment play a key role in cell proliferation, metastasis, and the development of treatment resistance. In this review, we will discuss therapeutic opportunities, which arise from dysregulated metabolism and metabolic crosstalk, highlighting strategies that may aid in the precision targeting of altered tumour metabolism with a focus on combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - Jie Qing Eu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Yaw Chyn Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
| | - Andrea L. A. Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (J.Q.E.); (L.R.K.); (L.W.); (Y.C.L.); (B.C.G.)
- Department of Haematology-Oncology, National University Health System, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
50
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|