1
|
Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology 2024; 166:107070. [PMID: 38733757 DOI: 10.1016/j.psyneuen.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Estrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors. Significant roles of classical estrogen receptors, ERα and ERβ, in various diseases were known since many years, but after identifying a structurally and locationally distinct receptor, the G protein-coupled estrogen receptor (GPER), its role in human physiology and pathophysiology was investigated. This review compiles GPER-related information, highlighting its impact on homeostasis and diseases, while putting special attention on functions and dysfunctions of this receptor in neurobiology and biobehavioral processes. Understanding the receptor modulation possibilities is essential for therapy, as disruptions in receptors can lead to diseases or disorders, irrespective of correct estrogen levels. We conclude that studies on the GPER receptor have the potential to develop therapies that regulate estrogen and positively impact human health.
Collapse
Affiliation(s)
- Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
2
|
Pang QQ, Lee S, Cho EJ, Kim JH. Protective Effects of Cirsium japonicum var. maackii Flower on Amyloid Beta 25-35-Treated C6 Glial Cells. Life (Basel) 2023; 13:1453. [PMID: 37511827 PMCID: PMC10381248 DOI: 10.3390/life13071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloid beta (Aβ) is a neurotoxic peptide and a key factor causing Alzheimer's disease. Cirsium japonicum var. maackii (CJM) has neuroprotective effects, but the protective effects of the flower from CJM (FCJM) on the neural system remain unclear. This study aimed to identify the fraction of FCJM with the highest neuroprotective potential and investigate its protective mechanisms against Aβ25-35-induced inflammation in C6 glial cells. The cell viability and generation of reactive oxygen species (ROS) were measured to investigate the positive effect of FCJM on oxidative stress. Treatment with the FCJM extract or fractions increased the cell viability to 60-70% compared with 52% in the Aβ25-35-treated control group and decreased ROS production to 84% compared with 100% in the control group. The ethyl acetate fraction of FCJM (EFCJM) was the most effective among all the extracts and fractions. We analyzed the protective mechanisms of EFCJM on Aβ25-35-induced inflammation in C6 glial cells using Western blot. EFCJM downregulated amyloidogenic pathway-related proteins, such as Aβ precursor protein, β-secretase, presenilin 1, and presenilin 2. Moreover, EFCJM attenuated the Bax/Bcl-2 ratio, an index of apoptosis, and upregulated the oxidative stress-related protein, heme oxygenase-1. Therefore, this study demonstrated that FCJM improves cell viability and inhibits ROS in Aβ25-35-treated C6 glial cells. Furthermore, EFCJM exhibits neuroprotective effects in Aβ25-35-induced inflammation in C6 glial cells by modulating oxidative stress and amyloidogenic and apoptosis signaling pathways. FCJM, especially EFCJM, can be a promising agent for neurodegenerative disease prevention.
Collapse
Affiliation(s)
- Qi Qi Pang
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Koszegi Z, Cheong RY. Targeting the non-classical estrogen pathway in neurodegenerative diseases and brain injury disorders. Front Endocrinol (Lausanne) 2022; 13:999236. [PMID: 36187099 PMCID: PMC9521328 DOI: 10.3389/fendo.2022.999236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens can alter the biology of various tissues and organs, including the brain, and thus play an essential role in modulating homeostasis. Despite its traditional role in reproduction, it is now accepted that estrogen and its analogues can exert neuroprotective effects. Several studies have shown the beneficial effects of estrogen in ameliorating and delaying the progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease and various forms of brain injury disorders. While the classical effects of estrogen through intracellular receptors are more established, the impact of the non-classical pathway through receptors located at the plasma membrane as well as the rapid stimulation of intracellular signaling cascades are still under active research. Moreover, it has been suggested that the non-classical estrogen pathway plays a crucial role in neuroprotection in various brain areas. In this mini-review, we will discuss the use of compounds targeting the non-classical estrogen pathway in their potential use as treatment in neurodegenerative diseases and brain injury disorders.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Y. Cheong
- Timeline Bioresearch AB, Medicon Village, Lund, Sweden
- *Correspondence: Rachel Y. Cheong,
| |
Collapse
|
4
|
Ji X, Li N, Ma M, Li X, Zhu K, Rao K, Wang Z, Wang J, Fang Y. Comparison of the mechanisms of estrogen disrupting effects between triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113069. [PMID: 34890987 DOI: 10.1016/j.ecoenv.2021.113069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
As the typical aryl-organophosphate flame retardants (OPFRs), triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to be estrogen disruptors. However, estrogen receptor α (ERα) binding experiments could not explain their biological effects. In this study, their action on ERα, G protein-coupled estrogen receptor (GPER) and the synthesis of 17β-estradiol (E2) were investigated using in vitro assays and molecular docking. The results showed that TPhP acted as an ERα agonist and recruited steroid receptor co-activator 1 (SRC1) and 3 (SRC3), which was found for the first time. Unlike TPhP, TDCIPP acted as an ERα antagonist. However, both TPhP and TDCIPP activated the estrogen pathway by GPER in SKBR3 cells which were lack of ERα. Although molecular docking results revealed that both TPhP and TDCIPP could dock into ERα and GPER, their substituent groups and combination mode might affect the receptor activation. In addition, by using estrogen biosynthesis assay in H295R cells, both of TPhP and TDCIPP were found to promote E2 synthesis and E2/T ratio involving their different alteration on levels of progesterone, testosterone and estrone, and expression of various key genes. Our data proposed estrogen-disrupting mechanism frameworks of TPhP and TDCIPP. Moreover, our results will contribute to future construction of adverse outcome pathway (AOP) framework of endocrine disruptors.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266000, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinyan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| |
Collapse
|
5
|
Estrogenic hormones receptors in Alzheimer's disease. Mol Biol Rep 2021; 48:7517-7526. [PMID: 34657250 DOI: 10.1007/s11033-021-06792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.
Collapse
|
6
|
Cho EJ, Kim HY, Lee AY. Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells. Nutr Res Pract 2020; 14:593-605. [PMID: 33282122 PMCID: PMC7683209 DOI: 10.4162/nrp.2020.14.6.593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND/OBJECTIVES Alzheimer's disease is common age-related neurodegenerative condition characterized by amyloid beta (Aβ) accumulation that leads cognitive impairment. In the present study, we investigated the protective effect of paeoniflorin (PF) against Aβ-induced neuroinflammation and the underlying mechanism in C6 glial cells. MATERIALS/METHODS C6 glial cells were treated with PF and Aβ25–35, and cell viability, nitric oxide (NO) production, and pro-inflammatory cytokine release were measured. Furthermore, the mechanism underlying the effect of PF on inflammatory responses and Aβ degradation was determined by Western blot. RESULTS Aβ25–35 significantly reduced cell viability, but this reduction was prevented by the pretreatment with PF. In addition, PF significantly inhibited Aβ25–35-induced NO production in C6 glial cells. The secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-alpha was also significantly reduced by PF. Further mechanistic studies indicated that PF suppressed the production of these pro-inflammatory cytokines by regulating the nuclear factor-kappa B (NF-κB) pathway. The protein levels of inducible NO synthase and cyclooxygenase-2 were downregulated and phosphorylation of NF-κB was blocked by PF. However, PF elevated the protein expression of inhibitor kappa B-alpha and those of Aβ degrading enzymes, insulin degrading enzyme and neprilysin. CONCLUSIONS These findings indicate that PF exerts protective effects against Aβ-mediated neuroinflammation by inhibiting NF-κB signaling, and these effects were associated with the enhanced activity of Aβ degradation enzymes.
Collapse
Affiliation(s)
- Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| |
Collapse
|
7
|
Guo Y, Wu Y, Li N, Wang Z. Up-regulation of miRNA-151-3p enhanced the neuroprotective effect of dexmedetomidine against β-amyloid by targeting DAPK-1 and TP53. Exp Mol Pathol 2020; 118:104587. [PMID: 33275947 DOI: 10.1016/j.yexmp.2020.104587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is the leading lethal disease among the elderly. Dexmedetomidine (Dex) has been reported to have multiple neuroprotective effects, but its effect against beta-amyloid (Aβ) has not been completely determined and understood. Dex can activate both α2 adrenoceptor/cAMP/PKA and imidazoline I receptors/ERK1/2 signals. To determine which signal is critical for the effect of Dex on Aβ toxicity, we treated SH-SY5Y and PC12 cells with inhibitors of α2 adrenoceptor and ERK1/2. Dex suppressed the apoptosis of neuronal cells and production of reactive oxygen species induced by Aβ. These suppressive effects were attenuated by both inhibitors. As indicated by western blot, Dex stimulates both pro-apoptosis (activating death-associated protein kinase 1 [DAPK-1] and p53) and anti-apoptotic (up-regulating bcl-2 and bcl-xL) signals in Aβ-treated neuronal cells. This effect is likely associated with ERK1/2 signaling because ERK1/2 inhibitor disrupts the effect of Dex on these signals. To eliminate the pro-apoptotic effect of Dex while retaining its anti-apoptosis action, we screened miRNA-151-3p to target DAPK-1 and p53. Transfection with miRNA-151-3p mimics suppressed DAPK-1 and TP53 expression induced by Dex and increased Nrf-2 and SOD expression. More importantly, increasing miRNA-151-3p enhanced the anti-apoptotic and antioxidative effects of Dex in Aβ-treated neuronal cells. Overall, this study revealed that Dex additionally stimulated pro-apoptosis signaling, although it suppressed Aβ-induced apoptosis of neuronal cells. miRNA-151-3p enhanced the neuroprotective effect of Dex against Aβ by targeting DAPK-1 and TP53.
Collapse
Affiliation(s)
- Yan Guo
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Yipeng Wu
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China
| | - Na Li
- Department of Ophthalmology, Changzhi people's Hospital, No.053, Yingbin West Street, Changzhi County, Changzhi City, Shanxi Province 046000, China
| | - Zehua Wang
- Department of Anesthesiology, Changzhi Medical College, No.271, Taihang East Street, Changzhi City, Shanxi Province 046011, China.
| |
Collapse
|
8
|
Selective Targeting of Non-nuclear Estrogen Receptors with PaPE-1 as a New Treatment Strategy for Alzheimer's Disease. Neurotox Res 2020; 38:957-966. [PMID: 33025361 PMCID: PMC7591444 DOI: 10.1007/s12640-020-00289-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory decline, the presence of Aβ plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease. In this model, the treatment of mouse neocortical neurons with Aβ (5 and 10 μM) induced apoptosis (loss of mitochondrial membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of exposure, PaPE-1 inhibited Aβ-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis. Because PaPE-1 downregulated Aβ-induced Fas/FAS expression but upregulated that of Aβ-induced FasL, the role of PaPE-1 in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aβ-induced loss of mitochondrial membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the selective targeting of non-nuclear ERs with PaPE-1.
Collapse
|
9
|
Ji X, Li N, Ma M, Rao K, Yang R, Wang Z. Tricresyl phosphate isomers exert estrogenic effects via G protein-coupled estrogen receptor-mediated pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114747. [PMID: 32559878 DOI: 10.1016/j.envpol.2020.114747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Tricresyl phosphates (TCPs), as representative aromatic organophosphate flame retardants (OPFRs), have received much attention due to their potential neurotoxicity and endocrine-disrupting effects. However, the role of estrogen receptor α (ERα) and G protein-coupled estrogen receptor (GPER) in their estrogen disrupting effects remains poorly understood. Therefore, in this study, three TCP isomers, tri-o-cresyl phosphate (ToCP), tri-m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP), were examined for their activities on ERα by using two-hybrid yeast assay, and action on GPER by using Boyden chamber assay, cAMP production assay, calcium mobilization assay and molecular docking analysis. The results showed that three TCP isomers were found to act as ERα antagonists. Conversely, they had agonistic activity on GPER to promote GPER-mediated cell migration of MCF7 cells and SKBR3 cells. Both ToCP and TpCP activated GPER-mediated cAMP production and calcium mobilization, whereas TmCP had different mode of action, it only triggered GPER-mediated calcium mobilization, as evidenced by using the specific GPER inhibitor (G15) and GPER overexpressing experiments. Molecular docking further revealed that the way of interaction of TmCP and TpCP with GPER was different from that of ToCP with GPER, and higher activity of ToCP in activating GPER-mediated pathways might be associated with the alkyl substitution at the ortho position of the aromatic ring. Our results, for the first time, found a new target, GPER, for TCPs exerting their estrogen-disrupting effects, and demonstrated complex estrogen-disrupting effects of three TCP isomers involved their opposite activities toward ERα and GPER.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Rong Yang
- Beijing Water Quality Monitoring Center for South-to-North Water Diversion, Beijing, 100093, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|