1
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
2
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
3
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
4
|
Rzepka Z, Rok J, Kowalska J, Banach K, Hermanowicz JM, Beberok A, Sieklucka B, Gryko D, Wrześniok D. Astrogliosis in an Experimental Model of Hypovitaminosis B12: A Cellular Basis of Neurological Disorders due to Cobalamin Deficiency. Cells 2020; 9:cells9102261. [PMID: 33050187 PMCID: PMC7600008 DOI: 10.3390/cells9102261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next step of the study, we revealed c-lactam OH-Cbl as a potential non-toxic vitamin B12 antagonist in an in vivo model using zebrafish embryos. We believe that the presented results will contribute to a better understanding of the cellular mechanism underlying neurologic pathology due to cobalamin deficiency and will serve as a foundation for further studies.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (B.S.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (B.S.)
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
- Correspondence: ; Tel.: +48-3-2364-1050
| |
Collapse
|
5
|
Barton SK, Lau CL, Chiam MDF, Tomas D, Muyderman H, Beart PM, Turner BJ. Mutant TDP-43 Expression Triggers TDP-43 Pathology and Cell Autonomous Effects on Primary Astrocytes: Implications for Non-cell Autonomous Pathology in ALS. Neurochem Res 2020; 45:1451-1459. [PMID: 32410044 DOI: 10.1007/s11064-020-03048-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) caused by mutations in superoxide dismutase 1 (SOD1) is partly non-cell autonomous, involving cellular dysfunction of astrocytes. Whether non-cell autonomous effects occur in other forms of ALS, such as TAR DNA binding protein 43 (TDP-43)-related disease, remains unclear. Here, we characterised the impact of mutant TDP-43 expression on primary astrocytes derived from transgenic TDP-43A315T mice. Mutant TDP-43 astrocytes revealed evidence for TDP-43 pathology, shown by cytoplasmic TDP-43 inclusions and accumulation in insoluble cell fractions which was exacerbated by proteasomal inhibition. L-glutamate uptake, measured using an [3H]D-aspartate assay, was impaired in mutant TDP-43 astrocytes, while ATP accumulation was abnormal, suggesting mutant TDP-43 induced astrocytic dysfunction. Astrocyte activation coupled with spinal and cortical motor neuron loss in transgenic TDP-43A315T mice could imply non-cell autonomous effects of astrocytes in vivo. These data demonstrate mutant TDP-43-mediated cell autonomous effects on astrocytes that may contribute to motor neuron pathology in ALS.
Collapse
Affiliation(s)
- Samantha K Barton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Chew L Lau
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Mathew D F Chiam
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Doris Tomas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Hakan Muyderman
- Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia.
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
6
|
Perri ER, Parakh S, Vidal M, Mehta P, Ma Y, Walker AK, Atkin JD. The Cysteine (Cys) Residues Cys-6 and Cys-111 in Mutant Superoxide Dismutase 1 (SOD1) A4V Are Required for Induction of Endoplasmic Reticulum Stress in Amyotrophic Lateral Sclerosis. J Mol Neurosci 2020; 70:1357-1368. [PMID: 32445072 DOI: 10.1007/s12031-020-01551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the degeneration of motor neurons. Between 12 and 20% of inherited cases and approximately 1-2% of all cases are caused by mutations in the gene encoding dismutase 1 (SOD1). Mutant SOD1 A4V (alanine to valine) induces endoplasmic reticulum (ER) stress, which is increasingly implicated as a pathway to motor neuron degeneration and death in ALS. However, it remains unclear how ER stress is induced by mutant SOD1 A4V. Previous studies have established that it is induced early in pathophysiology and it precedes the formation of mutant SOD1 inclusions. SOD1 contains four cysteine residues, two of which form an intra-subunit disulphide bond involving Cys-57 and Cys-146. The remaining two cysteines, Cys-6 and Cys-111, remain unpaired and have been implicated in mutant SOD1 aggregation. In this study, we examined the relationship between the SOD1 A4V cysteine residues and aggregation, ER stress induction and toxicity. We report here that mutation of Cys-6 and Cys-111 in mutant SOD1 A4V, but not Cys-57 or Cys-146, ameliorates ER stress, inclusion formation and apoptosis in neuronal cell lines. These results imply that protein misfolding, induced by Cys-6 and Cys-111, is required for these pathological events in neuronal cells.
Collapse
Affiliation(s)
- Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Prachi Mehta
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yi Ma
- Department of General Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Department of General Surgery, Monash Health, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Shavit-Stein E, Abu Rahal I, Bushi D, Gera O, Sharon R, Gofrit SG, Pollak L, Mindel K, Maggio N, Kloog Y, Chapman J, Dori A. Brain Protease Activated Receptor 1 Pathway: A Therapeutic Target in the Superoxide Dismutase 1 (SOD1) Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:E3419. [PMID: 32408605 PMCID: PMC7279358 DOI: 10.3390/ijms21103419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Glia cells are involved in upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Protease activated receptor 1 (PAR1) pathway is related to brain pathologies. Brain PAR1 is located on peri-synaptic astrocytes, adjacent to pyramidal motor neurons, suggesting possible involvement in ALS. Brain thrombin activity in superoxide dismutase 1 (SOD1) mice was measured using a fluorometric assay, and PAR1 levels by western blot. PAR1 was localized using immunohistochemistry staining. Treatment targeted PAR1 pathway on three levels; thrombin inhibitor TLCK (N-Tosyl-Lys-chloromethylketone), PAR1 antagonist SCH-79797 and the Ras intracellular inhibitor FTS (S-trans-trans-farnesylthiosalicylic acid). Mice were weighed and assessed for motor function and survival. SOD1 brain thrombin activity was increased (p < 0.001) particularly in the posterior frontal lobe (p = 0.027) and hindbrain (p < 0.01). PAR1 levels were decreased (p < 0.001, brain, spinal cord, p < 0.05). PAR1 and glial fibrillary acidic protein (GFAP) staining decreased in the cerebellum and cortex. SOD1 mice lost weight (≥17 weeks, p = 0.047), and showed shorter rotarod time (≥14 weeks, p < 0.01). FTS 40mg/kg significantly improved rotarod scores (p < 0.001). Survival improved with all treatments (p < 0.01 for all treatments). PAR1 antagonism was the most efficient, with a median survival improvement of 10 days (p < 0.0001). Our results support PAR1 pathway involvement in ALS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ihab Abu Rahal
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Roni Sharon
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Shany G. Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Lea Pollak
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
| | - Kate Mindel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoel Kloog
- Department of Neurobiochemistry, Weiss Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Dori
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel; (I.A.R.); (D.B.); (O.G.); (R.S.); (S.G.G.); (L.P.); (N.M.); (J.C.); (A.D.)
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Tabassum R, Jeong NY, Jung J. Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases. Neural Regen Res 2020; 15:232-241. [PMID: 31552888 PMCID: PMC6905340 DOI: 10.4103/1673-5374.265543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide is an antioxidant molecule that has a wide range of biological effects against oxidative stress. Balanced oxidative stress is also vital for maintaining cellular function in biological system, where reactive oxygen species are the main source of oxidative stress. When the normal redox balance is disturbed, deoxyribonucleic acid, lipid, and protein molecules are oxidized under pathological conditions, like diabetes mellitus that leads to diabetic peripheral neuropathy. In diabetes mellitus-induced diabetic peripheral neuropathy, due to hyperglycemia, pancreatic beta cell (β cell) shows resistance to insulin secretion. As a consequence, glucose metabolism is disturbed in neuronal cells which are distracted from providing proper cell signaling pathway. Not only diabetic peripheral neuropathy but also other central damages occur in brain neuropathy. Neurological studies regarding type 1 diabetes mellitus patients with Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have shown changes in the central nervous system because high blood glucose levels (HbA1c) appeared with poor cognitive function. Oxidative stress plays a role in inhibiting insulin signaling that is necessary for brain function. Hydrogen sulfide exhibits antioxidant effects against oxidative stress, where cystathionine β synthase, cystathionine γ lyase, and 3-mercaptopyruvate sulfurtransferase are the endogenous sources of hydrogen sulfide. This review is to explore the pathogenesis of diabetes mellitus-induced diabetic peripheral neuropathy and other neurological comorbid disorders under the oxidative stress condition and the anti-oxidative effects of hydrogen sulfide.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Seo-gu, Busan, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
9
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Gorter RP, Stephenson J, Nutma E, Anink J, de Jonge JC, Baron W, Jahreiβ MC, Belien JAM, van Noort JM, Mijnsbergen C, Aronica E, Amor S. Rapidly progressive amyotrophic lateral sclerosis is associated with microglial reactivity and small heat shock protein expression in reactive astrocytes. Neuropathol Appl Neurobiol 2018; 45:459-475. [PMID: 30346063 PMCID: PMC7379307 DOI: 10.1111/nan.12525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive loss of motor neurons, muscle weakness, spasticity, paralysis and death usually within 2-5 years of onset. Neuroinflammation is a hallmark of ALS pathology characterized by activation of glial cells, which respond by upregulating small heat shock proteins (HSPBs), but the exact underlying pathological mechanisms are still largely unknown. Here, we investigated the association between ALS disease duration, lower motor neuron loss, TARDNA-binding protein 43 (TDP-43) pathology, neuroinflammation and HSPB expression. METHODS With immunohistochemistry, we examined HSPB1, HSPB5, HSPB6, HSPB8 and HSP16.2 expression in cervical, thoracic and sacral spinal cord regions in 12 ALS cases, seven with short disease duration (SDD), five with moderate disease duration (MDD), and ten age-matched controls. Expression was quantified using ImageJ to examine HSP expression, motor neuron numbers, microglial and astrocyte density and phosphorylated TDP-43 (pTDP-43+) inclusions. RESULTS SDD was associated with elevated HSPB5 and 8 expression in lateral tract astrocytes, while HSP16.2 expression was increased in astrocytes in MDD cases. SDD cases had higher numbers of motor neurons and microglial activation than MDD cases, but similar levels of motor neurons with pTDP-43+ inclusions. CONCLUSIONS Increased expression of several HSPBs in lateral column astrocytes suggests that astrocytes play a role in the pathogenesis of ALS. SDD is associated with increased microgliosis, HSPB5 and 8 expression in astrocytes, and only minor changes in motor neuron loss. This suggests that the interaction between motor neurons, microglia and astrocytes determines neuronal fate and functional decline in ALS.
Collapse
Affiliation(s)
- R P Gorter
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Stephenson
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - E Nutma
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J Anink
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J C de Jonge
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - W Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Deltacrystallon, Leiden, The Netherlands
| | - M-C Jahreiβ
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - J A M Belien
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | | - C Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S Amor
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Kefalakes E, Böselt S, Sarikidi A, Ettcheto M, Bursch F, Naujock M, Stanslowsky N, Schmuck M, Barenys M, Wegner F, Grothe C, Petri S. Characterizing the multiple roles of FGF-2 in SOD1 G93A ALS mice in vivo and in vitro. J Cell Physiol 2018; 234:7395-7410. [PMID: 30370540 DOI: 10.1002/jcp.27498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
We have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS. The aim of the present study was a thorough characterization of FGF-2 and other growth factors and signaling effectors in vivo in the SOD1G93A mouse model. We observed tissue-specific opposing gene regulation of FGF-2 and overall dysregulation of other growth factors, which in the gastrocnemius muscle was associated with reduced downstream extracellular-signal-regulated kinases (ERK) and protein kinase B (AKT) activation. To further investigate whether the effects of FGF-2 on motor neuron death are mediated by glial cells, astrocytes lacking FGF-2 were cocultured together with mutant SOD1 G93A motor neurons. FGF-2 had an impact on motor neuron maturation indicating that astrocytic FGF-2 affects motor neurons at a developmental stage. Moreover, neuronal gene expression patterns showed FGF-2- and SOD1 G93A -dependent changes in ciliary neurotrophic factor, glial-cell-line-derived neurotrophic factor, and ERK2, implying a potential involvement in ALS pathogenesis before the onset of clinical symptoms.
Collapse
Affiliation(s)
- Ekaterini Kefalakes
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Biochemistry, Faculty of Medicine and Life Science, University of Rovira i Virgili, Reus, Spain
| | - Franziska Bursch
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Maximilian Naujock
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Nancy Stanslowsky
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Martin Schmuck
- DAVIS School of Veterinary Medicine, University of California, California
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Claudia Grothe
- Center for Systems Neuroscience (ZSN), Hannover, Germany.,Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|