1
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Baba H. [Introduction to Myelin Research]. YAKUGAKU ZASSHI 2022; 142:837-853. [PMID: 35908945 DOI: 10.1248/yakushi.21-00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myelin is a multilamellar membrane structure formed by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). It has been recognized as an insulator that is essential for the rapid and efficient propagation of action potentials by saltatory conduction. However, recently many studies have shown that myelin and myelin-forming cells interact with axons and regulate the nervous system far more actively than previously thought. For example, myelination changes axons dynamically and divides them into four distinct functional domains: node of Ranvier, paranode, juxtaparanode, and internode. Voltage-gated Na+ channels are clustered at the node, while K+ channels are at the juxtaparanode, and segregation of these channels by paranodal axoglial junction is necessary for proper axonal function. My research experience began at the neurology ward of the Niigata University Medical Hospital, where I saw a patient with peripheral neuropathy of unknown etiology more than 37 years ago. In the patient's serum, we found an autoantibody against a glycolipid enriched in the PNS. Since then, I have been interested in myelin because of its beautiful structure and unique roles in the nervous system. In this review, our recent studies related to CNS and PNS myelin are presented.
Collapse
Affiliation(s)
- Hiroko Baba
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
3
|
Influence of novel readthrough agents on myelin protein zero translation in the peripheral nervous system. Neuropharmacology 2022; 211:109059. [DOI: 10.1016/j.neuropharm.2022.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
|
4
|
Mangkalaphiban K, He F, Ganesan R, Wu C, Baker R, Jacobson A. Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae. PLoS Genet 2021; 17:e1009538. [PMID: 33878104 PMCID: PMC8087045 DOI: 10.1371/journal.pgen.1009538] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/30/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3'-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5' of the stop codon, six nucleotides 3' of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3'-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3'-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3'-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.
Collapse
Affiliation(s)
- Kotchaphorn Mangkalaphiban
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Robin Ganesan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells 2020; 9:E1832. [PMID: 32759708 PMCID: PMC7465998 DOI: 10.3390/cells9081832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin-the lipid-rich, periodic structure of membrane pairs that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes via homophilic adhesion, forming, as revealed by electron microscopy, the electron-dense, double "intraperiod line" that is split by a narrow, electron-lucent space corresponding to the extracellular space between membrane pairs. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs myelination. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when P0 is trafficked and modified to enable myelin compaction, and how mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
| |
Collapse
|
6
|
Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ, Senyushkina T, Belardinelli R, Maracci C, Wohlgemuth I, Samatova E, Peske F. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res 2020; 48:1056-1067. [PMID: 31511883 PMCID: PMC7026636 DOI: 10.1093/nar/gkz783] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, –1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Natalia Korniy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Mariia Klimova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Prajwal Karki
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Bee-Zen Peng
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tamara Senyushkina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
7
|
Otani Y, Ohno N, Cui J, Yamaguchi Y, Baba H. Upregulation of large myelin protein zero leads to Charcot-Marie-Tooth disease-like neuropathy in mice. Commun Biol 2020; 3:121. [PMID: 32170207 PMCID: PMC7070019 DOI: 10.1038/s42003-020-0854-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jingjing Cui
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
8
|
Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: Mechanisms and consequences of escape from nonsense-mediated RNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1560. [PMID: 31359616 PMCID: PMC10685860 DOI: 10.1002/wrna.1560] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control process that serves both as a mechanism to eliminate aberrant transcripts carrying premature stop codons, and to regulate expression of some normal transcripts. For a quality control process, NMD exhibits surprising variability in its efficiency across transcripts, cells, tissues, and individuals in both physiological and pathological contexts. Whether an aberrant RNA is spared or degraded, and by what mechanism, could determine the phenotypic outcome of a disease-causing mutation. Hence, understanding the variability in NMD is not only important for clinical interpretation of genetic variants but also may provide clues to identify novel therapeutic approaches to counter genetic disorders caused by nonsense mutations. Here, we discuss the current knowledge of NMD variability and the mechanisms that allow certain transcripts to escape NMD despite the presence of NMD-inducing features. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Michael C. Dyle
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Divya Kolakada
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A. Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Rajput B, Pruitt KD, Murphy TD. RefSeq curation and annotation of stop codon recoding in vertebrates. Nucleic Acids Res 2019; 47:594-606. [PMID: 30535227 PMCID: PMC6344875 DOI: 10.1093/nar/gky1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Recoding of stop codons as amino acid-specifying codons is a co-translational event that enables C-terminal extension of a protein. Synthesis of selenoproteins requires recoding of internal UGA stop codons to the 21st non-standard amino acid selenocysteine (Sec) and plays a vital role in human health and disease. Separately, canonical stop codons can be recoded to specify standard amino acids in a process known as stop codon readthrough (SCR), producing extended protein isoforms with potential novel functions. Conventional computational tools cannot distinguish between the dual functionality of stop codons as stop signals and sense codons, resulting in misannotation of selenoprotein gene products and failure to predict SCR. Manual curation is therefore required to correctly represent recoded gene products and their functions. Our goal was to provide accurately curated and annotated datasets of selenoprotein and SCR transcript and protein records to serve as annotation standards and to promote basic and biomedical research. Gene annotations were curated in nine vertebrate model organisms and integrated into NCBI's Reference Sequence (RefSeq) dataset, resulting in 247 selenoprotein genes encoding 322 selenoproteins, and 93 genes exhibiting SCR encoding 94 SCR isoforms.
Collapse
Affiliation(s)
- Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|