1
|
Xiao H, Tian Y, Wang Z, Li W, Zhang J, Han L, Zhao C, Ding J. The effects of nitrite stress on metabolites and gene expression in sea Cucumbers (Apostichopus japonicus). MARINE ENVIRONMENTAL RESEARCH 2025; 209:107203. [PMID: 40349400 DOI: 10.1016/j.marenvres.2025.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/13/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
Chronic nitrite accumulation in intensive aquaculture poses a significant threat to the sustainability of sea cucumbers (Apostichopus japonicus), a key species in marine aquaculture. This study investigated the molecular and metabolic responses of A. japonicus to 21-day nitrite stress (4.88 mg/L) through transcriptomic and metabolomic analyses. At the end of the experiment, the weight gain rate of the Cg group was 11 %, while that of the Nc group was -9 %. Nitrite exposure significantly impaired growth performance of A. japonicus (p < 0.05). Metabolomic profiling identified 36 differential metabolites, revealing activation of the TCA cycle and amino acid metabolism to prioritize energy production and nitrogen reallocation. Transcriptomic data highlighted 226 differentially expressed genes. Notably, Zimp10, a key regulator of TCA cycle activity in echinoderms, was upregulated, while FALDH, a glycolysis-related gene, was downregulated, indicating a shift toward energy-efficient aerobic respiration. Antioxidant capacity was compromised through suppression of glutathione metabolism genes (MGST1, GST), exacerbating oxidative damage. Stress signaling pathways were dynamically regulated. Downregulation of Ras1-X2 suppressed mTOR activity, activating autophagy and mitophagy for cellular repair. Additionally, enrichment of NOD-like receptor pathways and upregulation of vGTPase1-like signaled immune engagement. Prolonged nitrite exposure overwhelmed adaptive mechanisms, leading to physiological decline. These results demonstrate A. japonicus of reliance on metabolic reprogramming and stress signaling to mitigate nitrite toxicity, while highlighting vulnerabilities in antioxidant defenses. The study provides critical insights for optimizing aquaculture environments through targeted management of nitrite exposure and metabolic resilience strategies.
Collapse
Affiliation(s)
- Haoran Xiao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Ye Tian
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Zitong Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weiyan Li
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jiayi Zhang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Lingshu Han
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chong Zhao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jun Ding
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
2
|
Xie Q, Chang X, Ji W, Wang J, Dou F, Shi J, Cao Y. Spatiotemporal expression patterns and RNA interference efficiency of key diapause genes in Lymantria dispar-Investigating the heritability of RNA interference effects for pest biocontrol. Int J Biol Macromol 2025; 305:141037. [PMID: 39954893 DOI: 10.1016/j.ijbiomac.2025.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The spongy moth (Lymantria dispar Linnaeus), a major quarantine pest, relies on diapause as a key survival strategy. This study examined the temporal and spatial expression of four diapause-associated genes, LdGCLC, LdGLUD1_2, LdIDH1, and LdIDH2. Using fluorescence in situ hybridization and qPCR, their expression was analyzed across developmental stages and tissues. Additionally, RNA interference (RNAi) via microinjection and immersion was employed to systematically silence these genes. The results revealed that (1) all four genes were expressed in the brain; (2) dsRNA microinjection reduced target gene expression in larvae, with FISH showing a decrease in fluorescence intensity; (3) immersing eggs in dsRNA solution significantly lowered target gene expression, diapause hormone and ecdysone levels, along with a notable reduction in hatchability; (4) pre-immersion eggs in 4.4 M HCl at room temperature for 5 min before bacterial immersion significantly enhanced RNAi efficiency; and (5) maternal dsRNA microinjection decreased target gene expression, diapause hormone and ecdysone levels in offspring eggs, confirming transgenerational RNAi. These findings underscore RNAi's potential for heritable gene silencing in pest control.
Collapse
Affiliation(s)
- Qing Xie
- Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control, Beijing 100083, China; Hebei Xiongan New Area City Ecosystem Observation and Research Station, Hebei 071703, China
| | - Xiaoxiao Chang
- Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control, Beijing 100083, China; Hebei Xiongan New Area City Ecosystem Observation and Research Station, Hebei 071703, China
| | - Wenzhuai Ji
- Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control, Beijing 100083, China; Hebei Xiongan New Area City Ecosystem Observation and Research Station, Hebei 071703, China
| | - Jingyu Wang
- Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control, Beijing 100083, China; Hebei Xiongan New Area City Ecosystem Observation and Research Station, Hebei 071703, China
| | - Fengrui Dou
- Comprehensive Support Center of Hohhot Forestry and Grassland Bureau, Inner Mongolia 010010, China
| | - Juan Shi
- Beijing Forestry University, Beijing Key Laboratory for Forest Pest Control, Beijing 100083, China; Hebei Xiongan New Area City Ecosystem Observation and Research Station, Hebei 071703, China.
| | - Yixia Cao
- China Certification & Inspection (Group) Inspection Co., Ltd (CCIC), Beijing 100020, China.
| |
Collapse
|
3
|
Penner M, Klein OJ, Gantz M, Nintzel FEH, Prowald AC, Boss S, Barker P, Dupree P, Hollfelder F. Fluorogenic, Subsingle-Turnover Monitoring of Enzymatic Reactions Involving NAD(P)H Provides a Generalized Platform for Directed Ultrahigh-Throughput Evolution of Biocatalysts in Microdroplets. J Am Chem Soc 2025; 147:10903-10915. [PMID: 40127491 PMCID: PMC11969528 DOI: 10.1021/jacs.4c11804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Enzyme engineering and discovery are crucial for a sustainable future bioeconomy. Harvesting new biocatalysts from large libraries through directed evolution or functional metagenomics requires accessible, rapid assays. Ultrahigh-throughput screening formats often require optical readouts, leading to the use of model substrates that may misreport target activity and necessitate bespoke synthesis. This is a particular challenge when screening glycosyl hydrolases, which leverage molecular recognition beyond the target glycosidic bond, so that complex chemical synthesis would have to be deployed to build a fluoro- or chromogenic substrate. In contrast, coupled assays represent a modular "plug-and-play" system: any enzyme-substrate pairing can be investigated, provided the reaction can produce a common intermediate which links the catalytic reaction to a detection cascade readout. Here, we establish a detection cascade producing a fluorescent readout in response to NAD(P)H via glutathione reductase and a subsequent thiol-mediated uncaging reaction, with a low nanomolar detection limit in plates. Further scaling down to microfluidic droplet screening is possible: the fluorophore is leakage-free and we report 3 orders of magnitude-improved sensitivity compared to absorbance-based systems, with a resolution of 361,000 product molecules per droplet. Our approach enables the use of nonfluorogenic substrates in droplet-based enrichments, with applicability in screening for glycosyl hydrolases and imine reductases (IREDs). To demonstrate the assay's readiness for combinatorial experiments, one round of directed evolution was performed to select a glycosidase processing a natural substrate, beechwood xylan, with improved kinetic parameters from a pool of >106 mutagenized sequences.
Collapse
Affiliation(s)
- Matthew Penner
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Oskar James Klein
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maximilian Gantz
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Friederike E. H. Nintzel
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Anne-Cathrin Prowald
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Sally Boss
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Barker
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
4
|
Knop R, Keweloh S, Pukall J, Dittmann S, Zühlke D, Sievers S. A rubrerythrin locus of Clostridioides difficile encodes enzymes that efficiently detoxify reactive oxygen species. Anaerobe 2025; 92:102941. [PMID: 39894065 DOI: 10.1016/j.anaerobe.2025.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES The microaerophilic conditions in the large intestine and reactive oxygen species (ROS) produced by the immune system represent a challenge for the strictly anaerobic pathogen Clostridioides difficile, which protects itself by a variety of oxidative stress proteins. Four of these are encoded in an operon that has been implicated in the detoxification of H2O2 and O2●-. In this study, proteins of this operon, i. e. a rubrerythrin (Rbr), a superoxide reductase (Sor) and a putative glutamate dehydrogenase (CD630_08280) were investigated for their ROS detoxifying activity in vitro. METHODS Recombinant proteins were overexpressed in C. difficile and purified anaerobically by affinity chromatography. The H2O2-reductase activity was determined by measuring the NADH consumption after peroxide addition. Superoxide detoxification potential of Sor was detected colorimetrically using a xanthine/xanthine oxidase system with cytochrome c as analytical probe. RESULTS Proposed roles of the investigated proteins in the detoxification pathways of ROS could partially be demonstrated. Specifically, Rbr and glutamate dehydrogenase synergistically detoxify H2O2, although with a very low turnover. Furthermore, Sor was shown to scavenge O2●- by superoxide dismutase activity and its activity was compared to superoxide dismutase of Escherichia coli. CONCLUSIONS The investigated gene locus codes for an oxidative stress operon whose members have the potential to neutralize O2●- and H2O2 to water and thus complements the arsenal of ROS detoxifying mechanisms that are already known in C. difficile. However, full activity with adequate physiological electron transfer partners still needs to be demonstrated.
Collapse
Affiliation(s)
- Robert Knop
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Simon Keweloh
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Johanna Pukall
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia Dittmann
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Godsora BKJ, Das P, Mishra PK, Sairaman A, Kaledhonkar S, Punekar NS, Bhaumik P. Conformational flexibility associated with remote residues regulates the kinetic properties of glutamate dehydrogenase. Protein Sci 2025; 34:e70038. [PMID: 39981924 PMCID: PMC11843732 DOI: 10.1002/pro.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 02/22/2025]
Abstract
Glutamate dehydrogenase (GDH) is a pivotal metabolic enzyme in all living organisms, and some of the GDHs exhibit substrate-dependent homotropic cooperativity. However, the mode of allosteric communication during the homotropic effect in GDHs remains poorly understood. In this study, we examined two homologous GDHs, Aspergillus niger GDH (AnGDH) and Aspergillus terreus GDH (AtGDH), with differing substrate utilization kinetics to uncover the factors driving their distinct behavior. We report the crystal structures and first-ever cryo-EM structures of apo- AtGDH and AnGDH that captured arrays of conformational ensembles. A wider mouth opening (~ 21 Å) is observed for the cooperative AnGDH as compared to the non-cooperative AtGDH (~17 Å) in their apo states. A network of interactions related to the substitutions in Domain II influence structural flexibility in these GDHs. Remarkably, we have identified a distant substitution (R246 to S) in Domain II, as a part of this network, which can impact the mouth opening and converts non-cooperative AtGDH into a cooperative enzyme. Our study demonstrates that remote residues can influence structural and kinetic properties in homologous GDHs.
Collapse
Affiliation(s)
| | - Parijat Das
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Prasoon Kumar Mishra
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Anjali Sairaman
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Sandip Kaledhonkar
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| | - Narayan S. Punekar
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
- Present address:
Department of Biosciences and BioengineeringIndian Institute of Technology DharwadDharwadKarnatakaIndia
| | - Prasenjit Bhaumik
- Department of Biosciences and BioengineeringIndian Institute of Technology BombayMumbaiMaharashtraIndia
| |
Collapse
|
6
|
Lü J, Jiang C, Drabick JJ, Joshi M, Perimbeti S. Angelica gigas Nakai (Korean Dang-gui) Root Alcoholic Extracts in Health Promotion and Disease Therapy - active Phytochemicals and In Vivo Molecular Targets. Pharm Res 2025; 42:25-47. [PMID: 39779619 PMCID: PMC11785709 DOI: 10.1007/s11095-024-03809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extracts have been marketed as dietary supplements in the United States for memory health and pain management. We have recently reviewed the pharmacokinetics (PK) and first-pass hepatic metabolism of ingested AGN supplements in humans for the signature pyranocoumarins decursin (D, Cmax 1x), decursinol angelate (DA, Cmax ~ 10x) and their common botanical precursor and hepatic metabolite decursinol (DOH, Cmax ~ 1000x). Here we update in vivo medicinal activities of AGN and/or its pyranocoumarins and furanocoumarin nodakenin in cancer, pain, memory loss, cerebral ischemia reperfusion stroke, metabolic syndrome and vascular endothelial dysfunctions, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, osteoporosis and osteoarthritis. Given their polypharmacology nature, the pertinent mechanisms of action are likely misrepresented by many cell culture studies that did not consider the drug metabolism knowledge. We report here Rho-associated protein kinases (ROCK1/2) as novel targets for DA and DOH. Combining with published inhibitory activity of DOH on acetylcholinesterase, agonist activity of DOH and antagonist/degrader activity of DA/D on androgen and estrogen receptors, D/DA promoting activity for glutamic acid decarboxylase (GAD)- gamma-aminobutyric acid (GABA) inhibitory axis and inhibition of glutamate dehydrogenase (GDH), monoamine oxidase-A (MAO-A) and transient receptor potential vanilloid 1 (TRPV1), we postulate their contributions to neuro-cognitive, metabolic, oncologic, vascular and other beneficial bioactivities of AGN extracts. A clinical trial is being planned for an AGN extract to manage side effects of androgen deprivation therapy in prostate cancer patients.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA.
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Center for Cannabis and Natural Product Pharmaceutics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph J Drabick
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stuthi Perimbeti
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA, 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
7
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
8
|
Mlawer SJ, Pinto FR, Sikes KJ, Connizzo BK. Coordination of Glucose and Glutamine Metabolism in Tendon is Lost in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629426. [PMID: 39763790 PMCID: PMC11702705 DOI: 10.1101/2024.12.19.629426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tendinopathy is an age-associated degenerative disease characterized by a loss in extracellular matrix (ECM). Since glucose and glutamine metabolism is critical to amino acid synthesis and known to be altered in aging, we sought to investigate if age-related changes in metabolism are linked to changes in ECM remodeling. We exposed young and aged tendon explants to various concentrations of glucose and glutamine to observe changes in metabolic processing (enzyme levels, gene expression, etc.) and matrix biosynthesis. Interestingly, we found that glutamine processing is affected by glucose levels, but this effect was lost with aging. ECM synthesis was altered in a protein-dependent manner by increased glucose and glutamine levels in young tendons. However, these changes were not conserved in aged tendons. Overall, our work suggests that glucose and glutamine metabolism is important for ECM homeostasis, and age-related changes in nutrient metabolism could be a key driver of tendon degeneration.
Collapse
Affiliation(s)
- Samuel J. Mlawer
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Felicia R. Pinto
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| | - Katie J. Sikes
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Brianne K. Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
9
|
Tavakoli N, Fong EJ, Coleman A, Huang YK, Bigger M, Doche ME, Kim S, Lenz HJ, Graham NA, Macklin P, Finley SD, Mumenthaler SM. Merging Metabolic Modeling and Imaging for Screening Therapeutic Targets in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595756. [PMID: 38826317 PMCID: PMC11142224 DOI: 10.1101/2024.05.24.595756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism. This approach reveals the network-wide effects of metabolic perturbations. Our results highlighted hexokinase (HK) as a crucial target, which subsequently became our focus for experimental validation using patient-derived tumor organoids (PDTOs). Through metabolic imaging and viability assays, we found that PDTOs cultured in CAF-conditioned media exhibited increased sensitivity to HK inhibition, confirming the model predictions. Our approach emphasizes the critical role of integrating computational and experimental techniques in exploring and exploiting CRC-CAF crosstalk.
Collapse
|
10
|
Huo C, Zhang J, Yang X, Li X, Su Y, Chen Z. Dry season irrigation promotes nutrient cycling by reorganizing Eucalyptus rhizosphere microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176307. [PMID: 39284445 DOI: 10.1016/j.scitotenv.2024.176307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
In southern China, seasonal droughts and low soil phosphorus content constrain the productivity of Eucalyptus trees. To understand the rhizosphere microbiome response to the dry season, metagenomic sequencing analysis was used to investigate the 6-year-old Eucalyptus rhizosphere microbiome under four different irrigation and fertilization treatments. The results showed that irrigation and fertilization during the dry season significantly altered the composition of microbiome in the rhizosphere soil of Eucalyptus plantations. The soil physicochemical properties and enzyme activity explained 30.73 % and 29.75 % of the changes in bacterial and fungal community structure in Eucalyptus rhizosphere soil, respectively. Irrigation and fertilization during the dry season significantly altered the physicochemical properties of rhizosphere soil. Compared with the seasonal drought without fertilizer treatment (CK), the dry season irrigation with fertilizer treatment (WF) significantly increased the content of total nitrogen (46.34 %), available nitrogen (37.72 %), available phosphorus (440.9 %), and organic matter (35.34 %). Soil organic matter (OM), pH, and available phosphorus (AP) were key environmental factors influencing the microbial community composition. Moreover, irrigation and fertilization promoted carbon fixation and nitrogen and phosphorus mineralization, increasing soil OM content and the availability of inorganic nitrogen and phosphorus. Meanwhile, compared to the CK, the increase of acid phosphatase (16.81 %), invertase (146.89 %)and urease (59.45 %) in rhizosphere soil under irrigation (W) treatment further proves that dry season irrigation promote the soil carbon, nitrogen and phosphorus cycles. Irrigation and fertilization treatment alleviated the constraints of low phosphorus in southern China's soil, which promoted Eucalyptus productivity. In conclusion, we suggest implementing reasonable irrigation and fertilization strategies in the production practice of Eucalyptus and utilizing microbial resources to improve soil fertility and Eucalyptus productivity.
Collapse
Affiliation(s)
- Chunyu Huo
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianlang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinzhu Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Su
- Guangzhou collaborative innovation center on science- tech of ecology and landscape, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Zujing Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
11
|
Alshahrani A, Aleidi SM, Al Dubayee M, AlMalki R, Sebaa R, Zhra M, Abdel Rahman AM, Aljada A. Postprandial Metabolomic Profiling: Insights into Macronutrient-Specific Metabolic Responses in Healthy Individuals. Nutrients 2024; 16:3783. [PMID: 39519617 PMCID: PMC11547817 DOI: 10.3390/nu16213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the metabolic responses to different macronutrients is crucial for assessing their impacts on health. This study aims to investigate the postprandial metabolomic profiles of healthy individuals following the consumption of glucose, protein, and lipids. METHODS Twenty-three healthy, normal-weight adults participated in the study, randomly assigned to consume 300 kcal from glucose, protein, or lipids after an overnight fast. Blood samples were collected at baseline and at 1, 2, and 3 h post-ingestion. An untargeted metabolomic approach using mass spectrometry was employed to analyze plasma metabolites. RESULTS In total, 21, 59, and 156 dysregulated metabolites were identified after glucose, protein, and lipid intake, respectively. Notably, 3'-O-methylguanosine levels decreased significantly after glucose consumption while remaining stable during lipid intake before increasing at 2 h. Common metabolites shared between glucose and lipid groups included 3'-O-methylguanosine, 3-oxotetradecanoic acid, poly-g-D-glutamate, and triglyceride (TG) (15:0/18:4/18:1). CONCLUSIONS The findings highlight distinct metabolic responses to macronutrient intake, emphasizing the role of specific metabolites in regulating postprandial metabolism. These insights contribute to understanding how dietary components influence metabolic health and insulin sensitivity.
Collapse
Affiliation(s)
- Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Reem AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
12
|
Cheng YK, Zhang Y, Zhang ZY, Cong PK, Feng JY, Zhang R, Long SR, Zhang X, Wang ZQ, Cui J. Biological characteristics and functions of a novel glutamate dehydrogenase from Trichinella spiralis. Parasite 2024; 31:65. [PMID: 39465975 PMCID: PMC11514599 DOI: 10.1051/parasite/2024065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Glutamate dehydrogenase (GDH) plays an important role in the metabolism of organisms. Its high abundance in mitochondria in particular highlights its core role in cellular physiological processes. GDH catalyzes the mutual conversion between L-glutamic acid and α-ketoglutaric acids. At the same time, this transformation is accompanied by the oxidation-reduction of NAD(H) or NADP(H). This process not only helps to link amino acid metabolism with sugar metabolism, but also helps maintain the balance of intracellular pH and nitrogen homeostasis. In this study, a novel Trichinella spiralis glutamate dehydrogenase (TsGDH) was cloned, expressed and identified. The results revealed that TsGDH was expressed at various stages of development of the nematode T. spiralis, with higher expression levels in the adult worm stage, and was mainly localized in the cuticle, muscular layer, stichosome and female intrauterine embryos. After RNAi treatment, larval natural TsGDH enzyme activity was obviously reduced, and metabolism, molting, growth and reproduction were also significantly inhibited. The results indicate that TsGDH plays an important role in the development and survival of T. spiralis, and it may be a potential molecular target of anti-Trichinella vaccines and drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhong Quan Wang
-
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450052 China
| | - Jing Cui
-
Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
13
|
Erb HHH, Polishchuk N, Stasyk O, Kahya U, Weigel MM, Dubrovska A. Glutamine Metabolism and Prostate Cancer. Cancers (Basel) 2024; 16:2871. [PMID: 39199642 PMCID: PMC11352381 DOI: 10.3390/cancers16162871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Glutamine (Gln) is a non-essential amino acid that is involved in the development and progression of several malignancies, including prostate cancer (PCa). While Gln is non-essential for non-malignant prostate epithelial cells, PCa cells become highly dependent on an exogenous source of Gln. The Gln metabolism in PCa is tightly controlled by well-described oncogenes such as MYC, AR, and mTOR. These oncogenes contribute to therapy resistance and progression to the aggressive castration-resistant PCa. Inhibition of Gln catabolism impedes PCa growth, survival, and tumor-initiating potential while sensitizing the cells to radiotherapy. Therefore, given its significant role in tumor growth, targeting Gln metabolism is a promising approach for developing new therapeutic strategies. Ongoing clinical trials evaluate the safety and efficacy of Gln catabolism inhibitors in combination with conventional and targeted therapies in patients with various solid tumors, including PCa. Further understanding of how PCa cells metabolically interact with their microenvironment will facilitate the clinical translation of Gln inhibitors and help improve therapeutic outcomes. This review focuses on the role of Gln in PCa progression and therapy resistance and provides insights into current clinical trials.
Collapse
Affiliation(s)
- Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Nikita Polishchuk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Oleh Stasyk
- Department of Cell Signaling, Institute of Cell Biology, National Academy of Sciences of Ukraine, 79000 Lviv, Ukraine; (N.P.); (O.S.)
| | - Uğur Kahya
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Matthias M. Weigel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (M.M.W.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01309 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
14
|
Tocharus C, Sutheerawattananonda M. Hypoglycemic Ability of Sericin-Derived Oligopeptides (SDOs) from Bombyx mori Yellow Silk Cocoons and Their Physiological Effects on Streptozotocin (STZ)-Induced Diabetic Rats. Foods 2024; 13:2184. [PMID: 39063270 PMCID: PMC11276246 DOI: 10.3390/foods13142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with diabetes require daily medication to maintain blood sugar levels. Nevertheless, the long-term use of antidiabetics can lose efficacy and cause degeneration in some patients. For long-term diabetes care, integrating natural dietary foods and medicine is being considered. This study investigated the impact of SDOs on blood sugar levels and their physiological effects on diabetic rats. We induced diabetes in male Wistar rats with STZ (50 mg/kg) and then administered an oral glucose tolerance test to determine the SDO dosage comparable to glibenclamide. The rats were divided into nine groups: normal, diabetic, and diabetic with insulin (10 U/kg), glibenclamide (0.6 mg/kg), bovine serum albumin (BSA; 200 mg/kg), soy protein isolate (200 mg/kg), or SDOs (50, 100, and 200 mg/kg). Diabetic rats administered SDOs had a higher body weight and serum insulin but a lower blood sugar than diabetic control rats. Biochemical assays indicated lower AST/SGOT, ALT/SGPT, BUN, and triglycerides but higher HDL in the SDO groups. Immunohistochemistry showed that SDOs reduced damaged islet cells, increased beta-cell size, and improved insulin levels while decreasing alpha cell size and glucagon. The vascular effects of SDOs were like those of normal control treatment and insulin treatment in diabetic rats. SDOs, a yellow silk protein, show potential for long-term diabetes care.
Collapse
Affiliation(s)
- Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Manote Sutheerawattananonda
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
15
|
Xu J, Wang Y, Zhang Y, Li Q, Du B, Asitaiken JLHT, Liu Y, Niu D, Fu H, Yuan X. Effect of nitrogen addition on soil net nitrogen mineralization in topsoil and subsoil regulated by soil microbial properties and mineral protection: Evidence from a long-term grassland experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174686. [PMID: 38992360 DOI: 10.1016/j.scitotenv.2024.174686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Soil net nitrogen mineralization (Nmin), a microbial-mediated conversion of organic to inorganic N, is critical for grassland productivity and biogeochemical cycling. Enhanced atmospheric N deposition has been shown to substantially increase both plant and soil N content, leading to a major change in Nmin. However, the mechanisms underlying microbial properties, particularly microbial functional genes, which drive the response of Nmin to elevated N deposition are still being discussed. Besides, it is still uncertain whether the relative importance of plant carbon (C) input, microbial properties, and mineral protection in regulating Nmin under continuous N addition would vary with the soil depth. Here, based on a 13-year multi-level field N addition experiment conducted in a typical grassland on the Loess Plateau, we elucidated how N-induced changes in plant C input, soil physicochemical properties, mineral properties, soil microbial community, and the soil Nmin rate (Rmin)-related functional genes drove the responses of Rmin to N addition in the topsoil and subsoil. The results showed that Rmin increased significantly in both topsoil and subsoil with increasing rates of N addition. Such a response was mainly dominated by the rate of soil nitrification. Structural equation modeling (SEM) revealed that a combination of microbial properties (functional genes and diversity) and mineral properties regulated the response of Rmin to N addition at both soil depths, thus leading to changes in the soil N availability. More importantly, the regulatory impacts of microbial and mineral properties on Rmin were depth-dependent: the influences of microbial properties weakened with soil depth, whereas the effects of mineral protection enhanced with soil depth. Collectively, these results highlight the need to incorporate the effects of differential microbial and mineral properties on Rmin at different soil depths into the Earth system models to better predict soil N cycling under further scenarios of N deposition.
Collapse
Affiliation(s)
- Jingrun Xu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ying Wang
- Linze Desert Ecosystem Research Station, Gansu Desert Control Research Institute, Lanzhou 730070, PR China
| | - Yaodan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qingwei Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - J L H T Asitaiken
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Yubing Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Decao Niu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hua Fu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Xiaobo Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
16
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
17
|
Bakhtina AA, Campbell MD, Sibley BD, Sanchez-Contreras M, Sweetwyne MT, Bruce JE. Intra-organ cell specific mitochondrial quantitative interactomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598354. [PMID: 38915719 PMCID: PMC11195139 DOI: 10.1101/2024.06.10.598354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Almost every organ consists of many cell types, each with its unique functions. Proteomes of these cell types are thus unique too. But it is reasonable to assume that interactome (inter and intra molecular interactions of proteins) are also distinct since protein interactions are what ultimately carry out the function. Podocytes and tubules are two cell types within kidney with vastly different functions: podocytes envelop the blood vessels in the glomerulus and act as filters while tubules are located downstream of the glomerulus and are responsible for reabsorption of important nutrients. It has been long known that for tubules mitochondria plays an important role as they require a lot of energy to carry out their functions. In podocytes, however, it has been assumed that mitochondria might not matter as much in both normal physiology and pathology1. Here we have applied quantitative cross-linking mass spectrometry to compare mitochondrial interactomes of tubules and podocytes using a transgenic mitochondrial tagging strategy to immunoprecipitate cell-specific mitochondria directly from whole kidney. We have uncovered that mitochondrial proteomes of these cell types are quite similar, although still showing unique features that correspond to known functions, such as high energy production through TCA cycle in tubules and requirements for detoxification in podocytes which are on the frontline of filtration where they encounter toxic compounds and therefore, as a non-renewing cell type they must have ways to protect themselves from cellular toxicity. But we gained much deeper insight with the interactomics data. We were able to find pathways differentially regulated in podocytes and tubules based on changing cross-link levels and not just protein levels. Among these pathways are betaine metabolism, lysine degradation, and many others. We have also demonstrated how quantitative interactomics could be used to detect different activity levels of an enzyme even when protein abundances of it are the same between cell types. We have validated this finding with an orthogonal activity assay. Overall, this work presents a new view of mitochondrial biology for two important, but functionally distinct, cell types within the mouse kidney showing both similarities and unique features. This data can continue to be explored to find new aspects of mitochondrial biology, especially in podocytes, where mitochondria has been understudied. In the future this methodology can also be applied to other organs to uncover differences in the function of cell types.
Collapse
Affiliation(s)
- A A Bakhtina
- University of Washington, Department of Genome Sciences
| | - M D Campbell
- University of Washington, Department of Anesthesiology
| | - B D Sibley
- University of Washington, Department of Laboratory Medicine and Pathology
| | | | - M T Sweetwyne
- University of Washington, Department of Laboratory Medicine and Pathology
| | - J E Bruce
- University of Washington, Department of Genome Sciences
| |
Collapse
|
18
|
Zou Y, Zhou C, Chang X, Zhao F, Ye K. Differential mechanism between Listeria monocytogenes strains with different virulence contaminating ready-to-eat sausages during the simulated gastrointestinal tract. Food Res Int 2024; 186:114312. [PMID: 38729688 DOI: 10.1016/j.foodres.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.
Collapse
Affiliation(s)
- Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
19
|
Hua W, Liang B, Zhou S, Zhang Q, Xu S, Chen K, Wang X. An integrated cofactor and co-substrate recycling pathway for the biosynthesis of 1,5-pentanediol. Microb Cell Fact 2024; 23:132. [PMID: 38711050 DOI: 10.1186/s12934-024-02408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.
Collapse
Affiliation(s)
| | - Bo Liang
- Nanjing Tech University, Nanjing, China
| | | | | | - Shuang Xu
- Nanjing Tech University, Nanjing, China
| | | | - Xin Wang
- Nanjing Tech University, Nanjing, China.
| |
Collapse
|
20
|
Moedas MF, Simões RJM, Silva MFB. Mitochondrial targets in hyperammonemia: Addressing urea cycle function to improve drug therapies. Biochem Pharmacol 2024; 222:116034. [PMID: 38307136 DOI: 10.1016/j.bcp.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.
Collapse
Affiliation(s)
- Marco F Moedas
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ricardo J M Simões
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines-iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
21
|
Tian J, Wang X, Wu W, Zhao Y, Ling-Hu T, Qin X. Stable Isotope Tracer Technique and Network Pharmacology to Reveal Antidepressant Targets and Active Components of Xiaoyao San. Chem Biodivers 2024; 21:e202301736. [PMID: 38451006 DOI: 10.1002/cbdv.202301736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
In recent years, the research of mitochondrial dysfunction in depression has drawn the focus of researchers. Our research group previously found that Xiaoyao San (XYS) has improved the mitochondrial structure and the blocked tricarboxylic acid cycle (TCA cycle) in the hippocampal tissue of chronic unpredictable mild stress (CUMS) rats. However, the specific targets and active components of XYS remain unclear, and the potential to improve hippocampal mitochondrial TCA cycle disorder was also unexplored. In this research, a strategy to combine stable isotope-resolved metabolomics (SIRM), network pharmacology and transmission electron microscopy (TEM) was used to explore the potential, targets of action, and active components of XYS to improve hippocampal mitochondrial TCA cycle disorder of CUMS rats. The results of TEM showed that the ultrastructure of hippocampal mitochondria could be improved by XYS. A combination of SIRM and molecular docking showed that pyruvate carboxylase (PC), ATP citrate lyase (ACLK), glutamate dehydrogenase (GLDH), glutamate oxaloacetate transaminase (GOT) and pyruvate dehydrogenase (PDH) were targets of XYS to improve TCA cycle disorder. In addition, troxerutin was found to be the most potential active component of XYS to improve TCA cycle disorder. The above research results can provide new insights for the development of antidepressant drugs.
Collapse
Affiliation(s)
- Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xianxian Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Wenze Wu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yunhao Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ting Ling-Hu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
22
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
23
|
Litso I, Plaitakis A, Fadouloglou VE, Providaki M, Kokkinidis M, Zaganas I. Structural Evolution of Primate Glutamate Dehydrogenase 2 as Revealed by In Silico Predictions and Experimentally Determined Structures. Biomolecules 2023; 14:22. [PMID: 38254622 PMCID: PMC10812971 DOI: 10.3390/biom14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Glutamate dehydrogenase (GDH) interconverts glutamate to a-ketoglutarate and ammonia, interconnecting amino acid and carbohydrate metabolism. In humans, two functional GDH genes, GLUD1 and GLUD2, encode for hGDH1 and hGDH2, respectively. GLUD2 evolved from retrotransposition of the GLUD1 gene in the common ancestor of modern apes. These two isoenzymes are involved in the pathophysiology of human metabolic, neoplastic, and neurodegenerative disorders. The 3D structures of hGDH1 and hGDH2 have been experimentally determined; however, no information is available about the path of GDH2 structure changes during primate evolution. Here, we compare the structures predicted by the AlphaFold Colab method for the GDH2 enzyme of modern apes and their extinct primate ancestors. Also, we analyze the individual effect of amino acid substitutions emerging during primate evolution. Our most important finding is that the predicted structure of GDH2 in the common ancestor of apes was the steppingstone for the structural evolution of primate GDH2s. Two changes with a strong functional impact occurring at the first evolutionary step, Arg443Ser and Gly456Ala, had a destabilizing and stabilizing effect, respectively, making this step the most important one. Subsequently, GDH2 underwent additional modifications that fine-tuned its enzymatic properties to adapt to the functional needs of modern-day primate tissues.
Collapse
Affiliation(s)
- Ionela Litso
- Neurology/Neurogenetics Laboratory, School of Medicine, University of Crete, Voutes, 71003 Heraklion, Greece; (I.L.); (A.P.)
| | - Andreas Plaitakis
- Neurology/Neurogenetics Laboratory, School of Medicine, University of Crete, Voutes, 71003 Heraklion, Greece; (I.L.); (A.P.)
| | - Vasiliki E. Fadouloglou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mary Providaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, 70013 Heraklion, Greece; (M.P.); (M.K.)
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, 70013 Heraklion, Greece; (M.P.); (M.K.)
- Department of Biology, University of Crete, Vasilika Vouton, 71409 Heraklion, Greece
| | - Ioannis Zaganas
- Neurology/Neurogenetics Laboratory, School of Medicine, University of Crete, Voutes, 71003 Heraklion, Greece; (I.L.); (A.P.)
| |
Collapse
|
24
|
Vedelek V, Vedelek B, Lőrincz P, Juhász G, Sinka R. A comparative analysis of fruit fly and human glutamate dehydrogenases in Drosophila melanogaster sperm development. Front Cell Dev Biol 2023; 11:1281487. [PMID: 38020911 PMCID: PMC10652781 DOI: 10.3389/fcell.2023.1281487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Balázs Vedelek
- Department of Genetics, University of Szeged, Szeged, Hungary
- Hungarian Research Network, Biological Research Centre, Developmental Genetics Unit, Szeged, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- Hungarian Research Network, Biological Research Centre, Institute of Genetics, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Roy S, Roy S, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Teichmann SA. CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells. Front Immunol 2023; 14:1229703. [PMID: 38022565 PMCID: PMC10644475 DOI: 10.3389/fimmu.2023.1229703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Bidesh Mahata
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco L. Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
- Cellzome, a GlaxoSmithKline (GSK) company, Genomic Sciences, Pharma R&D, Heidelberg, Germany
| | - Anne-Claude Gavin
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah A. Teichmann
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
26
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
28
|
Chen J, Singh TK, Al Nemri S, Zaidi M, Billingsley KL, Park JM. Hyperpolarized [1- 13C]Acetyl-l-Carnitine Probes Tricarboxylic Acid Cycle Activity In Vivo. ACS Sens 2023; 8:2927-2932. [PMID: 37578472 PMCID: PMC11227661 DOI: 10.1021/acssensors.3c01046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) is sensitive to a variety of biological factors, and dysregulated OXPHOS is observed during the development of numerous pathological conditions. ATP production via OXPHOS is intrinsically dependent on the availability of acetyl-coenzyme A (CoA), which can enter the tricarboxylic acid (TCA) cycle to drive the oxidative pathway. Acetyl-l-carnitine (ALCAR) is an interchangeable endogenous source of acetyl-CoA, and therefore, ALCAR-derived probes are uniquely positioned for the assessment of OXPHOS. In this report, we develop hyperpolarized (HP) [1-13C]ALCAR as a noninvasive probe to investigate cardiac TCA cycle activity in vivo. We initially synthesized the isotopically labeled substrate and demonstrated that the 13C nucleus maintained a suitable T1 value (50.1 ± 0.8 s at 3 T) and polarization levels (21.3 ± 5.3%) to execute in vivo metabolic measurements. HP [1-13C]ALCAR was employed for cardiac analyses of OXPHOS in rats under fed and fasted conditions. [5-13C]Glutamate was successfully detected, and the metabolite was used to analyze the TCA cycle activity in both nutritional states. These assessments were compared to analogous experiments with the HP [1-13C]pyruvate. Our report represents the first study to demonstrate that HP methods using [1-13C]ALCAR enable direct analyses of mitochondrial function and TCA cycle activity, which are fundamental to cardiac cell homeostasis.
Collapse
Affiliation(s)
- Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Tamara K Singh
- Department of Chemistry and Biochemistry, California State University, Fullerton, California 92831, United States
| | - Sarah Al Nemri
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Maheen Zaidi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Kelvin L Billingsley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
29
|
St-Louis JL, El Jellas K, Velasco K, Slipp BA, Hu J, Helgeland G, Steine SJ, De Jesus DF, Kulkarni RN, Molven A. Deficiency of the metabolic enzyme SCHAD in pancreatic β-cells promotes amino acid-sensitive hypoglycemia. J Biol Chem 2023; 299:104986. [PMID: 37392854 PMCID: PMC10407745 DOI: 10.1016/j.jbc.2023.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic β-cells, we created genetically engineered β-cell-specific (β-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in β-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in β-SKO mice compared to controls. Consistently, treating isolated β-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of β-SKO islets revealed reduced transcription of β-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The β-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in β- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in β-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of β-cell identity.
Collapse
Affiliation(s)
- Johanna L St-Louis
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Khadija El Jellas
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Kelly Velasco
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Brittany A Slipp
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Geir Helgeland
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Solrun J Steine
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway
| | - Dario F De Jesus
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Harvard Stem Cell Institute, Boston, USA
| | - Anders Molven
- Department of Clinical Medicine, Gade Laboratory for Pathology, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
30
|
Wang XP, Sun SP, Li YX, Wang L, Dong DJ, Wang JX, Zhao XF. 20-hydroxyecdysone reprograms amino acid metabolism to support the metamorphic development of Helicoverpa armigera. Cell Rep 2023; 42:112644. [PMID: 37310862 DOI: 10.1016/j.celrep.2023.112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/16/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023] Open
Abstract
Amino acid metabolism is regulated according to nutrient conditions; however, the mechanism is not fully understood. Using the holometabolous insect cotton bollworm (Helicoverpa armigera) as a model, we report that hemolymph metabolites are greatly changed from the feeding larvae to the wandering larvae and to pupae. Arginine, alpha-ketoglutarate (α-KG), and glutamate (Glu) are identified as marker metabolites of feeding larvae, wandering larvae, and pupae, respectively. Arginine level is decreased by 20-hydroxyecdysone (20E) regulation via repression of argininosuccinate synthetase (Ass) expression and upregulation of arginase (Arg) expression during metamorphosis. α-KG is transformed from Glu by glutamate dehydrogenase (GDH) in larval midgut, which is repressed by 20E. The α-KG is then transformed to Glu by GDH-like in pupal fat body, which is upregulated by 20E. Thus, 20E reprogrammed amino acid metabolism during metamorphosis by regulating gene expression in a stage- and tissue-specific manner to support insect metamorphic development.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Shu-Peng Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Lin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
31
|
Jia Y, Yin C, Ke W, Liu J, Guo B, Wang X, Zhao P, Hu S, Zhang C, Li X, Liu R, Zheng X, Wang Y, Wang G, Pan H, Hu W, Song Z. Alpha-ketoglutarate alleviates cadmium-induced inflammation by inhibiting the HIF1A-TNFAIP3 pathway in hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163069. [PMID: 36996991 DOI: 10.1016/j.scitotenv.2023.163069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD 21201, United States
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
32
|
Tang Q, Li W, Ren Z, Ding Q, Peng X, Tang Z, Pang J, Xu Y, Sun Z. Different Fatty Acid Supplementation in Low-Protein Diets Regulate Nutrient Utilization and Lipid and Amino Acid Metabolism in Weaned Pigs Model. Int J Mol Sci 2023; 24:ijms24108501. [PMID: 37239844 DOI: 10.3390/ijms24108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.
Collapse
Affiliation(s)
- Qingsong Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenxue Li
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhongxiang Ren
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qi Ding
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Papakonstantinou S. Assessment of serum glutamate dehydrogenase activity and comparison to serum alanine aminotransferase activity in cats with increased blood total T4 concentration. J Vet Diagn Invest 2023; 35:300-303. [PMID: 36744764 PMCID: PMC10185985 DOI: 10.1177/10406387231153931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glutamate dehydrogenase (GLDH), a key enzyme in amino acid oxidation and urea production, is mainly derived from the liver and its activity may increase with hepatocellular necrosis. Feline hyperthyroidism is associated with elevated serum activities of various enzymes, but the pattern of serum GLDH activity has not been reported, to our knowledge. Feline clinical biochemistry results from 2 commercial diagnostic laboratories were reviewed retrospectively to assess changes in serum GLDH activity in cats with significantly elevated serum total T4 concentrations, which is highly suggestive of hyperthyroidism. A total of 2,773 records were analyzed, of which 2,370 (85%) had normal total T4 (≤50 nmol/L) and 403 (15%) had increased total T4 (≥60 nmol/L) concentrations. Among cats with an increased total T4 concentration, 26.5% had increased serum GLDH activity. All cats with increased GLDH activity also had increased serum ALT activity. In 42.9% of cats, ALT activity was increased, but GLDH activity was normal. In 30.5% of cats, both serum GLDH and ALT activities were within RIs. The fold-increase of GLDH activity was almost half of the ALT fold-increase. Although serum GLDH activity increased in some cats with hyperthyroidism, serum ALT activity increased more frequently and to a greater extent.
Collapse
|
34
|
Pan C, Mao S, Xiong Z, Chen Z, Xu N. Glutamate dehydrogenase: Potential therapeutic targets for neurodegenerative disease. Eur J Pharmacol 2023; 950:175733. [PMID: 37116563 DOI: 10.1016/j.ejphar.2023.175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Glutamate dehydrogenase (GDH) is a key enzyme in mammalian glutamate metabolism. It is located at the intersection of multiple metabolic pathways and participates in a variety of cellular activities. GDH activity is strictly regulated by a variety of allosteric compounds. Here, we review the unique distribution and expressions of GDH in the brain nervous system. GDH plays an essential role in the glutamate-glutamine-GABA cycle between astrocytes and neurons. The dysfunction of GDH may induce the occurrence of many neurodegenerative diseases, such as Parkinson's disease, epilepsy, Alzheimer's disease, schizophrenia, and frontotemporal dementia. GDH activators and gene therapy have been found to protect neurons and improve motor disorders in neurodegenerative diseases caused by glutamate metabolism disorders. To date, no medicine has been discovered that specifically targets neurodegenerative diseases, although several potential medicines are used clinically. Targeting GDH to treat neurodegenerative diseases is expected to provide new insights and treatment strategies.
Collapse
Affiliation(s)
- Chuqiao Pan
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Shijie Mao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zeping Xiong
- Department of Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Zhao Chen
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China
| | - Ning Xu
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, 313200, Zhejiang, People's Republic of China.
| |
Collapse
|
35
|
Willemse L, Terburgh K, Louw R. A ketogenic diet alters mTOR activity, systemic metabolism and potentially prevents collagen degradation associated with chronic alcohol consumption in mice. Metabolomics 2023; 19:43. [PMID: 37076659 PMCID: PMC10115735 DOI: 10.1007/s11306-023-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION A ketogenic diet (KD), which is a high fat, low carbohydrate diet has been shown to inhibit the mammalian target of rapamycin (mTOR) pathway and alter the redox state. Inhibition of the mTOR complex has been associated with the attenuation and alleviation of various metabolic and- inflammatory diseases such as neurodegeneration, diabetes, and metabolic syndrome. Various metabolic pathways and signalling mechanisms have been explored to assess the therapeutic potential of mTOR inhibition. However, chronic alcohol consumption has also been reported to alter mTOR activity, the cellular redox- and inflammatory state. Thus, a relevant question that remains is what effect chronic alcohol consumption would have on mTOR activity and overall metabolism during a KD-based intervention. OBJECTIVES The aim of this study was to evaluate the effect of alcohol and a KD on the phosphorylation of the mTORC1 target p70S6K, systemic metabolism as well as the redox- and inflammatory state in a mouse model. METHODS Mice were fed either a control diet with/without alcohol or a KD with/without alcohol for three weeks. After the dietary intervention, samples were collected and subjected towards western blot analysis, multi-platform metabolomics analysis and flow cytometry. RESULTS Mice fed a KD exhibited significant mTOR inhibition and reduction in growth rate. Alcohol consumption alone did not markedly alter mTOR activity or growth rate but moderately increased mTOR inhibition in mice fed a KD. In addition, metabolic profiling showed alteration of several metabolic pathways as well as the redox state following consumption of a KD and alcohol. A KD was also observed to potentially prevent bone loss and collagen degradation associated with chronic alcohol consumption, as indicated by hydroxyproline metabolism. CONCLUSION This study sheds light on the influence that a KD alongside alcohol intake can exert on not just mTOR, but also their effect on metabolic reprogramming and the redox state.
Collapse
Affiliation(s)
- Luciano Willemse
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
36
|
Bakhtina AA, Pharaoh GA, Campbell MD, Keller A, Stuppard RS, Marcinek DJ, Bruce JE. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. NATURE AGING 2023; 3:313-326. [PMID: 37118428 PMCID: PMC10154043 DOI: 10.1038/s43587-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/10/2023] [Indexed: 04/30/2023]
Abstract
Genomic, transcriptomic and proteomic approaches have been used to gain insight into molecular underpinnings of aging in laboratory animals and in humans. However, protein function in biological systems is under complex regulation and includes factors besides abundance levels, such as modifications, localization, conformation and protein-protein interactions. By making use of quantitative chemical cross-linking technologies, we show that changes in the muscle mitochondrial interactome contribute to mitochondrial functional decline in aging in female mice. Specifically, we identify age-related changes in protein cross-links relating to assembly of electron transport system complexes I and IV, activity of glutamate dehydrogenase, and coenzyme-A binding in fatty acid β-oxidation and tricarboxylic acid cycle enzymes. These changes show a remarkable correlation with complex I respiration differences within the same young-old animal pairs. Each observed cross-link can serve as a protein conformational or protein-protein interaction probe in future studies, which will provide further molecular insights into commonly observed age-related phenotypic differences. Therefore, this data set could become a valuable resource for additional in-depth molecular studies that are needed to better understand complex age-related molecular changes.
Collapse
Affiliation(s)
- Anna A Bakhtina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gavin A Pharaoh
- Department of Radiology, University of Washington, Seattle, WA, USA
| | | | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Nnatubeugo C, Johnson E, Gisondi S, Roland F, Geldenhuys WJ, Menze MA, Konkle ME. The Mitochondrial Protein MitoNEET as a Probe for the Allostery of Glutamate Dehydrogenase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238314. [PMID: 36500407 PMCID: PMC9737137 DOI: 10.3390/molecules27238314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
The proteins glutamate dehydrogenase (GDH) and mitoNEET are both targets of drug development efforts to treat metabolic disorders, cancer, and neurodegenerative diseases. However, these two proteins differ starkly in the current knowledge about ligand binding sites. MitoNEET is a [2Fe-2S]-containing protein with no obvious binding site for small ligands observed in its crystal structures. In contrast, GDH is known to have a variety of ligands at multiple allosteric sites thereby leading to complex regulation in activity. In fact, while GDH can utilize either NAD(H) or NADP(H) for catalysis at the active site, only NAD(H) binds at a regulatory site to inhibit GDH activity. Previously, we found that mitoNEET forms a covalent bond with GDH in vitro and increases the catalytic activity of the enzyme. In this study we evaluated the effects of mitoNEET binding on the allosteric control of GDH conferred by inhibitors. We examined all effectors using NAD or NADP as the coenzyme to determine allosteric linkage by the NAD-binding regulatory site. We found that GDH activity, in the presence of the inhibitory palmitoyl-CoA and EGCG, can be rescued by mitoNEET, regardless of the coenzyme used. This suggests that mitoNEET rescues GDH by stabilizing the open conformation.
Collapse
Affiliation(s)
- Chimere Nnatubeugo
- Department of Chemistry, Ball State University, 2000 W. University Avenue, Muncie, IN 47306, USA
| | - Erica Johnson
- Department of Chemistry, Ball State University, 2000 W. University Avenue, Muncie, IN 47306, USA
| | - Sarah Gisondi
- Department of Chemistry, Eastern Illinois University, Charleston, IL 61920, USA
| | - Felicia Roland
- Department of Chemistry, Eastern Illinois University, Charleston, IL 61920, USA
| | - Werner J. Geldenhuys
- Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Michael A. Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Mary E. Konkle
- Department of Chemistry, Ball State University, 2000 W. University Avenue, Muncie, IN 47306, USA
- Department of Chemistry, Eastern Illinois University, Charleston, IL 61920, USA
- Correspondence:
| |
Collapse
|
38
|
Chang H, Bennett AM, Cameron WD, Floro E, Au A, McFaul CM, Yip CM, Rocheleau JV. Targeting Apollo-NADP + to Image NADPH Generation in Pancreatic Beta-Cell Organelles. ACS Sens 2022; 7:3308-3317. [PMID: 36269889 PMCID: PMC9706804 DOI: 10.1021/acssensors.2c01174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NADPH/NADP+ redox state supports numerous reactions related to cell growth and survival; yet the full impact is difficult to appreciate due to organelle compartmentalization of NADPH and NADP+. To study glucose-stimulated NADPH production in pancreatic beta-cell organelles, we targeted the Apollo-NADP+ sensor by first selecting the most pH-stable version of the single-color sensor. We subsequently targeted mTurquoise2-Apollo-NADP+ to various organelles and confirmed activity in the cytoplasm, mitochondrial matrix, nucleus, and peroxisome. Finally, we measured the glucose- and glutamine-stimulated NADPH responses by single- and dual-color imaging of the targeted sensors. Overall, we developed multiple organelle-targeted Apollo-NADP+ sensors to reveal the prominent role of beta-cell mitochondria in determining NADPH production in the cytoplasm, nucleus, and peroxisome.
Collapse
Affiliation(s)
- Huntley
H. Chang
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Alex M. Bennett
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - William D. Cameron
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Eric Floro
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Aaron Au
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Christopher M. McFaul
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Christopher M. Yip
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Jonathan V. Rocheleau
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada,Toronto
General Hospital Research Institute, University
Health Network, Toronto, Ontario M5G 2C4, Canada,Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada,Banting
and Best Diabetes Centre, University of
Toronto, Toronto, Ontario M5G 2C4, Canada,
| |
Collapse
|
39
|
Wang Z, Zhou H, Yu H, Pu Z, Xu J, Zhang H, Wu J, Yang L. Computational Redesign of the Substrate Binding Pocket of Glutamate Dehydrogenase for Efficient Synthesis of Noncanonical l-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ziyuan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
| | - Haisheng Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, NO.733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, NO.733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, NO.733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China
| | - Jinling Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
| | - Hongyu Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, NO.733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, NO.38 Zhe-da Road, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, NO.733 Jianshe 3rd Road, Xiaoshan District, Hangzhou, Zhejiang, 311200, China
| |
Collapse
|
40
|
Strilbytska O, Semaniuk U, Bubalo V, Storey KB, Lushchak O. Dietary Choice Reshapes Metabolism in Drosophila by Affecting Consumption of Macronutrients. Biomolecules 2022; 12:biom12091201. [PMID: 36139040 PMCID: PMC9496580 DOI: 10.3390/biom12091201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The precise regulation of metabolism and feeding behavior is important for preventing the development of metabolic diseases. Here we examine the effects on Drosophila metabolism of dietary choice. These changes are predicted to be dependent on both the quantity and quality of the chosen diet. Using a geometric framework for both no-choice and two-choice conditions, we found that feeding decisions led to higher glucose and trehalose levels but lower triglycerides pools. The feeding regimens had similar strategies for macronutrient balancing, and both maximized hemolymph glucose and glycogen content under low protein intake. In addition, the flies showed significant differences in the way they regulated trehalose and triglyceride levels in response to carbohydrate and protein consumption between choice and no-choice nutrition. Under choice conditions, trehalose and triglyceride levels were maximized at the lowest protein and carbohydrate consumption. Thus, we suggest that these changes in carbohydrate and lipid metabolism are caused by differences in the macronutrients consumed by flies. Food choice elicits rapid metabolic changes to maintain energy homeostasis. These results contribute to our understanding of how metabolism is regulated by the revealed nutrient variation in response to food decisions.
Collapse
Affiliation(s)
- Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Uliana Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
| | - Volodymyr Bubalo
- Laboratory of Experimental Toxicology and Mutagenesis, L.I. Medved’s Research Center of Preventive Toxicology, Food and Chemical Safety, MHU, 03680 Kyiv, Ukraine
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, 76018 Ivano-Frankivsk, Ukraine
- Research and Development University, 13a Shota Rustaveli Street, 76018 Ivano-Frankivsk, Ukraine
- Correspondence:
| |
Collapse
|
41
|
Guo J, Zhou F, Liu Z, Cao Y, Zhao W, Zhang Z, Zhai Q, Jin Y, Li B, Jin F. Exosome‐shuttled mitochondrial transcription factor A mRNA promotes the osteogenesis of dental pulp stem cells through mitochondrial oxidative phosphorylation activation. Cell Prolif 2022; 55:e13324. [DOI: 10.1111/cpr.13324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jia Guo
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Feng Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Zhi Liu
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Yuan Cao
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Wanming Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Zheru Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Qiming Zhai
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology The Fourth Military Medical University Xi'an China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology The Fourth Military Medical University Xi'an China
| |
Collapse
|
42
|
Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin 2022; 43:1889-1904. [PMID: 35017669 PMCID: PMC9343382 DOI: 10.1038/s41401-021-00838-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.
Collapse
Affiliation(s)
- Nirmala Koju
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
43
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
44
|
Wagner S, Manickam R, Brotto M, Tipparaju SM. NAD + centric mechanisms and molecular determinants of skeletal muscle disease and aging. Mol Cell Biochem 2022; 477:1829-1848. [PMID: 35334034 PMCID: PMC10065019 DOI: 10.1007/s11010-022-04408-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022]
Abstract
The nicotinamide adenine dinucleotide (NAD+) is an essential redox cofactor, involved in various physiological and molecular processes, including energy metabolism, epigenetics, aging, and metabolic diseases. NAD+ repletion ameliorates muscular dystrophy and improves the mitochondrial and muscle stem cell function and thereby increase lifespan in mice. Accordingly, NAD+ is considered as an anti-oxidant and anti-aging molecule. NAD+ plays a central role in energy metabolism and the energy produced is used for movements, thermoregulation, and defense against foreign bodies. The dietary precursors of NAD+ synthesis is targeted to improve NAD+ biosynthesis; however, studies have revealed conflicting results regarding skeletal muscle-specific effects. Recent advances in the activation of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway and supplementation of NAD+ precursors have led to beneficial effects in skeletal muscle pathophysiology and function during aging and associated metabolic diseases. NAD+ is also involved in the epigenetic regulation and post-translational modifications of proteins that are involved in various cellular processes to maintain tissue homeostasis. This review provides detailed insights into the roles of NAD+ along with molecular mechanisms during aging and disease conditions, such as the impacts of age-related NAD+ deficiencies on NAD+-dependent enzymes, including poly (ADP-ribose) polymerase (PARPs), CD38, and sirtuins within skeletal muscle, and the most recent studies on the potential of nutritional supplementation and distinct modes of exercise to replenish the NAD+ pool.
Collapse
Affiliation(s)
- Sabrina Wagner
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Ravikumar Manickam
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington (UTA), Arlington, TX, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 030, Tampa, FL, 33612, USA.
| |
Collapse
|
45
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
46
|
Briso-Montiano Á, Vilas A, Richard E, Ruiz-Sala P, Morato E, Desviat LR, Ugarte M, Rodríguez-Pombo P, Pérez B. Hepatocyte-like cells differentiated from methylmalonic aciduria cblB type induced pluripotent stem cells: A platform for the evaluation of pharmacochaperoning. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166433. [PMID: 35569737 DOI: 10.1016/j.bbadis.2022.166433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022]
Abstract
Methylmalonic aciduria cblB type (MMA cblB type, MMAB OMIM #251110), caused by a deficiency in the enzyme ATP:cob(I)alamin adenosyltransferase (ATR, E.C_2. 5.1.17), is a severe metabolic disorder with a poor prognosis despite treatment. We recently described the potential therapeutic use of pharmacological chaperones (PCs) after increasing the residual activity of ATR in patient-derived fibroblasts. The present work reports the successful generation of hepatocyte-like cells (HLCs) differentiated from two healthy and two MMAB induced pluripotent stem cell (iPSC) lines, and the use of this platform for testing the effects of PCs. The MMAB cells produced little ATR, showed reduced residual ATR activity, and had higher concentrations of methylmalonic acid compared to healthy HLCs. Differential proteome analysis revealed the two MMAB HCLs to show reproducible differentiation, but this was not so for the healthy HLCs. Interestingly, PC treatment in combination with vitamin B12 increased the amount of ATR available, and subsequently ATR activity, in both MMAB HLCs. More importantly, the treatment significantly reduced the methylmalonic acid content of both. In summary, the HLC model would appear to be an excellent candidate for the pharmacological testing of the described PCs, for analyzing the effects of new drugs, and investigating the repurposing of older drugs, before testing in animal models.
Collapse
Affiliation(s)
- Á Briso-Montiano
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - A Vilas
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - E Richard
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - P Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - E Morato
- Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - L R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - M Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - P Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| | - B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Biología Molecular "Severo Ochoa" UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), ISCIII, Madrid, Spain.
| |
Collapse
|
47
|
Colloca A, Balestrieri A, Anastasio C, Balestrieri ML, D’Onofrio N. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063212. [PMID: 35328633 PMCID: PMC8949044 DOI: 10.3390/ijms23063212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.
Collapse
Affiliation(s)
- Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, U.O.C. Food Control and Food Safety, 80055 Portici, Italy;
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
- Correspondence: ; Tel.: +39-081-566-5865
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| |
Collapse
|
48
|
Wang H, An J, Fan C, Zhai Z, Zhang H, Hao Y. Transcriptome analysis revealed growth phase-associated changes of a centenarian-originated probiotic Bifidobacterium animalis subsp. lactis A6. BMC Microbiol 2022; 22:61. [PMID: 35209838 PMCID: PMC8876546 DOI: 10.1186/s12866-022-02474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background The physiology and application characteristics of probiotics are closely associated with the growth phase. Bifidobacterium animalis subsp. lactis A6 is a promising probiotic strain isolated from the feces of a healthy centenarian in China. In this study, RNA-seq was carried out to investigate the metabolic mechanism between the exponential and the stationary phase in B. lactis A6. Results Differential expression analysis showed that a total of 815 genes were significantly changed in the stationary phase compared to the exponential phase, which consisted of 399 up-regulated and 416 down-regulated genes. The results showed that the transport and metabolism of cellobiose, xylooligosaccharides and raffinose were enhanced at the stationary phase, which expanded carbon source utilizing profile to confront with glucose consumption. Meanwhile, genes involved in cysteine-cystathionine-cycle (CCC) pathway, glutamate dehydrogenase, branched-chain amino acids (BCAAs) biosynthesis, and Clp protease were all up-regulated in the stationary phase, which may enhance the acid tolerance of B. lactis A6 during stationary phase. Acid tolerance assay indicated that the survival rate of stationary phase cells was 51.07% after treatment by pH 3.0 for 2h, which was 730-fold higher than that of 0.07% with log phase cells. In addition, peptidoglycan biosynthesis was significantly repressed, which is comparable with the decreased growth rate during the stationary phase. Remarkably, a putative gene cluster encoding Tad pili was up-regulated by 6.5 to 12.1-fold, which is consistent with the significantly increased adhesion rate to mucin from 2.38% to 4.90% during the transition from the exponential phase to the stationary phase. Conclusions This study reported growth phase-associated changes of B. lactis A6 during fermentation, including expanded carbon source utilizing profile, enhanced acid tolerance, and up-regulated Tad pili gene cluster responsible for bacterial adhesion in the stationary phase. These findings provide a novel insight into the growth phase associated characteristics in B. lactis A6 and provide valuable information for further application in the food industry. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02474-5.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China
| | - Jieran An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China
| | - Chengfei Fan
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- Department of Food Science, Beijing University of Agriculture, 7 Bei Nong Road, Changping District, Beijing, 102206, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
49
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
50
|
Yin X, Zeng Y, Chen J, Liu L, Gao Z. Combined active pocket and hinge region engineering to develop an NADPH-dependent phenylglycine dehydrogenase. Bioorg Chem 2022; 120:105601. [PMID: 35033816 DOI: 10.1016/j.bioorg.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yujing Zeng
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Jun Chen
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|