1
|
Jia F, Fu L. Roles of Ubiquitin Ligases and Deubiquitylases in Alzheimer's Disease. Mol Neurobiol 2025; 62:7747-7761. [PMID: 39932514 DOI: 10.1007/s12035-025-04739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/02/2025] [Indexed: 05/15/2025]
Abstract
The mechanisms responsible for the accumulation of Aβ plaques and neurofibrillary tangles, composed of phosphorylated Tau protein, in Alzheimer's disease (AD) remain a mystery. Dysfunction of the ubiquitin-proteasome system (UPS) largely contributes to abnormal protein aggregation. A cascade of ubiquitinating enzymes promotes protein ubiquitination, while deubiquitylases (DUBs) regulate its reversal. Disruptions in ubiquitination and deubiquitination processes result in abnormal protein aggregation and the formation of inclusion bodies, ultimately leading to neuronal damage. Recent studies have highlighted the significant role of protein ubiquitination and deubiquitination in the pathogenesis of AD. E3 ubiquitin ligases, which facilitate protein ubiquitination, are beneficial for Aβ clearance, synaptic function, gap junction maintenance, mitophagy, and neuroinflammation. Conversely, DUBs, responsible for removing ubiquitin from substrate proteins, inhibit Aβ and Tau degradation while promoting neuroinflammation in neurons. This review provides a thorough overview of the involvement of E3 ubiquitin ligases and DUBs in AD, highlighting their diverse roles in aspects of pathophysiological processes.
Collapse
Affiliation(s)
- Fengju Jia
- School of Nursing, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Lin Fu
- School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266072266071, China
| |
Collapse
|
2
|
Sun J, Lee K, Kutseikin S, Guerrero A, Rius B, Madhavan A, Buasakdi C, Cheong KN, Chatterjee P, Rosen DA, Yoon L, Ardejani MS, Mendoza A, Rosarda JD, Saez E, Kelly JW, Wiseman RL. Identification of a Selective Pharmacologic IRE1/XBP1s Activator with Enhanced Tissue Exposure. ACS Chem Biol 2025; 20:993-1003. [PMID: 40231944 DOI: 10.1021/acschembio.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) has emerged as a promising strategy to mitigate etiologically diverse diseases. Despite this promise, few compounds are available to selectively activate IRE1/XBP1s signaling to probe the biologic and therapeutic implications of this pathway in human disease. Recently, we identified the compound IXA4 as a highly selective activator of protective IRE1/XBP1s signaling. While IXA4 has proven useful for increasing IRE1/XBP1s signaling in cultured cells and mouse liver, the utility of this compound is restricted by its limited activity in other tissues. To broaden our ability to pharmacologically interrogate the impact of IRE1/XBP1s signaling in vivo, we sought to identify IRE1/XBP1s activators with greater tissue activity than IXA4. We reanalyzed 'hits' from the high throughput screen used to identify IXA4, selecting compounds from structural classes not previously pursued. We then performed global RNAseq to confirm that these compounds showed transcriptome-wide selectivity for IRE1/XBP1s activation. Functional profiling revealed compound IXA62 as a selective IRE1/XBP1s activator that reduced Aβ secretion from CHO7PA2 cells and enhanced glucose-stimulated insulin secretion from rat insulinoma cells, mimicking the effects of IXA4 in these assays. IXA62 robustly and selectively activated IRE1/XBP1s signaling in the liver of mice dosed compound intraperitoneally or orally. In treated mice, IXA62 showed broader tissue activity, relative to IXA4, inducing expression of IRE1/XBP1s target genes in additional tissues such as kidney and lung. Collectively, our results designate IXA62 as a selective IRE1/XBP1s signaling activating compound with enhanced tissue activity, which increases our ability to pharmacologically probe the biologic significance and potential therapeutic utility of enhancing adaptive IRE1/XBP1s signaling in vivo.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Adrian Guerrero
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Bibiana Rius
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Aparajita Madhavan
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Ka-Neng Cheong
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Priyadarshini Chatterjee
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Dorian A Rosen
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alejandra Mendoza
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Enrique Saez
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037, United States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Lin N, Gao XY, Li X, Chu WM. Involvement of ubiquitination in Alzheimer's disease. Front Neurol 2024; 15:1459678. [PMID: 39301473 PMCID: PMC11412110 DOI: 10.3389/fneur.2024.1459678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
The hallmark pathological features of Alzheimer's disease (AD) consist of senile plaques, which are formed by extracellular β-amyloid (Aβ) deposition, and neurofibrillary tangles, which are formed by the hyperphosphorylation of intra-neuronal tau proteins. With the increase in clinical studies, the in vivo imbalance of iron homeostasis and the dysfunction of synaptic plasticity have been confirmed to be involved in AD pathogenesis. All of these mechanisms are constituted by the abnormal accumulation of misfolded or conformationally altered protein aggregates, which in turn drive AD progression. Proteostatic imbalance has emerged as a key mechanism in the pathogenesis of AD. Ubiquitination modification is a major pathway for maintaining protein homeostasis, and protein degradation is primarily carried out by the ubiquitin-proteasome system (UPS). In this review, we provide an overview of the ubiquitination modification processes and related protein ubiquitination degradation pathways in AD, focusing on the microtubule-associated protein Tau, amyloid precursor protein (APP), divalent metal transporter protein 1 (DMT1), and α-amino-3-hyroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. We also discuss recent advances in ubiquitination-based targeted therapy for AD, with the aim of contributing new ideas to the development of novel therapeutic interventions for AD.
Collapse
Affiliation(s)
- Nan Lin
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xi-Yan Gao
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao Li
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wen-Ming Chu
- College of Acupuncture and Tuina of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Guo L, Zhang D, Ren X, Liu D. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis. Int Immunopharmacol 2023; 123:110802. [PMID: 37591122 DOI: 10.1016/j.intimp.2023.110802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 μL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
5
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
6
|
Tan Y, Wang X, Zhang J, Zhang H, Li H, Peng T, Chen W, Wei P, Liu Z, He F, Li J, Ding H, Li N, Wang Z, Zhang Z, Hua Q. NeuroProtect, a Candidate Formula From Traditional Chinese Medicine, Attenuates Amyloid- β and Restores Synaptic Structures in APP/PS1 Transgenic Mice. Front Pharmacol 2022; 13:850175. [PMID: 35586051 PMCID: PMC9108353 DOI: 10.3389/fphar.2022.850175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common cause of dementia. The emerging data suggest that cognitive decline occurred in the setting of Aβ accumulation with synaptic dysfunction, which started to happen at preclinical stages. Then, presymptomatic intervention is more critical to postponing AD processing. Traditional Chinese medicine has a long history of treating and preventing dementia. Findings have shown that the decoction of Panax notoginseng and Gardenia jasminoides Ellis enhances memory functions in patients with stroke, and their main components, Panax notoginseng saponins (PNS) and geniposide (GP), improved memory abilities in experimental AD models. Since herbal medicine has advantages in protection with few side effects, we wish to extend observations of the NeuroProtect (NP) formulation for reducing amyloid-β and restoring synaptic structures in APP/PS1 transgenic mice. Methods: APP/PS1 transgenic mice and their wild-type littermates were fed with control, NP, and their components from 4 to 7 months of age. We assessed the synaptic structure by Golgi staining, analyzed the amyloid deposits by Thioflavin-S staining, and measured related protein levels by Western blot or ELISA. We used the Morris water maze and shuttle box test to evaluate cognitive functions. Results: Compared to WT mice, APP/PS1 mice are characterized by the accumulation of amyloid plaques, reducing synaptic structure richness and memory deficits. NP prevents these changes and ameliorates cognitive deficits. These effects may have been due to the contribution of its components by inhibition of insoluble amyloid-β deposition and restoration of synaptic structures. Conclusion: These findings reveal a beneficial effect of NP on AD progression under an early intervention strategy and provide a food supplement for AD prevention.
Collapse
Affiliation(s)
- Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huawei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Peng
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Weihang Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoheng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fang He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiao Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,Xi’an Satellite Control Center, Xi’an, China
| | - Haimin Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoyang Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Zhenqiang Zhang, ; Qian Hua, ,
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Zhenqiang Zhang, ; Qian Hua, ,
| |
Collapse
|
7
|
Valian N, Heravi M, Ahmadiani A, Dargahi L. Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums. Basic Clin Neurosci 2021; 12:205-212. [PMID: 34925717 PMCID: PMC8672668 DOI: 10.32598/bcn.12.2.1568.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 05/13/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several studies. However, there is no document reporting the comparison of these two mediums. So in this study, we evaluated the neurons and astroglial cells in primary midbrain neurons from rat embryos cultured in DMEM/F12 and neurobasal mediums. Methods: Primary mesencephalon cells were prepared from the E14.5 rat embryo. Then they were seeded in two different mediums (Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 [DMEM/F12] and neurobasal). On day 3 and day 5, half of the medium was replaced with a fresh medium. On day 7, β3-tubulin-, GFAP (Glial fibrillary acidic protein)- and Tyrosine Hydroxylase TH-positive cells were characterized as neurons, astrocytes, and dopaminergic neurons, respectively, using immunohistochemistry. Furthermore, the morphology of the cells in both mediums was observed under light microscopy on days 1, 3, and 5. Results: The cells cultured in both mediums were similar under light microscopy regarding the cell number, but in a neurobasal medium, the cells have aggregated and formed clustering structures. Although GFAP-immunoreactive cells were lower in neurobasal compared to DMEM/F12, the number of β3-tubulin- and TH-positive cells in both cultures was the same. Conclusion: This study’s findings demonstrated that primary midbrain cells from the E14.5 rat embryo could grow in both DMEM/F12 and neurobasal mediums. Therefore, considering the high price of a neurobasal medium, it can be replaced with DMEM/F12 for culturing primary dopaminergic neurons.
Collapse
Affiliation(s)
- Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Heravi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Zhang W, Zhang F, Hu Q, Xiao X, Ou L, Chen Y, Luo S, Cheng Y, Jiang Y, Ma X, Zhao Y. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review. Chin Med 2021; 16:86. [PMID: 34454545 PMCID: PMC8400848 DOI: 10.1186/s13020-021-00486-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022] Open
Abstract
With the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic-pituitary-adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linbo Ou
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yonghong Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Centre of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
9
|
Chen JH, Wu CH, Chiang CK. Therapeutic Approaches Targeting Proteostasis in Kidney Disease and Fibrosis. Int J Mol Sci 2021; 22:ijms22168674. [PMID: 34445377 PMCID: PMC8395452 DOI: 10.3390/ijms22168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological insults usually disturb the folding capacity of cellular proteins and lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called “ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecular signals that resume proteostasis under ER stress, are thought to restore the adaptive process in chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD treatment has been well discussed in the past decade. This review summarizes the up-to-date literature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. We also address the potential therapeutic possibilities of renal diseases based on the modulation of UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic potentials.
Collapse
Affiliation(s)
- Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
| | - Chia-Hsien Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (J.-H.C.); (C.-H.W.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 88347)
| |
Collapse
|
10
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
11
|
Starting at the beginning: endoplasmic reticulum proteostasis and systemic amyloid disease. Biochem J 2020; 477:1721-1732. [PMID: 32412081 DOI: 10.1042/bcj20190312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Systemic amyloid diseases are characterized by the deposition of an amyloidogenic protein as toxic oligomers and amyloid fibrils on tissues distal from the site of protein synthesis. Traditionally, these diseases have been viewed as disorders of peripheral target tissues where aggregates are deposited, and toxicity is observed. However, recent evidence highlights an important role for endoplasmic reticulum (ER) proteostasis pathways within tissues synthesizing and secreting amyloidogenic proteins, such as the liver, in the pathogenesis of these disorders. Here, we describe the pathologic implications of ER proteostasis and its regulation on the toxic extracellular aggregation of amyloidogenic proteins implicated in systemic amyloid disease pathogenesis. Furthermore, we discuss the therapeutic potential for targeting ER proteostasis to reduce the secretion and toxic aggregation of amyloidogenic proteins to mitigate peripheral amyloid-associated toxicity involved in the onset and progression of systemic amyloid diseases.
Collapse
|
12
|
Grandjean JMD, Madhavan A, Cech L, Seguinot BO, Paxman RJ, Smith E, Scampavia L, Powers ET, Cooley CB, Plate L, Spicer TP, Kelly JW, Wiseman RL. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol 2020; 16:1052-1061. [PMID: 32690944 PMCID: PMC7502540 DOI: 10.1038/s41589-020-0584-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Aparajita Madhavan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Cech
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan O Seguinot
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Emery Smith
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Lars Plate
- Departments of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Timothy P Spicer
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
13
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
14
|
Omura T, Matsuda H, Nomura L, Imai S, Denda M, Nakagawa S, Yonezawa A, Nakagawa T, Yano I, Matsubara K. Ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) prevents cell death in a cellular model of Parkinson's disease. Biochem Biophys Res Commun 2018; 506:516-521. [PMID: 30361093 DOI: 10.1016/j.bbrc.2018.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress may play a role in the etiology of Parkinson's disease (PD). We have previously reported that ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase degradation 1 (HRD1) involved in ER stress degrades unfolded protein that accumulates in the ER due to loss of function of Parkin, which is a causative factor in familial PD. We have also demonstrated that cell death is suppressed by the degradation of unfolded proteins. These findings indicate that HRD1 may serve as a compensatory mechanism for the loss of function of Parkin in familial PD patients. However, the role of HRD1 in sporadic PD has not yet been identified. This study aimed to reveal the roles of HRD1 and associated molecules in a cellular model of PD. We demonstrated that expressions of HRD1 and Suppressor/Enhancer Lin12 1-like (SEL1L: a HRD1 stabilizer) increased in SH-SY5Y human neuroblastoma cells upon exposure to 6-hydroxydopamine (6-OHDA). The 6-OHDA-induced cell death was suppressed in cells overexpressing wt-HRD1, whereas cell death was enhanced in cells with knockdown of HRD1 expression. These results suggest that HRD1 is a key molecule involved in 6-OHDA-induced cell death. By contrast, suppression of SEL1L expression decreased the amount of HRD1 protein. As a result, 6-OHDA-induced cell death was enhanced in cells suppressing SEL1L expression, and this cell death was much more evident than that in cells with suppression of HRD1 expression. These findings strongly indicate that SEL1L is necessary for maintaining and stabilizing the amount of HRD1 protein, and stabilizing the amount of HRD1 protein through SEL1L may serve to protect against 6-OHDA-induced cell death. Furthermore, the expression of Parkin was reinforced when HRD1 mRNA had been suppressed in cells, but was not observed when SEL1L mRNA had been restrained. It is possible that Parkin expression is induced as a compensatory mechanism when HRD1 mRNA decreases. This intracellular transduction may suppress the enhancement of 6-OHDA-induced cell death caused by the loss of HRD1. Taken together with these results, it is suggested that HRD1 and its stabilizer (SEL1L) are key molecules for elucidating the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | - Hiroki Matsuda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Luna Nomura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Masaya Denda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Li N, Zhou H, Ma ZG, Zhu JX, Liu C, Song P, Kong CY, Wu HM, Deng W, Tang QZ. Geniposide Alleviates Isoproterenol-Induced Cardiac Fibrosis Partially via SIRT1 Activation in vivo and in vitro. Front Pharmacol 2018; 9:854. [PMID: 30123131 PMCID: PMC6086014 DOI: 10.3389/fphar.2018.00854] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Objective: Geniposide (GE) is a major component in the fruit of Gardenia jasminoides Ellis. Oxidative stress, endoplasmic reticulum (ER) stress, and canonical Smad3 pathway are implicated in the pathogenesis of cardiac fibrosis. We aim to investigate the protective roles of GE in isoproterenol (ISO)-induced cardiac fibrosis. Methods: ISO was used to induce cardiac fibrosis in male C57BL/6 mice. GE and the EX-527 were given for 2 weeks to detect the effects of GE on cardiac fibrosis. Levels of oxidative stress, ER stress, and Smad3 were evaluated by real time-PCR, Western blots, immunohistochemistry staining, immunofluorescence staining, and assay kits. Results: GE treatment alleviated cardiac dysfunction, fibrosis, and hypertrophy in mice response to ISO. Additionally, GE also suppressed the transformation of cardiac fibroblasts to myofibroblasts stimulated by transforming growth factor-β (TGF-β) in vitro. Mechanistically, GE inhibited the oxidative stress, ER stress, as well as Smad3 pathway activated by ISO or TGF-β. A selective antagonist of sirtuin 1 deacetylase (SIRT1), EX-527, partially counteracted the anti-fibrotic effect and weakened the inhibitory effect on the transformation of cardiac fibroblasts to myofibroblasts after the treatment of GE. Acetylated Smad3 (ac-Smad3), oxidative stress, as well as ER stress pathway were significantly enhanced after SIRT1 was blocked while phosphorylated Smad3 (P-Smad3) was not affected. Conclusion: GE could combat cardiac fibrosis in vivo and in vitro by inhibiting oxidative stress, ER stress, and ac-Smad3 in a SIRT1-dependent manner and suppressing P-Samd3 pathway independent of SIRT1 activation. GE is expected to be a promising agent against cardiac fibrosis.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jin-Xiu Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|