1
|
Aguiar RP, Soares LM, Varney M, Newman-Tancredi A A, Milani H, Prickaerts J, de Oliveira RMW. NLX-101, a 5-HT 1A receptor-biased agonist, improves pattern separation and stimulates neuroplasticity in aged rats. Neurobiol Aging 2023; 124:52-59. [PMID: 36739621 DOI: 10.1016/j.neurobiolaging.2022.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
5-HT1A serotonin receptors may play a role in cognitive function changes related to advanced age. Here, we investigated the effects of acute and repeated treatment with NLX-101 (F15599), a postsynaptic 5-HT1A receptor-biased agonist, and F13714, a presynaptic 5-HT1A receptor-biased agonist on spatial object pattern separation (OPS) in aged (22-24 months) rats. Neuroplasticity markers including brain-derived neurotrophic factor, PSD95, synaptophysin, and doublecortin were evaluated in the hippocampus. Unlike younger rats, aged rats were incapable of discriminating any new position of the objects in the arena, reflecting the detrimental effect of aging on pattern separation. However, aged animals treated with NLX-101 showed a significant cognitive improvement in the OPS test, accompanied by increases in hippocampal brain-derived neurotrophic factor and PSD95 protein levels. In contrast, no improvement in OPS performance was observed when aged rats received F13714. Both F13714 and NLX-101 increased the number of newborn neurons in the hippocampi of aged rats. These findings provide a rationale for targeting post-synaptic 5-HT1A as a treatment for cognitive deficits related to aging.
Collapse
Affiliation(s)
- Rafael Pazinatto Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Lígia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | |
Collapse
|
2
|
Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022; 11:cells11233736. [PMID: 36496996 PMCID: PMC9736114 DOI: 10.3390/cells11233736] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The most commonly used treatment for Parkinson's disease (PD) is levodopa, prescribed in conjunction with carbidopa. Virtually all patients with PD undergo dopamine replacement therapy using levodopa during the course of the disease's progression. However, despite the fact that levodopa is the "gold standard" in PD treatments and has the ability to significantly alleviate PD symptoms, it comes with side effects in advanced PD. Levodopa replacement therapy remains the current clinical treatment of choice for Parkinson's patients, but approximately 80% of the treated PD patients develop levodopa-induced dyskinesia (LID) in the advanced stages of the disease. A better understanding of the pathological mechanisms of LID and possible means of improvement would significantly improve the outcome of PD patients, reduce the complexity of medication use, and lower adverse effects, thus, improving the quality of life of patients and prolonging their life cycle. This review assesses the recent advancements in understanding the underlying mechanisms of LID and the therapeutic management options available after the emergence of LID in patients. We summarized the pathogenesis and the new treatments for LID-related PD and concluded that targeting pathways other than the dopaminergic pathway to treat LID has become a new possibility, and, currently, amantadine, drugs targeting 5-hydroxytryptamine receptors, and surgery for PD can target the Parkinson's symptoms caused by LID.
Collapse
|
3
|
Cesaroni V, Blandini F, Cerri S. Dyskinesia and Parkinson's disease: animal model, drug targets, and agents in preclinical testing. Expert Opin Ther Targets 2022; 26:837-851. [PMID: 36469635 DOI: 10.1080/14728222.2022.2153036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. PD patients exhibit a classic spectrum of motor symptoms, arising when dopamine neurons in the substantia nigra pars compacta are reduced by 60%. The dopamine precursor L-DOPA represents the most effective therapy for improving PD motor dysfunctions, thus far available. Unfortunately, long-term treatment with L-DOPA is associated with the development of severe side effects, resulting in abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Amantadine is the only drug currently approved for the treatment of LID indicating that LID management is still an unmet need in PD and encouraging the search for novel anti-dyskinetic drugs or the assessment of combined therapies with different molecular targets. AREAS COVERED This review provides an overview of the main preclinical models used to study LID and of the latest preclinical evidence on experimental and clinically available pharmacological approaches targeting non-dopaminergic systems. EXPERT OPINION LIDs are supported by complex molecular and neurobiological mechanisms that are still being studied today. This complexity suggests the need of developing personalized pharmacological approach to obtain an effective amelioration of LID condition and improve the quality of life of PD patients.
Collapse
Affiliation(s)
- Valentina Cesaroni
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| | - Fabio Blandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Silvia Cerri
- Unit of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation 27100, Pavia, Italy
| |
Collapse
|
4
|
Vidal B, Levigoureux E, Chaib S, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson’s Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1257-1269. [DOI: 10.3233/jpd-212580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The gold-standard treatment for Parkinson’s disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a “false neurotransmitter”. The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. Objective: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed “off” L-DOPA. Methods: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. Results: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. Conclusion: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson’s disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
| | - Elise Levigoureux
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Sarah Chaib
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Billard
- CERMEP-Imaging Platform, Bron, France
- Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
5
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
6
|
Sałaciak K, Pytka K. Biased agonism in drug discovery: Is there a future for biased 5-HT 1A receptor agonists in the treatment of neuropsychiatric diseases? Pharmacol Ther 2021; 227:107872. [PMID: 33905796 DOI: 10.1016/j.pharmthera.2021.107872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Serotonin (5-HT) is one of the fundamental neurotransmitters that contribute to the information essential for an organism's normal, physiological function. Serotonin acts centrally and systemically. The 5-HT1A receptor is the most widespread serotonin receptor, and participates in many brain-related disorders, including anxiety, depression, and cognitive impairments. The 5-HT1A receptor can activate several different biochemical pathways and signals through both G protein-dependent and G protein-independent pathways. Preclinical experiments indicate that distinct signaling pathways in specific brain regions may be crucial for antidepressant-like, anxiolytic-like, and procognitive responses. Therefore, the development of new ligands that selectively target a particular signaling pathway(s) could open new possibilities for more effective and safer pharmacotherapy. This review discusses the current state of preclinical studies focusing on the concept of functional selectivity (biased agonism) regarding the 5-HT1A receptor and its role in antidepressant-like, anxiolytic-like, and procognitive regulation. Such work highlights not only the differential effects of targeted autoreceptors, vs. heteroreceptors, but also the importance of targeting specific downstream intracellular signaling processes, thereby enhancing favorable over unfavorable signaling activation.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
7
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
8
|
De Deurwaerdère P, Chagraoui A, Di Giovanni G. Serotonin/dopamine interaction: Electrophysiological and neurochemical evidence. PROGRESS IN BRAIN RESEARCH 2021; 261:161-264. [PMID: 33785130 DOI: 10.1016/bs.pbr.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between serotonin (5-HT) and dopamine (DA) in the central nervous system (CNS) plays an important role in the adaptive properties of living animals to their environment. These are two modulatory, divergent systems shaping and regulating in a widespread manner the activity of neurobiological networks and their interaction. The concept of one interaction linking these two systems is rather elusive when looking at the mechanisms triggered by these two systems across the CNS. The great variety of their interacting mechanisms is in part due to the diversity of their neuronal origin, the density of their fibers in a given CNS region, the distinct expression of their numerous receptors in the CNS, the heterogeneity of their intracellular signaling pathway that depend on the cellular type expressing their receptors, and the state of activity of neurobiological networks, conditioning the outcome of their mutual influences. Thus, originally conceptualized as inhibition of 5-HT on DA neuron activity and DA neurotransmission, this interaction is nowadays considered as a multifaceted, mutual influence of these two systems in the regulation of CNS functions. These new ways of understanding this interaction are of utmost importance to envision the consequences of their dysfunctions underlined in several CNS diseases. It is also essential to conceive the mechanism of action of psychotropic drugs directly acting on their function including antipsychotic, antidepressant, antiparkinsonian, and drug of abuse together with the development of therapeutic strategies of Alzheimer's diseases, epilepsy, obsessional compulsive disorders. The 5-HT/DA interaction has a long history from the serendipitous discovery of antidepressants and antipsychotics to the future, rationalized treatments of CNS disorders.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France.
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
9
|
Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology 2020; 177:108155. [PMID: 32522572 DOI: 10.1016/j.neuropharm.2020.108155] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Since our review of central 5-HT receptors and their function twenty years ago, no new 5-HT receptor has been discovered and there is little evidence that this situation will change in the near future. Nevertheless, over this time significant progress has been made in our understanding of the properties of these receptors and in the clinical translation of this information, and some of these developments are highlighted herein. Such highlights include extensive mapping of 5-HT receptors in both animal and human brain, culminating in readily-accessible brain atlases of 5-HT receptor distribution, as well as emerging data on how 5-HT receptors are distributed within complex neural circuits. Also, a range of important pharmacological and genetic tools have been developed that allow selective 5-HT receptor manipulation, in cells through to whole organism models. Moreover, unexpected complexity in 5-HT receptor function has been identified including agonist-dependent signalling that goes beyond the pharmacology of canonical 5-HT receptor signalling pathways set down in the 1980s and 1990s. This new knowledge of 5-HT signalling has been extended by the discovery of combined signalling of 5-HT and co-released neurotransmitters, especially glutamate. Another important advance has been the progression of a large number of 5-HT ligands through to experimental medicine studies and clinical trials, and some such agents have already become prescribed therapeutic drugs. Much more needs to be discovered and understood by 5-HT neuropharmacologists, not least how the diverse signalling effects of so many 5-HT receptor types interact with complex neural circuits to generate neurophysiological changes which ultimately lead to altered cognitions and behaviour. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Trevor Sharp
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Nicholas M Barnes
- Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
10
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
11
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|