1
|
Chen L, Tang J, Liu XQ, Li QQ, Li JY, Li YY, Zheng WH, Qin ZH, Sheng R. TIGAR Suppresses ER Stress-Induced Neuronal Injury through Targeting ATF4 Signaling in Cerebral Ischemia/Reperfusion. J Neurosci 2025; 45:e1406242025. [PMID: 39919831 PMCID: PMC11949484 DOI: 10.1523/jneurosci.1406-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/03/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Endoplasmic reticulum (ER) stress is crucial in cerebral ischemia/reperfusion injury by triggering cellular apoptosis and exacerbating neuronal damage. This study elucidates the dynamics of TP53-induced glycolysis and apoptosis regulator (TIGAR) translocation and its role in regulating neural fate during cerebral ischemia-induced ER stress, specifically in male mice. We found enhanced nuclear localization of TIGAR in neurons after transient middle cerebral artery occlusion/reperfusion (tMCAO/R) in male mice, as well as oxygen glucose deprivation/reperfusion (OGD/R) and treatment with ER stress inducer (tunicamycin and thapsigargin) in neuronal cells. Conditional neuronal knockdown of Tigar aggravated the injury following ischemia-reperfusion, whereas overexpression of Tigar attenuated cerebral ischemic injury and ameliorated intraneuronal ER stress. Additionally, TIGAR overexpression reduced the elevation of ATF4 target genes and attenuated ER stress-induced cell death. Notably, TIGAR colocalized and interacted with ATF4 in the nucleus, inhibiting its downstream proapoptotic gene transcription, consequently protecting against ischemic injury. In vitro and in vivo experiments revealed that ATF4 overexpression reversed the protective effects of TIGAR against cerebral ischemic injury. Intriguingly, our study identified the Q141/K145 residues of TIGAR, crucial for its nuclear translocation and interaction with ATF4, highlighting a novel aspect of TIGAR's function distinct from its known phosphatase activity or mitochondrial localization domains. These findings reveal a novel neuroprotective mechanism of TIGAR in regulating ER stress through ATF4-mediated signaling pathways. These insights may guide targeted therapeutic strategies to protect neuronal function and alleviate the deleterious effects of cerebral ischemic injury.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Xue-Qing Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| | - Wen-Hua Zheng
- Center of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 519000, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
- Institute of Health Technology, Suzhou Gaobo Vocational College, Suzhou High-Technology District, Science & Technology Town, Suzhou 215163, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Ren K, Dai L, Zhang H, He Y, Liu B, Hu Y, Ma K, Tian W, Zhao D. Neuritin attenuates neuroinflammation and apoptosis in early brain injury after subarachnoid hemorrhage via endoplasmic reticulum stress-related inflammatory pathways. Brain Res 2024; 1845:149293. [PMID: 39454807 DOI: 10.1016/j.brainres.2024.149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Neuroinflammation is a key destructive pathophysiological process in early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have discovered that endoplasmic reticulum stress-related inflammatory pathways include the IRE1α-TRAF2-NF-κB pathway, PERK-eIF2α-NF-κB pathway, and ATF6-AKT -NF-κB pathway leading to neuroinflammatory response. Neuritin is a neurotrophin that is involved in neuronal plasticity and regeneration. Studies have suggested that Neuritin has a vital role in reducing neuroinflammation, and can also decrease the expression of proteins related to endoplasmic reticulum stress following SAH. This suggests that Neuritin could be a potential therapeutic target for SAH and other neurological conditions. However, the regulatory mechanisms of Neuritin in ER stress-related inflammatory pathways after SAH are not yet fully understood. In this work, we discovered that the activation of ER stress-related inflammatory pathways leads to neuroinflammation, which further aggravates neuronal apoptosis after SAH. Our findings indicate that Neuritin overexpression play a neuroprotective role by inhibiting IRE1α-TRAF2-NF-κB pathway, PERK-eIF2α-NF-κB pathway, and ATF6-AKT-NF-κB pathway associated with endoplasmic reticulum stress. These inhibitory effects on neuroinflammation ultimately reduce nerve cell apoptosis.
Collapse
Affiliation(s)
- Kunhao Ren
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Linzhi Dai
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Hao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Yaowen He
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Bin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Youjie Hu
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Ketao Ma
- Shihezi University School of Medicine, Shihezi 832000, China
| | - Weidong Tian
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China
| | - Dong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shihezi University, Shihezi 832000, China.
| |
Collapse
|
3
|
Yuan R, Gao D, Yang G, Zhuoma D, Pu Z, Ciren Y, Li B, Yu J. Oxysophocarpine Prevents the Glutamate-Induced Apoptosis of HT-22 Cells via the Nrf2/HO-1 Signaling Pathway. Curr Issues Mol Biol 2024; 46:13035-13049. [PMID: 39590371 PMCID: PMC11593028 DOI: 10.3390/cimb46110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Oxysophocarpine (OSC), a quinolizidine alkaloid, shows neuroprotective potential, though its mechanisms are unclear. The aim of the present study was to investigate the neuroprotective effects of OSC through the nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathway using the HT-22 cell line. Assessments of cell viability were conducted utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Assessments of oxidative stress (OS) were conducted through the quantification of reactive oxygen species (ROS). The integrity of the mitochondrial membrane potential (MMP) was scrutinized using fluorescent probe technology. Apoptosis levels were quantified using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The trafficking of Nrf2 within the cell nucleus was examined through immunofluorescence analysis. Furthermore, Western blotting (WB) was applied to evaluate the expression levels of proteins implicated in apoptosis and the Nrf2/HO-1 pathway. To further probe the influence of OSC on the overexpression of antioxidant enzymes, cells were subjected to transfection with HO-1 siRNA. The results showed that OSC inhibited glutamate-induced OS, as evidenced by reduced cell viability and ROS levels. Furthermore, the apoptotic condition induced by glutamate in HT-22 cells was significantly reduced following OSC treatment. More interestingly, the Nrf2/HO-1 signaling pathway was upregulated following OSC treatment. These results suggest that OSC can exert neuroprotective effects by regulating the Nrf2/HO-1 pathway to inhibit neuronal cell apoptosis, potentially aiding in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruiying Yuan
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
- College of Pharmacy, Wuhan University, Wuhan 430000, China;
| | - Dan Gao
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Guibing Yang
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Dongzhi Zhuoma
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Zhen Pu
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Yangzhen Ciren
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Bin Li
- Department of Pharmaceutical Sciences, School of Medicine, Tibet University, Lhasa 850000, China; (R.Y.); (D.G.); (G.Y.); (D.Z.); (Z.P.); (Y.C.)
| | - Jianqing Yu
- College of Pharmacy, Wuhan University, Wuhan 430000, China;
| |
Collapse
|
4
|
Liang JF, Qin XD, Huang XH, Fan ZP, Zhi YY, Xu JW, Chen F, Pan ZL, Chen YF, Zheng CB, Lu J. Glycyrrhetinic acid triggers a protective autophagy by inhibiting the JAK2/STAT3 pathway in cerebral ischemia/reperfusion injury. Neuroscience 2024; 554:96-106. [PMID: 38964451 DOI: 10.1016/j.neuroscience.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a common feature of ischemic stroke leading to a poor prognosis. Effective treatments targeting I/R injury are still insufficient. The study aimed to investigate the mechanisms, by which glycyrrhizic acid (18β-GA) in ameliorates CIRI. Our results showed that 18β-GA significantly decreased the infarct volume, neurological deficit scores, and pathological changes in the brain tissue of rats after middle cerebral artery occlusion. Western blotting showed that 18β-GA inhibited the expression levels of phosphorylated JAK2 and phosphorylated STAT3. Meanwhile, 18β-GA increased LC3-II protein levels in a reperfusion duration-dependent manner, which was accompanied by an increase in the Bcl-2/Bax ratio. Inhibition of 18β-GA-induced autophagy by 3-methyladenine (3-MA) enhanced apoptotic cell death. In addition, 18β-GA inhibited the JAK2/STAT3 pathway, which was largely activated in response to oxygen-glucose deprivation/reoxygenation. However, the JAK2/STAT3 activator colivelin TFA abolished the inhibitory effect of 18β-GA, suppressed autophagy, and significantly decreased the Bcl-2/Bax ratio. Taken together, these findings suggested that 18β-GA pretreatment ameliorated CIRI partly by triggering a protective autophagy via the JAK2/STAT3 pathway. Therefore might be a potential drug candidate for treating ischemic stroke.
Collapse
Affiliation(s)
- Jian-Feng Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Lushan Rehabilitation and Recuperation Center, Jiujiang 332000, China
| | - Xiao-Dan Qin
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; The First Affiliated Hospital of Traditional Chinese Medicine of Guangzhou University, Ghuangzhou 510405, China
| | - Xue-Hong Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zi-Ping Fan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yong-Ying Zhi
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Jia-Wei Xu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Fangmei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Zhi-Li Pan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Yi-Fei Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Chang-Bo Zheng
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jun Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Kaur H, Sarmah D, Datta A, Borah A, Yavagal DR, Bhattacharya P. Stem cells alleviate OGD/R mediated stress response in PC12 cells following a co-culture: modulation of the apoptotic cascade through BDNF-TrkB signaling. Cell Stress Chaperones 2023; 28:1041-1051. [PMID: 36622548 PMCID: PMC10746664 DOI: 10.1007/s12192-022-01319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Apoptosis mediated by endoplasmic reticulum (ER) stress plays a crucial role in several neurovascular disorders, including ischemia/reperfusion injury (I/R injury). Previous in vitro and in vivo studies have suggested that following I/R injury, ER stress is vital for mediating CCAT-enhancer-binding protein homologous protein (CHOP) and caspase-12-dependent apoptosis. However, its modulation in the presence of stem cells and the underlying mechanism of cytoprotection remains elusive. In vivo studies from our lab have reported that post-stroke endovascular administration of stem cells renders neuroprotection and regulates apoptosis mediated by ER stress. In the current study, a more robust in vitro validation has been undertaken to decipher the mechanism of stem cell-mediated cytoprotection. Results from our study have shown that oxygen-glucose deprivation/reoxygenation (OGD/R) potentiated ER stress and apoptosis in the pheochromocytoma 12 (PC12) cell line as evident by the increase of protein kinase R (PKR)-like ER kinase (p-PERK), p-Eukaryotic initiation factor 2α subunit (EIF2α), activation transcription factor 4 (ATF4), CHOP, and caspase 12 expressions. Following the co-culture of PC12 cells with MSCs, ER stress was significantly reduced, possibly via modulating the brain-derived neurotrophic factor (BDNF) signaling. Furthermore, inhibition of BDNF by inhibitor K252a abolished the protective effects of BDNF secreted by MSCs following OGD/R. Our study suggests that inhibition of ER stress-associated apoptotic pathway with MSCs co-culture following OGD/R may help to alleviate cellular injury and further substantiate the use of stem cells as a therapeutic modality toward neuroprotection following hypoxic injury or stroke in clinical settings.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
6
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
7
|
Zhang L, Pan RL, Li Y, Hu YQ, Xv H, Zhu C, Wang X, Ma KT, Zhao D. Reverse relationship between autophagy and apoptosis in an in vitro model of cortical neuronal injury. J Chem Neuroanat 2021; 120:102070. [PMID: 34971726 DOI: 10.1016/j.jchemneu.2021.102070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/21/2022]
Abstract
Autophagy and apoptosis are intertwined, and their relationship involves complex cross-talk. Whether the activation and inhibition of autophagy protect or damage neurons in the central nervous system has been a matter of longstanding controversy. We investigated the effect of autophagy on the apoptosis of cortical neurons after oxygen- and glucose-deprivation/reoxygenation (OGD/R) injury in vitro and found that protective mechanism activation was the predominant response to enhanced autophagy activation and increased autophagic flux. After successful establishment of an OGD/R model with cortical neurons, the autophagy activator rapamycin (Rap) or the late-autophagy inhibitor bafilomycin A1 (BafA1) was added to cell groups according to the experimental design. Cell viability was determined by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays, and the apoptosis rate was measured by analysing Annexin V-FITC/PI-stained cells. The protein and mRNA expression levels of the apoptosis factors Caspase8 and Caspase3 and autophagy-associated proteins LC3 and p62 were measured by Western blotting and RT-qPCR. The extent of autophagic flux was determined by measuring the intensity of double immunofluorescence labelled protein after cells were transfected with RFP-GFP-LC3-expressing virus, and the ultrastructures of autophagosomes were observed by transmission electron microscopy (TEM). The results showed that cell viability decreased and that cells underwent autophagy and apoptosis after OGD/R. After the addition of Rap, cell viability was increased, and the apoptosis rate was decreased significantly. In addition, the level of the autophagic flux protein LC3II was increased, and the level of p62 was decreased. The number of autophagosomes and the ratio of autophagosomes to lysosomes were increased significantly. After BafA1 intervention, however, these results were reversed, with decreased cell viability, a significantly increased apoptosis rate, and disrupted autophagic flux. In conclusion, enhanced autophagy activation or autophagic flux exerted a significant protective effect on neurons after OGD/R injury in vitro.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Rong-Ling Pan
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Yu-Qi Hu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Hui Xv
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Chao Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Xv Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China
| | - Ke-Tao Ma
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832000, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases), Shihezi, 832000, China.
| |
Collapse
|
8
|
Zhang L, Wang Y, Pan RL, Li Y, Hu YQ, Xv H, Zhu C, Wang X, Yin JW, Ma KT, Zhao D. Neuritin attenuates oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury by promoting autophagic flux. Exp Cell Res 2021; 407:112832. [PMID: 34536391 DOI: 10.1016/j.yexcr.2021.112832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 01/14/2023]
Abstract
The autophagy/apoptosis interaction has always been a focus of study in pathogenicity models. Neuritin is a neurotrophic factor that is highly expressed primarily in the central nervous system. Our previous study revealed that it protects against apoptosis in cortical neurons subjected to oxygen-glucose deprivation (OGD)/reoxygenation (OGD/R), and later animal experiments revealed that it can increase the expression of the autophagy-related protein LC3. Whether this neuroprotective effect is closely related to autophagy is still unclear. In this study, we hypothesized that neuritin can promote autophagic flux to protect nerve cells after OGD/R. To verify this hypothesis, we induced OGD/R in primary cortical neurons and assessed cell viability by the CCK8 and LDH assays. Cell apoptosis was assessed by Annexin V-FITC/PI, staining, and the contents and mRNA abundances of the autophagy-related proteins LC3 and p62, the apoptotic protein Caspase3 were quantified by Western blotting and RT-PCR. Autophagic flux was assessed by immunofluorescence after RFP-GFP-LC3 virus transfection, and ultrastructural changes in autophagosomes were observed by transmission electron microscopy (TEM). The results showed that cell viability was decreased, apoptosis was increased and autophagy was enhanced after OGD/R. Neuritin significantly increased cell viability, decreased apoptosis, further increased the expression of the autophagic flux-related protein LC3, further decreased p62 expression, and significantly increased the autophagosome number and autophagosome to lysosome ratio. Bafilomycin A1 (BafA1) is a late autophagy inhibitor, aggravated cell damage and apoptosis and counteracted the enhancement of autophagy activation and protective effects of neuritin. In conclusion, neuritin may promote the completion of autophagic flux by ameliorating neuronal damage after OGD/R.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Rong-Ling Pan
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Yu-Qi Hu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Hui Xv
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Chao Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Xv Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Jiang-Wen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ke-Tao Ma
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, 832000, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
9
|
Zhang L, Xu J, Han YF, Zhang HL, Li Y, Chen FL, Hu YQ, Yin JW, Ma KT, Zhao D. Detection of autophagic flux in primary cerebral cortical neurons after oxygen glucose deprivation/reperfusion (OGD/R) using various methods. J Chem Neuroanat 2021; 117:101999. [PMID: 34214593 DOI: 10.1016/j.jchemneu.2021.101999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 01/18/2023]
Abstract
The current research hot spot in the field of autophagic flux is to explain and alleviate disease from the perspective of autophagy. A highly sophisticated, sensitive, quantifiable and comprehensive method is required to accurately determine the dynamic process of autophagic flux. There are very few methods in neuroscience that specifically examine autophagic flux. Therefore, primary cortical neurons were divided into oxygen glucose deprivation/reperfusion (OGD/R) (group A) and OGD/R plus bafilomycin A1 (BafA1) (group B) groups. ① Transfection of the LC3 gene with the RFP-GFP tandem fluorescent label was performed. ② Direct quantification was performed using transmission electron microscopy (TEM). ③ Autophagy-related tools were used to detect the transformation of LC3I/II. ④ SQSTM1/P62 combined with the LC3 protein flip test was performed to comprehensively evaluate autophagic flux. Using method one, the ratio of autophagolysosomes to autophagosomes in group A was significantly increased based on fluorescence microscopy analysis. Using method two, the autophagy process in group A was more continuous and unobstructed based on TEM analysis, while only some partial processes were observed in group B, and the number of autophagosomes and autophagy lysosomes in group A was significantly greater more than that in group B. The LC3II/I ratio measured in method three was analysed in detail to explain the autophagic flux. The ratio of soluble p62 combined with the ratio of LC3II/I detected using method four reflected the activation of autophagy. In summary, each method has its own advantages, and different methods and indicators can be used to monitor different stages of autophagy. An understanding of these advantages and mastery of these methods, is a very promising strategy to systematically and objectively study central nervous system diseases, facilitate the rational use of drugs, and formulate effective treatment plans from the perspective of autophagy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China; Department of Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836000, China
| | - Jian Xu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Yan-Feng Han
- Department of Xinjiang Production and Construction Corps Tenth Division Disease Prevention and Control Center, Beitun, 836000, China
| | - Hai-Long Zhang
- Department of Xinjiang Production and Construction Corps Tenth Division Beitun Hospital, Beitun, 836000, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Fu-Lei Chen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Yu-Qi Hu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China
| | - Jiang-Wen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ke-Tao Ma
- Department of Physiology, School of Medicine, Shihezi University and the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, 832000, China
| | - Dong Zhao
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University (NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases) Shihezi, 832000, China.
| |
Collapse
|
10
|
Del Corvo M, Bongiorni S, Stefanon B, Sgorlon S, Valentini A, Ajmone Marsan P, Chillemi G. Genome-Wide DNA Methylation and Gene Expression Profiles in Cows Subjected to Different Stress Level as Assessed by Cortisol in Milk. Genes (Basel) 2020; 11:genes11080850. [PMID: 32722461 PMCID: PMC7464205 DOI: 10.3390/genes11080850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on metabolism and immune response is well known, but the underlying epigenetic mechanisms require further investigation. In this study, we compared DNA methylation and gene expression signatures between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals. The high and low groups exhibited similar amounts of methylated CpGs, while we found differences among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis showed that genes of both groups act together in several pathways, such as nervous system activity, immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that, in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral changes in methylation can provide an insight into central nervous system functions.
Collapse
Affiliation(s)
- Marcello Del Corvo
- Department of Animal Science Food and Nutrition—DIANA, Nutrigenomics and Proteomics Research Centre—PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Istituto di Biologia e BiotecnologiaAgraria, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
- Correspondence:
| | - Silvia Bongiorni
- Department of Ecological and Biological sciences DEB, University of Tuscia, 01100 Viterbo, Italy;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science–University of Udine, 33100 Udine, Italy; (B.S.); (S.S.)
| | - Sandy Sgorlon
- Department of Agrifood, Environmental and Animal Science–University of Udine, 33100 Udine, Italy; (B.S.); (S.S.)
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest systems DIBAF, University of Tuscia, 01100 Viterbo, Italy; (A.V.); (G.C.)
| | - Paolo Ajmone Marsan
- Department of Animal Science Food and Nutrition—DIANA, Nutrigenomics and Proteomics Research Centre—PRONUTRIGEN, and Biodiversity and Ancient DNA Research Centre, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems DIBAF, University of Tuscia, 01100 Viterbo, Italy; (A.V.); (G.C.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy
| |
Collapse
|
11
|
Liu Q, Körner H, Wu H, Wei W. Endoplasmic reticulum stress in autoimmune diseases. Immunobiology 2019; 225:151881. [PMID: 31879042 DOI: 10.1016/j.imbio.2019.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
If the body's immune system is disordered and begins to attack "self" and therefore, its own tissues this is considered to be an autoimmune pathology. The specific mechanisms vary between the different diseases and have not always been elucidated but chronic, non-resolving inflammation is a common theme in the pathogenesis of autoimmune diseases. Interestingly, it has been shown that development and occurrence of various inflammatory responses are closely correlated to endoplasmic reticulum stress. Therefore, this review discusses the current progress of research about the relationship between autoimmune diseases and endoplasmic reticulum stress, specifically the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
12
|
Affiliation(s)
- Jiao Li
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
- The second people’s Hospital of Qixingguan District, Bijie, Guizhou, P.R. China
| | - Yuyan Cen
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
| | - Yan Li
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical College, Zunyi, P.R. China
| |
Collapse
|