1
|
Althafar ZM, Al-Gabri N, Alnomasy SF. Ameliorative impacts of interleukin 35 or thymoquinone nanoparticles on lipopolysaccharide-induced renal injury in rats. Int Immunopharmacol 2024; 135:112249. [PMID: 38772297 DOI: 10.1016/j.intimp.2024.112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
Interleukin-35 (IL-35) is a novel anti-inflammatory component, and its role in protecting against acute kidney disease (AKD) has not been explored. Thymoquinone (TQ) has been widely used for many therapeutic targets. Inflammation/oxidative signaling plays essential roles in the pathogenesis of diverse disorders, such as AKD, cancer, cardiac disease, aging, and metabolic and neurodegenerative disorders. The objective of the investigation was to evaluate how IL-35 prevents inflammation and oxidative stress indicators in the kidneys of rats caused by lipopolysaccharide (LPS). The experimental rats were allocated into six groups: control (0.5 mL saline); TQ (0.5 mg/kg, b.w. IP), IL-35 (100 μg of IL-35 /kg, b.w. IP), LPS (500 μg/kg b.w. IP), LPS + IL-35, and LPS + TQ. Results indicate that the hematological and blood biochemical parameters were substantially restored by TQ or IL-35 therapy. The elevation of kidney function (uric acid, creatinine, and cystatin C) and oxidative related biomarkers (MDA, PC, and MYO) in rat kidneys was significantly restored by the TQ and IL-35 therapies after LPS administration (P < 0.05). Serum immunological variables IgM and IgG were significantly restored by TQ and IL-35 in LPS-treated rats. Both IL-35 and TQ markedly mitigated the decrease antioxidant related biomarkers (SOD, GSH, CAT and TAC) triggered by LPS. The IL-35 and TQ treatments significantly diminished serum levels of inflammatory responses such as TNF-α, NF-κB, IL-6 and IFN-γ, and significantly increased IL-10 in LPS-treated rats. Additionally, serum levels of MCP, Caspase-3, andBcl-2 were significantly diminished by TQ or IL-35 therapy. The histopathology and immunohistochemistry for NF-kB, PCNA and TNF-α cytokines revealedremodeling when treated with TQ and IL-35. In summary, administration of IL-35 or TQ can attenuateLPS-induced renal damage by extenuatingoxidative stress, tissue impairment, apoptosis, and inflammation, implicating IL-35 as a promising therapeutic agent in acute-related renal injury.
Collapse
Affiliation(s)
- Ziyad M Althafar
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia
| | - Naif Al-Gabri
- Department of Pathology, Salam Central Laboratory, Salam Veterinary Group, Buraydah 51911, Saudi Arabia.
| | - Sultan F Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia.
| |
Collapse
|
2
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol 2023; 45:329-346. [PMID: 36469056 PMCID: PMC10239790 DOI: 10.1007/s00281-022-00975-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022]
Abstract
Unrestrained excessive inflammatory responses exacerbate ischemic brain injury and impede post-stroke brain recovery. CD4+CD25+Foxp3+ regulatory T (Treg) cells play important immunosuppressive roles to curtail inflammatory responses and regain immune homeostasis after stroke. Accumulating evidence confirms that Treg cells are neuroprotective at the acute stage after stroke and promote brain repair at the chronic phases. The beneficial effects of Treg cells are mediated by diverse mechanisms involving cell-cell interactions and soluble factor release. Multiple types of cells, including both immune cells and non-immune CNS cells, have been identified to be cellular targets of Treg cells. In this review, we summarize recent findings regarding the function of Treg cells in ischemic stroke and the underlying cellular and molecular mechanisms. The protective and reparative properties of Treg cells endorse them as good candidates for immune therapy. Strategies that boost the numbers and functions of Treg cells have been actively developing in the fields of transplantation and autoimmune diseases. We discuss the approaches for Treg cell expansion that have been tested in stroke models. The application of these approaches to stroke patients may bring new hope for stroke treatments.
Collapse
Affiliation(s)
- Miao Wang
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fang Yu
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Aditi Junagade
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA.
- Pittsburgh Institute of Brain Disorders and Recovery and Department of Neurology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, SBST, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Feng W, Zhang Y, Ding S, Chen S, Wang T, Wang Z, Zou Y, Sheng C, Chen Y, Pang Y, Marshall C, Shi J, Nedergaard M, Li Q, Xiao M. B lymphocytes ameliorate Alzheimer's disease-like neuropathology via interleukin-35. Brain Behav Immun 2023; 108:16-31. [PMID: 36427805 DOI: 10.1016/j.bbi.2022.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/28/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022] Open
Abstract
Increasing evidence supports the involvement of the peripheral immune system in the pathogenesis of Alzheimer's disease (AD). In the present study, we found that B lymphocytes could mitigate beta-Amyloid (Aβ) pathology and memory impairments in a transgenic AD mouse model. Specifically, in young 5 × FAD mice, we evidenced increased B cells in the frontal cortex and meningeal tissues; depletion of mature B cells aggravated these mice's Aβ load and memory deficits. The increased B cells produced more interleukin-35 (IL-35) in the front cortex. We further found IL-35 neutralization exacerbated Aβ pathology, while injecting IL-35 mitigated Aβ load and cognitive dysfunction in 5 × FAD mice with or without mature B cell deficiency. Mechanistically, IL-35 inhibited neuronal BACE1 transcription through modulating the SOCS1/STAT1 pathway, and reduced Aβ production accordingly. Reanalysis of the single-cell RNA sequencing data from blood samples of AD patients suggested an increased population of IL-35-producing B cells. Together, the present study revealed a novel effect of B lymphocyte-derived IL-35 on inhibiting Aβ production in the frontal cortex, which may serve as a potential target for future AD treatment.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shixin Ding
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Sijia Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tianqi Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Ying Zou
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingting Pang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, USA
| | - Jingping Shi
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Li Q, Zhang H, Liu X. Didymin Alleviates Cerebral Ischemia-Reperfusion Injury by Activating the PPAR Signaling Pathway. Yonsei Med J 2022; 63:956-965. [PMID: 36168249 PMCID: PMC9520049 DOI: 10.3349/ymj.2022.0040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Cerebral ischemia-reperfusion (IR) injury is a severe secondary injury induced by reperfusion after stroke. Didymin has been reported to have a protective effect on intracerebral hemorrhage. However, the underlying mechanism of didymin on regulating cerebral IR injury remains largely unknown. MATERIALS AND METHODS A rat cerebral IR model and oxygen-glucose deprivation/reperfusion (OGD/R) model in PC12 cells were established. Hematoxylin and eosin (H&E) was used to detect the pathological changes in brain tissues, and TUNEL staining was performed to detect apoptosis of brain tissues. MTT and flow cytometry were used to measure the viability and apoptosis of PC12 cells. QRT-PCR and western blot were used to detect inflammation cytokines in PC12 cells. Western blot was used to measure the expression of PPAR-γ, RXRA, Bax, c-caspase-3, and Bcl-2. RESULTS Didymin pretreatment decreased apoptotic rates, reduced levels of Bax and c-caspase-3, and increased Bcl-2 level in vivo and in vitro. Additionally, didymin pretreatment increased viability and decreased the inflammation levels [interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and monocyte chemotactic protein (MCP)-1] of OGD/R treated PC12 cells. Moreover, didymin activated the peroxisome proliferator-activated receptors (PPAR) signaling pathway and increased the expression of PPAR-γ and RXRA in OGD/R treated PC12 cells. Inhibition of PPAR-γ eliminated the protective effect of didymin on OGD/R treated cells. CONCLUSION Didymin protected neuron cells against IR injury in vitro and in vivo by activation of the PPAR pathway. Didymin may be a candidate drug for IR treatment.
Collapse
Affiliation(s)
- Qiang Li
- ICU Department, Jiyang People's Hospital of Jinan, Jinan, China.
| | - Hongting Zhang
- ICU Department, Jiyang People's Hospital of Jinan, Jinan, China
| | - Xiumei Liu
- ICU Department, Jiyang People's Hospital of Jinan, Jinan, China
| |
Collapse
|
6
|
Feng J, Wu Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int Immunopharmacol 2022; 110:108938. [PMID: 35759811 DOI: 10.1016/j.intimp.2022.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
The immune response is of great significance in the initiation and progression of a diversity of cardiovascular diseases involving pro-and anti-inflammatory cytokines. Interleukin-35 (IL-35), a cytokine of the interleukin-12 family, is a novel anti-inflammation and immunosuppressive cytokine, maintaining inflammatory suppression and regulating immune homeostasis. The role of IL-35 in cardiovascular diseases (CVDs) has aroused enthusiastic attention, a diversity of experimental or clinical evidence has indicated that IL-35 potentially has a pivot role in protecting against cardiovascular diseases, especially atherosclerosis and myocarditis. In this review, we initiate an overview of the relationship between Interleukin-35 and cardiovascular diseases, including atherosclerosis, acute coronary syndrome, pulmonary hypertension, abdominal aortic aneurysm, heart failure, myocardial ischemia-reperfusion, aortic dissection and myocarditis. Although the specific molecular mechanisms entailing the protective effects of IL-35 remain an unsolved issue, targeted therapies with IL-35 might provide a promising and effective solution to prevent and cure cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Liu G, Li M, Qian S, Yu L, Qian L, Feng X. Interleukin-35 exhibits protective effects in a rat model of hypoxic-ischemic encephalopathy through the inhibition of microglia-mediated inflammation. Transl Pediatr 2022; 11:651-662. [PMID: 35685068 PMCID: PMC9173876 DOI: 10.21037/tp-22-100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) brain damage is related to inflammatory responses and oxidative stress. Interleukin (IL)-35 is an antioxidant and anti-inflammatory cytokine. Thus, the effect of IL-35 treatment on neonatal rats with hypoxic-ischemic brain injury was investigated. METHODS A total of 96 7-day-old Sprague Dawley rats were randomly divided into three groups: sham group, HIE group, and IL-35 group. After left common carotid occlusion and 2.5 h hypoxia (HI injury), IL-35 (20 µg/g) was intraperitoneally (i.p.) administered to the pups. In vitro, BV2 cells were treated with or without IL-35 6 h before oxygen-glucose deprivation (OGD) insult and the microglia culture medium (MCM) was co-cultured with b.End3 cerebral vascular endothelial cells. Microglial polarization and activation were assessed by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, and enzyme-linked immunosorbent assay (ELISA). Endothelial cell dysfunction was measured by cell counting kit-8 and Western blot assays. RESULTS Administration of IL-35 alleviated neurological deficiencies, decreased brain edema, ameliorated cerebral infarction, and limited M1 microglial polarization in HI-injured pups. Meanwhile, IL-35 decreased pro-inflammatory cytokines, tumor necrosis factor-α, IL-1β, and reactive oxygen species generation in OGD-induced bEnd.3 cells. Furthermore, IL-35 treatment could reverse the vascular endothelial cell injury induced by microglial polarization. Finally, IL-35 markedly suppressed the activation of hypoxia-inducible factor-1α (HIF-1α) and the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. CONCLUSIONS IL-35 relieved hypoxic-ischemic-induced brain injury and inhibited the inflammatory response by suppressing microglial polarization and activation. These results suggest that IL-35 might have potential applications for the treatment of HIE.
Collapse
Affiliation(s)
- Guangliang Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, Binhai County People's Hospital, Bianhai, China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Shuang Qian
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of the Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Yu
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Lei Qian
- Department of Laboratory Medicine, Binhai County People's Hospital, Bianhai, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Xiao T, Qu H, Zeng Z, Li C, Wan J. Interleukin-35 from Interleukin-4-Stimulated Macrophages Alleviates Oxygen Glucose Deprivation/Re-oxygenation-Induced Neuronal Cell Death via the Wnt/β-Catenin Signaling Pathway. Neurotox Res 2022; 40:420-431. [PMID: 35150397 DOI: 10.1007/s12640-022-00478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 11/30/2022]
Abstract
Currently, brain stroke is one of the leading causes of death and disabilities. It results in depletion of oxygen and glucose in certain areas of the brain, leading to neuronal death. Re-oxygenation has been proven to attenuate neuronal damage; however, sudden oxygen supply may also cause oxidative stress and subsequent inflammation. Hence, therapies to suppress re-oxygenation-induced oxidative damage are urgently needed. Interleukin (IL)-35, an immunomodulator secreted by regulatory T cells and regulatory B cells, is proven to be a strong immune-repressive cytokine. Here, we investigated the potential role of IL-35 in a disease model of oxygen glucose deprivation/re-oxygenation (OGD/R) and found that M2 macrophage-derived IL-35 significantly alleviated inflammatory response induced by oxidative stress. Our results also showed that IL-35 treatment decreased OGD/R-induced neuronal cell death and inflammatory response. Additionally, we demonstrated that IL-35 suppresses inflammatory response via the Wnt/β-catenin signaling pathway. Hence, our findings indicate that IL-35 therapy has great potential in the treatment of OGD/R-induced oxidative damage and related inflammatory diseases.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongtao Qu
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiqing Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chuanghua Li
- Department of Neurosurgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, Hunan Province, China.
| |
Collapse
|
9
|
Dong Y, Hu C, Huang C, Gao J, Niu W, Wang D, Wang Y, Niu C. Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6621296. [PMID: 33790691 PMCID: PMC7984880 DOI: 10.1155/2021/6621296] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
The interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic stroke and cerebral I/R injury remain unclear. In the current study, we provided direct evidence that IL-22 treatment decreased infarct size, neurological deficits, and brain water content in mice subjected to cerebral I/R injury. IL-22 treatment remarkably reduced the expression of inflammatory cytokines, including IL-1β, monocyte chemotactic protein- (MCP-) 1, and tumor necrosis factor- (TNF-) α, both in serum and the ischemic cerebral cortex. In addition, IL-22 treatment also decreased oxidative stress and neuronal apoptosis in mice after cerebral I/R injury. Moreover, IL-22 treatment significantly increased Janus tyrosine kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 phosphorylation levels in mice and PC12 cells, and STAT3 knockdown abolished the IL-22-mediated neuroprotective function. These findings suggest that IL-22 might be exploited as a potential therapeutic agent for ischemic stroke and cerebral I/R injury.
Collapse
Affiliation(s)
- Yongfei Dong
- Department of Neurosurgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shangdong, 250021, China
| | - Chengyun Hu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jie Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Di Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| |
Collapse
|
10
|
Zhou X, Xia N, Lv B, Tang T, Nie S, Zhang M, Jiao J, Liu J, Xu C, Hou G, Yang X, Hu Y, Liao Y, Cheng X. Interleukin 35 ameliorates myocardial ischemia‐reperfusion injury by activating the gp130‐STAT3 axis. FASEB J 2020; 34:3224-3238. [PMID: 31917470 DOI: 10.1096/fj.201901718rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xingdi Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ni Xia
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Bingjie Lv
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Tingting Tang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shaofang Nie
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Min Zhang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jiao Jiao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jianfeng Liu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Chanjuan Xu
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Guofei Hou
- Sino‐France Laboratory of cellular signaling, Key Laboratory of Molecular Biophysics of Ministry of Education College of Life Science and Technology and Collaborative Innovation Center for Genetics and Development Huazhong University of Science and Technology Wuhan Hubei China
| | - Xiangping Yang
- School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Hu
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Institute of Hematology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
11
|
Braun DJ, Bachstetter AD, Sudduth TL, Wilcock DM, Watterson DM, Van Eldik LJ. Genetic knockout of myosin light chain kinase (MLCK210) prevents cerebral microhemorrhages and attenuates neuroinflammation in a mouse model of vascular cognitive impairment and dementia. GeroScience 2019; 41:671-679. [PMID: 31104189 PMCID: PMC6885026 DOI: 10.1007/s11357-019-00072-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) is critical in maintenance of brain homeostasis, and loss of its functional integrity is a key feature across a broad range of neurological insults. This includes both acute injuries such as traumatic brain injury and stroke, as well as more chronic pathologies associated with aging, such as vascular cognitive impairment and dementia (VCID). A specific form of myosin light chain kinase (MLCK210) is a major regulator of barrier integrity in general, including the BBB. Studies have demonstrated the potential of MLCK210 as a therapeutic target for peripheral disorders involving tissue barrier dysfunction, but less is known about its potential as a target for chronic neurologic disorders. We report here that genetic knockout (KO) of MLCK210 protects against cerebral microhemorrhages and neuroinflammation induced by chronic dietary hyperhomocysteinemia. Overall, the results are consistent with an accumulating body of evidence supporting MLCK210 as a potential therapeutic target for tissue barrier dysfunction and specifically implicate it in BBB dysfunction and neuroinflammation in a model of VCID.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Zhang X, Cao X, Dang M, Wang H, Chen B, Du F, Li H, Zeng X, Guo C. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion. Int J Mol Med 2019; 43:2507-2515. [PMID: 30942429 DOI: 10.3892/ijmm.2019.4152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/21/2019] [Indexed: 11/06/2022] Open
Abstract
The current study investigated the role of sRAGE in the production of IFN‑γ in macrophages with I/R treatment. The number of macrophages in myocardial tissues treated with I/R with or without sRAGE was determined via immunohistochemical staining. Proliferative activity of macrophages was analyzed by a 5‑BrdU incorporation assay. Differentiation of macrophages was detected via immunofluorescence staining of iNOS (M1 macrophage marker). IFN‑γ production, due to sRAGE stimulation, in Raw 264.7 macrophages and the NF‑κB signaling pathway were measured using western blotting. A ChIP assay was used to examine the interactions between NF‑κB and the promoter of IFN‑γ. The results showed that the number of macrophages in I/R‑treated myocardial tissues was increased following sRAGE infusion. Proliferation of macrophages was increased significantly in the presence of sRAGE; after I/R treatment, the cells preferred to differentiate into M1 macrophages. IFN‑γ expression in Raw 264.7 macrophages was suppressed by an NF‑κB inhibitor (Bay117082) but enhanced by sRAGE, with or without I/R treatment. Furthermore, sRAGE increased the phosphorylation of IκB, IKK and NF‑κB, as well as the translocation of NF‑κB into the nucleus of Raw 264.7 macrophages, with or without I/R treatment. ChIP results showed that sRAGE promoted NF‑κB binding to the promoter of IFN‑γ in Raw 264.7 macrophages. Therefore, the findings of the present study indicated that sRAGE protected the heart from I/R injuries, which might be mediated by promoting infiltration and the differentiation of macrophages into M1, which would then synthesize and secrete IFN‑γ through activating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Xiuling Zhang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Xianxian Cao
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Mengqiu Dang
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
| | - Buxing Chen
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Fenghe Du
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Huihua Li
- Department of Cardiology, Institute of Cardiovascular Disease, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing 100069, P.R. China
| | - Caixia Guo
- Department of Cardiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|