1
|
Deyama S, Kaneda K, Minami M. Resolution of depression: Antidepressant actions of resolvins. Neurosci Res 2025; 211:85-92. [PMID: 36272561 DOI: 10.1016/j.neures.2022.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Major depressive disorder, one of the most widespread mental illnesses, brings about enormous individual and socioeconomic consequences. Conventional monoaminergic antidepressants require weeks to months to produce a therapeutic response, and approximately one-third of the patients fail to respond to these drugs and are considered treatment-resistant. Although recent studies have demonstrated that ketamine, an N-methyl-D-aspartate receptor antagonist, produces rapid antidepressant effects in treatment-resistant patients, it also has undesirable side effects. Hence, rapid-acting antidepressants that have fewer adverse effects than ketamine are urgently required. D-series (RvD1-RvD6) and E-series (RvE1-RvE4) resolvins are endogenous lipid mediators derived from docosahexaenoic and eicosapentaenoic acids, respectively. These mediators reportedly play a pivotal role in the resolution of acute inflammation. In this review, we reveal that intracranial infusions of RvD1, RvD2, RvE1, RvE2, and RvE3 produce antidepressant-like effects in various rodent models of depression. Moreover, the behavioral effects of RvD1, RvD2, and RvE1 are mediated by the activation of the mechanistic target of rapamycin complex 1, which is essential for the antidepressant-like actions of ketamine. Finally, we briefly provide our perspective on the possible role of endogenous resolvins in stress resilience.
Collapse
Affiliation(s)
- Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2025; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
3
|
An Y, Cao S, Shi L, Zhang Y, Wang X, Yuan S, Shi Y, Wang B, Liu J, Han CJ. Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway. Brain Res Bull 2025; 221:111226. [PMID: 39870326 DOI: 10.1016/j.brainresbull.2025.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP. However, it is not known whether Sig-1R can ameliorate pathological neuroinflammation in DNP. The present study used a rat model of DNP and a highly selective agonist of Sig-1R to assess the effects of the protein on neuropathic pain in rats with type 2 diabetes mellitus. The rats were divided into Control, Model, Sig-1R agonist PRE-084 (0.3, 0.6, 1 mg/kg), and metformin (Met, 20 mg/kg) groups, with seven rats per group, and their body weight, fasting blood glucose, mechanical withdrawal threshold and thermal withdrawal latency were tested weekly for two weeks. After treatment with PRE-084, the pain thresholds in the DNP rats were significantly improved, together with pathological changes in the dorsal root ganglion, reductions in the serum levels of TNF-α, IL-1β, IL-6, MOD, and prostaglandin E2 (PGE2), and the activity of superoxide dismutase was increased. The mRNA levels of TNF-α, IL-1β, and cyclooxygenase 2 (COX-2) were reduced. Pharmacological inhibition of Sig-1R with BD1047 (10 μM) abolished Sig-1R-mediated activation of lipopolysaccharide-treated BV-2 microglial cells. It was also found that PRE-084 increased phosphorylation of serine/threonine protein kinase B (AKT) and glycogen synthase kinase 3β (GSK-3β) at Ser9, inhibiting nuclear factor kappa B (NF-κB)-mediated neuroinflammation in the dorsal root ganglion, thus reducing DNP. The findings suggest that the effect of Sig-1R agonist PRE-084 on DNP may reduce the level of inflammation through the up-regulation of AKT/GSK-3β and down-regulation of the NF-κB signaling, thereby contributing to the treatment of the disease.
Collapse
Affiliation(s)
- Yuyu An
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shanshan Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Leilei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yuhan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Shiyu Yuan
- Department of Pharmacy, The Second affiliated hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Chao-Jun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
4
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
5
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
6
|
Song S, Wang Q, Qu Y, Gao W, Li D, Xu X, Yue S. Pregabalin inhibits purinergic P2Y 2 receptor and TRPV4 to suppress astrocyte activation and to relieve neuropathic pain. Eur J Pharmacol 2023; 960:176140. [PMID: 37925132 DOI: 10.1016/j.ejphar.2023.176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUNDS Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.
Collapse
Affiliation(s)
- Shasha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianwen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujuan Qu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuang Gao
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Yang L, Gao X, Tian D, Yang W, Xue S, Cao Z, Sun T. Resolvin D2 activates anti-inflammatory microglia via restoring autophagy flux and alleviate neuropathic pain following spinal cord injury in rats. Exp Neurol 2023; 370:114573. [PMID: 37858697 DOI: 10.1016/j.expneurol.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Spinal cord injury (SCI) is a fatal and intractable disease accompanied by the comorbidity of chronic neuropathic pain. Here, we purposed to explore the therapeutic effect and the underlying mechanism of Resolvin D2 (RvD2) on neuropathic pain after SCI. The in vivo model of traumatic SCI rats was established. Primary microglia isolated from neonatal rats were induced by TNF-α in vitro. The locomotor ability was assessed by the Basso-Beattie-Besnahan score. Hargreaves methods and Von Frey fibrofilaments were used to evaluate the symptoms of neuropathic pain including allodynia and hyperalgesia in rats. The cytotoxicity of RvD2 was evaluated by MTT assay. ELISA kit was applied to access the levels of inflammatory factors. And the expression levels of related mRNA and proteins were determined by qRT-PCR, western blotting and immunofluorescence staining. The targeting relationship between miR-155 and PTEN was verified by dual-luciferase reporter (DLR) assay. We found that RvD2 mitigated locomotor dysfunction, allodynia and hyperalgesia of SCI rats. In addition, RvD2 treatment suppressed pro-inflammatory phenotype but promoted anti-inflammatory differentiation in microglia. Furthermore, RvD2 treatment inhibited the upregulated expression level of miR-155 which was caused by NF-κB activation and then recovered the autophagy flux via targeting PTEN, thereby relieving the inflammatory response in the TNF-α-induced primary microglia. In summary, RvD2 treatment could recover the autophagy flux via suppressing NF-κB-modulated miR-155 expression to activate anti-inflammatory microglia and then inhibit the inflammatory response and even mitigate neuropathic pain following SCI.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pain Management, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021,China; Department of Pain Management, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200,China
| | - Xiaoming Gao
- Department of Pain Management, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200,China
| | - Demin Tian
- Department of Pain Management, Weihai Municipal Hospital, Shandong University, Weihai, Shandong 264200,China
| | - Wenjie Yang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Song Xue
- Department of Pain Management, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021,China
| | - Zhenxin Cao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021,China; Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
8
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
9
|
Gao J, Su Y, Wang Z. Lung Inflammation Resolution by RvD1 and RvD2 in a Receptor-Dependent Manner. Pharmaceutics 2023; 15:pharmaceutics15051527. [PMID: 37242769 DOI: 10.3390/pharmaceutics15051527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation resolution is an active process via specialized pro-resolving mediators (SPMs) to fight invading microbes and repair tissue injury. RvD1 and RvD2 are SPMs produced from DHA during inflammation responses and show a benefit in treating inflammation disorders, but it is not completely understood how they act on vasculature and immune cells in the lung to promote inflammation resolution programs. Here, we studied how RvD1 and RvD2 regulated the interactions between endothelial cells and neutrophils in vitro and in vivo. In an acute lung inflammation (ALI) mouse model, we found that RvD1 and RvD2 resolved lung inflammation via their receptors (ALX/GPR32 or GPR18) and enhanced the macrophage phagocytosis of apoptotic neutrophils, which may be the molecular mechanism of lung inflammation resolution. Interestingly, we observed the higher potency of RvD1 over RvD2, which may be associated with unique downstream signaling pathways. Together, our studies suggest that the targeted delivery of these SPMs into inflammatory sites may be novel strategies with which to treat a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
10
|
Bai J, Zhang J, Zhou L, Hua Y. Proteomic Analysis of the Spinal Dorsal Horn in Mice with Neuropathic Pain After Exercise. J Pain Res 2023; 16:973-984. [PMID: 36968761 PMCID: PMC10032142 DOI: 10.2147/jpr.s403374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
Purpose Neuropathic pain (NP) is a chronic pain state with a complex etiology that currently lacks effective treatment in clinical practice. Studies have found that exercise training can alleviate NP hyperalgesia, but the specific mechanism remains unclear. Here, we sought to identify proteins and signaling pathways critical for mediating the effects of treadmill training on NP in a mouse model of spared nerve injury (SNI). Methods We used Tandem Mass Tag (TMT) technology for proteins and signaling pathways identification. Functional enrichment analyses were conducted using DAVID and Metascape software. Ingenuity pathway analysis was used to conduct functional annotation and analyze alterations in canonical pathways and molecular networks. Reverse transcription quantitative PCR (RT-qPCR) was used to confirm the results of proteomics analysis. Results A total of 270 differentially expressed proteins were screened in the detrained and trained groups (P ≤0.05). Enrichment and ingenuity pathway analysis revealed the effects of treadmill training on autophagy, cAMP-mediated signaling, calcium signaling and NP signaling in dorsal horn nerves. Treadmill training reduced the expression of Akt3, Atf2, Gsk3b, Pik3c3, Ppp2ca, and Sqstm1, and increased the expression of Pik3cb in the autophagic pathway. Conclusion Our results suggest that treadmill training may alleviate nociceptive hyperalgesia in NP mice by modulating the autophagic pathway, providing unique mechanistic insights into the analgesic effects of exercise.
Collapse
Affiliation(s)
- Jie Bai
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Jingyu Zhang
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
| | - Li Zhou
- Department of Pediatric Digestive, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, People’s Republic of China
| | - Yufang Hua
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, People’s Republic of China
- Correspondence: Yufang Hua, Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, People’s Republic of China, Tel +86 139 1903 2553, Email
| |
Collapse
|
11
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
12
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
13
|
Zhang T, Zuo G, Zhang H. GPR18 Agonist Resolvin D2 Reduces Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage by Multiple Protective Mechanisms. Cell Mol Neurobiol 2022; 42:2379-2392. [PMID: 34089427 PMCID: PMC11421639 DOI: 10.1007/s10571-021-01114-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Early brain injury (EBI) is the early phase of secondary complications arising from subarachnoid hemorrhage (SAH). G protein-coupled receptor 18 (GPR18) can exert neuroprotective effects during ischemia. In this study, we investigated the roles of GPR18 in different brain regions during EBI using a GPR18 agonist, resolvin D2 (RvD2). Location and dynamics of GPR18 expression were assessed by immunohistochemistry and western blotting in a rat model of SAH based on endovascular perforation. RvD2 was given intranasally at 1 h after SAH, and SAH grade, brain water content and behavior were assayed before sacrifice. TUNEL and dihydroethidium staining of the cortex were performed at 24 h after SAH. Selected brain regions were also examined for pathway related proteins using immunofluorescence and Western blotting. We found that GPR18 was expressed in meninges, hypothalamus, cortex and white matter before EBI. After SAH, GPR18 expression was increased in meninges and hypothalamus but decreased in cortex and white matter. RvD2 improved neurological scores and brain edema after SAH. RvD2 attenuated mast cell degranulation and reduced expression of chymase and tryptase expression in the meninges. In the hypothalamus, RvD2 attenuated inflammation, increased expression of proopiomelanocortin and interleukin-10, as well as decreased expression of nerve peptide Y and tumor necrosis factor-α. In cortex, RvD2 alleviated oxidative stress and apoptosis, and protected the blood-brain barrier. RvD2 also ameliorated white matter injury by elevating myelin basic protein and suppressing amyloid precursor protein. Our results suggest that GPR18 may help protect multiple brain regions during EBI, particularly in the cortex and hypothalamus. Upregulating GPR18 by RvD2 may improve neurological functions in different brain regions via multiple mechanisms.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St., Beijing, 100053, China
| | - Gang Zuo
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, 215400, Jiangsu, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St., Beijing, 100053, China.
| |
Collapse
|
14
|
Yaobishu Regulates Inflammatory, Metabolic, Autophagic, and Apoptosis Pathways to Attenuate Lumbar Disc Herniation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3861380. [PMID: 35615578 PMCID: PMC9125431 DOI: 10.1155/2022/3861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/18/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022]
Abstract
Objective Here, we aimed to explore the main mechanism of Yaobishu (YBS) in lumbar disc herniation (LDH). Methods and Results Eighteen compounds that might act on LDH were obtained through a combination of network pharmacology prediction and identification by high-performance liquid chromatography-mass spectrometry. The key compounds were palmitic acid and trans-4-hydroxy-3-methoxycinnamate (cinnamate). KEGG analysis demonstrated that palmitic acid target genes mainly regulate the PPAR signaling pathway, Ras signaling pathway, and fatty acid metabolism. Cinnamate target genes were primarily involved in chemical carcinogenesis-receptor activation, lipid and atherosclerosis, the HIF-1 signaling pathway, and nitrogen metabolism. The rat LDH model was constructed using autologous nucleus pulposus tissue implantation. Differential expression gene (DEGs) related to metabolism (CDKN1A and UHRF1), inflammation (S100A9 and SOCS3), autophagy (DCN and LEPR), and apoptosis (CTSW and BCL2A1) in dorsal root ganglion (DRG) tissues of the control and LDH groups was evaluated by RNA-Seq. TNF-α stimulated DRG neuronal cells were used to establish an in vitro LDH model. YBS, palmitic acid, and cinnamate reduced the expression of substance P, CGRP, S100A9, CTSW, and cleaved caspase-3, while enhancing the expression of CDKN1A, UHRF1, PCNA, Ki67, SOCS3, DCN, LEPR, and BCL2A1, as well as telomerase activity. Pearson's correlation analysis confirmed that DCN was positively correlated with BCL2A1, indicating that autophagy might be negatively correlated with apoptosis in LDH. YBS, palmitic acid, and cinnamate reduced the Siegal neurological score and serum IL-1β and IL-18 levels, while increasing changes in the hind paw mechanical withdrawal threshold. The RNA-Seq results further showed that YBS downregulated S100A9 and CTSW expression, while upregulating SOCS3, CDKN1A, UHRF1, DCN, LEPR, and BCL2A1 expression. Conclusion YBS and its compounds, palmitic acid, and cinnamate, attenuated LDH by regulating the inflammatory, metabolic, autophagic, and apoptotic pathways. Our results might improve the theoretical and experimental basis for clinical applications of LDH disease treatment.
Collapse
|
15
|
Gong WY, Xu B, Liu L, Li ST. Dezocine relieves the postoperative hyperalgesia in rats through suppressing the hyper-action of Akt1/GSK-3β pathway. Exp Brain Res 2022; 240:1435-1444. [PMID: 35333956 DOI: 10.1007/s00221-022-06341-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
The relieving role of dezocine in pain after surgery was previously reported, while the potential mechanism was not completely clear. Therefore, the current research probed into the regulatory mechanism of dezocine in pain after surgery. A postoperative pain model was established by performing plantar incision surgery on the juvenile Sprague-Dawley rats. After the rats were treated with dezocine or SC79 (Akt1 activator), the paw withdrawal threshold and paw withdrawal latency of rats were detected to evaluate the mechanical allodynia and thermal hyperalgesia. After the plantar tissue, dorsal root ganglions, and spinal cord of rats were collected, the expressions of Akt1, p-Akt1, GSK-3β, and p-GSK-3β in the tissues were determined by western blot to evaluate the activation state of the Akt1/GSK-3β pathway. After surgery, the paw withdrawal threshold and paw withdrawal latency of rats were lessened, whereas the ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β were augmented in rat plantar tissue, dorsal root ganglions, and spinal cord. After treatment with dezocine alone, the paw withdrawal threshold and paw withdrawal latency of postoperative rats were elevated, but ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β were reduced. After co-treatment with dezocine and SC79, SC79 reversed the effects of dezocine on elevating the paw withdrawal threshold and paw withdrawal latency, and reducing the ratios of p-Akt1/Akt1 and p-GSK-3β/GSK-3β in postoperative rats. Dezocine ameliorated the postoperative hyperalgesia in rats via repressing the hyper-action of Akt1/GSK-3β pathway.
Collapse
Affiliation(s)
- Wen-Yi Gong
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, No.100, Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.,Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Bing Xu
- Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, Wusong Hospital, No.101, North Tongtai Road, Baoshan District, Shanghai, 200940, People's Republic of China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital of Nanjing Medical University, No.100, Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
16
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
17
|
Lu Q, Yang Y, Zhang H, Chen C, Zhao J, Yang Z, Fan Y, Li L, Feng H, Zhu J, Yi S. Activation of GPR18 by Resolvin D2 Relieves Pain and Improves Bladder Function in Cyclophosphamide-Induced Cystitis Through Inhibiting TRPV1. Drug Des Devel Ther 2021; 15:4687-4699. [PMID: 34815664 PMCID: PMC8604640 DOI: 10.2147/dddt.s329507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hyperalgesia and bladder overactivity are two main symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS). Cannabinoid receptors participate in the modulation of pain and bladder function. GPR18, a member of the cannabinoid receptor family, also participates in the regulation of pain and bladder function, but its underlying mechanisms are unknown. In this work, we sought to study the role of GPR18 in IC/BPS. Methods A rat model of IC/BPS was established with cyclophosphamide (CYP). Paw withdrawal threshold (PWT) measurement and cystometry were used to evaluate pain and bladder function, respectively. RT-PCR, Western blotting and immunofluorescence were used to assess the expression and distribution of GPR18. The role of GPR18 in pain and bladder function was studied by intrathecal injection of resolvin D2 (RvD2, a GPR18 agonist) and O-1918 (a GPR18 antagonist). Calcium imaging was used to study the relationship between GPR18 and TRPV1. Results A rat model of IC/BPS, which exhibited a decreased PWT and micturition interval, was successfully established with CYP. The mRNA and protein expression of GPR18 was reduced in the bladder and dorsal root ganglia (DRG) in rats with CYP-induced cystitis. Intrathecal injection of RvD2 increased the PWT and micturition interval. However, O-1918 blocked the therapeutic effect of RvD2. GPR18 was present in bladder afferent nerves and colocalized with TRPV1 in DRG, and RvD2 decreased capsaicin-induced calcium influx in DRG. Conclusion Activation of GPR18 by RvD2 alleviated hyperalgesia and improved bladder function, possibly by inhibiting TRPV1 in rats with CYP-induced cystitis.
Collapse
Affiliation(s)
- Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Yang Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Cheng Chen
- Department of Burns, First Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Yi Fan
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Shanhong Yi
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| |
Collapse
|
18
|
Chávez-Castillo M, Ortega Á, Cudris-Torres L, Duran P, Rojas M, Manzano A, Garrido B, Salazar J, Silva A, Rojas-Gomez DM, De Sanctis JB, Bermúdez V. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy? Int J Mol Sci 2021; 22:ijms221910370. [PMID: 34638711 PMCID: PMC8509014 DOI: 10.3390/ijms221910370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina sede Valledupar, Valledupar 200001, Colombia;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Aljadis Silva
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Diana Marcela Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, 77900 Olomouc, Czech Republic;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
19
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
20
|
Fabisiak A, Fabisiak N, Mokrowiecka A, Malecka-Panas E, Jacenik D, Kordek R, Zielińska M, Kieć-Kononowicz K, Fichna J. Novel selective agonist of GPR18, PSB-KK-1415 exerts potent anti-inflammatory and anti-nociceptive activities in animal models of intestinal inflammation and inflammatory pain. Neurogastroenterol Motil 2021; 33:e14003. [PMID: 33058313 DOI: 10.1111/nmo.14003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND GPR18 is a recently deorphanized receptor which was reported to act with several endogenous cannabinoid ligands. Here, we aimed to describe the role of GPR18 in intestinal inflammation and inflammatory pain. METHODS The anti-inflammatory activity of selective GPR18 agonist, PSB-KK-1415, and antagonist, PSB-CB5, was characterized in semi-chronic and chronic mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The extent of inflammation was evaluated based on the macroscopic and microscopic scores, quantification of myeloperoxidase (MPO) activity, and Western blot analyses of tumor necrosis factor-α (TNF-α) and interleukin-6 in colonic tissue. The expression of GPR18 in colonic samples from patients with Crohn's disease (CD) was quantified using real-time PCR. The anti-nociceptive potential of the agonist in intestinal inflammation was evaluated in the mouse model of inflammatory pain. KEY RESULTS In semi-chronic colitis, PSB-KK-1415 reduced macroscopic score (1.79 ± 0.22 vs. 2.61 ± 0.48), expression of TNF-α (1.89 ± 0.36 vs. 2.83 ± 0.64), and microscopic score (5.00 ± 0.33 vs. 6.45 ± 0.40), all compared to mice with colitis. In chronic colitis, PSB-KK-1415 decreased macroscopic score (3.33 ± 1.26 vs. 4.00 ± 1.32) and MPO activity (32.23 ± 8.51 vs. 41.33 ± 11.64) compared to inflamed mice. In the mouse model of inflammatory pain, PSB-KK-1415 decreased the number of pain-induced behaviors in both, controls (32.60 ± 2.54 vs. 58.00 ± 6.24) and inflamed mice (60.83 ± 2.85 vs. 85.00 ± 5.77) compared to animals without treatment with PSB-KK-1415 (P < 0.005 for both). Lastly, we showed an increased expression of GPR18 in CD patients compared to healthy controls (3.77 ± 1.46 vs. 2.38 ± 0.66, p = 0.87). CONCLUSIONS & INFERENCES We showed that GPR18 is worth considering as a potential treatment target in intestinal inflammation and inflammatory pain.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.,Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.,Department of Gastroenterology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Radzislaw Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
22
|
Corazza BJM, Martinho FC, Khoury RD, Toia CC, Orozco EIF, Prado RF, Machado FP, Valera MC. Clinical influence of calcium hydroxide and N-acetylcysteine on the levels of resolvins E1 and D2 in apical periodontitis. Int Endod J 2020; 54:61-73. [PMID: 32896000 DOI: 10.1111/iej.13403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023]
Abstract
AIM To investigate the presence of resolvins E1 (RvE1) and D2 (RvD2) in teeth with primary endodontic infections and apical periodontitis, and to assess the influence of calcium hydroxide medication [Ca(OH)2 ], in association with 2% chlorhexidine gel (2% CHX gel), and N-acetylcysteine (NAC) on the levels of RvE1 and RvD2 in periapical tissues. METHODOLOGY Thirty-six single-rooted teeth with primary endodontic infections and apical periodontitis were selected and randomly divided into three groups according to the medication: [Ca(OH)2 ] + saline solution (SSL) [Ca(OH)2 + SSL group] (n = 12), Ca(OH)2 + 2% chlorhexidine gel [Ca(OH)2 + 2% CHX gel group] (n = 12) and NAC [NAC group] (n = 12). Samples were collected from the periapical interstitial fluid at two different sampling times: before (S1) and after 14 days of intracanal medications (S2). Resolvins were measured using the enzyme-linked immunosorbent assay. Data were analysed using paired t-test, Wilcoxon test and Kruskal-Wallis test, followed by Dunn's post hoc test; all statistical tests were performed at a significance level of 5%. RESULTS RvE1 and RvD2 were detected in 100% of the samples (36/36) at S1 and S2. Ca(OH)2 medication did not increase the levels of RvE1 or RvD2 (both P > 0.05); however, NAC significantly increased the levels of RvE1 and RvD2 after 14 days of treatment (P < 0.05). CONCLUSIONS RvE1 and RvD2 were detected in periapical tissues from teeth with root canal infections. Moreover, calcium hydroxide medication did not increase the levels of resolvins in apical periodontitis. In contrast, the use of NAC intracanal medication significantly increased the levels of RvE1 and RvD2 after 14 days of treatment.
Collapse
Affiliation(s)
- B J M Corazza
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F C Martinho
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - R D Khoury
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - C C Toia
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - E I F Orozco
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - R F Prado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - F P Machado
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| | - M C Valera
- Department of Restorative Dentistry, Endodontic Division, Institute of Science and Technology, São Paulo State University - UNESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
23
|
Wang YH, Li Y, Wang JN, Zhao QX, Jin J, Wen S, Wang SC, Sun T. Maresin 1 Attenuates Radicular Pain Through the Inhibition of NLRP3 Inflammasome-Induced Pyroptosis via NF-κB Signaling. Front Neurosci 2020; 14:831. [PMID: 32982664 PMCID: PMC7479972 DOI: 10.3389/fnins.2020.00831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background The exposure of the nucleus pulposus (NP) causes an immune and inflammatory response, which is intrinsically linked to the pathogenesis of radicular pain. As a newly discovered pro-resolving lipid mediator, maresin 1 (MaR1) could exert powerful inflammatory resolution, neuroprotection, and analgesic activities. In the present research, the analgesic effect of MaR1 was observed. Then, the potential mechanism by which MaR1 attenuated radicular pain was also analyzed in a rat model. Methods Intrathecal administration of MaR1 (10 or 100 ng) was successively performed in a rat with non-compressive lumbar disk herniation for three postoperative days. Mechanical and thermal thresholds were determined to assess pain-related behavior from days 1 to 7 (n = 8/group). On day 7, the tissues of spinal dorsal horns from different groups were gathered to evaluate expression levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α), the NLRP3 inflammasome and pyroptosis indicators (GSDMD, ASC, NLRP3, and Caspase-1), together with NF-κB/p65 activation (n = 6/group). TUNEL and PI staining were performed to further examine the process of pyroptosis. Results After intrathecal administration in the rat model, MaR1 exhibited potent analgesic effect dose-dependently. MaR1 significantly prompted the resolution of the increased inflammatory cytokine levels, reversed the up-regulated expression of the inflammasome and pyroptosis indicators, and reduced the cell death and the positive activation of NF-κB/p65 resulting from the NP application on the L5 dorsal root ganglion. Conclusion This study indicated that the activation of NLRP3 inflammasome and pyroptosis played a significant role in the inflammatory reaction of radicular pain. Also, MaR1 could effectively down-regulate the inflammatory response and attenuate pain by inhibiting NLRP3 inflammasome-induced pyroptosis via NF-κB signaling.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
24
|
Morales P, Lago-Fernandez A, Hurst DP, Sotudeh N, Brailoiu E, Reggio PH, Abood ME, Jagerovic N. Therapeutic Exploitation of GPR18: Beyond the Cannabinoids? J Med Chem 2020; 63:14216-14227. [PMID: 32914978 DOI: 10.1021/acs.jmedchem.0c00926] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GPR18 is a G-protein-coupled receptor that belongs to the orphan class A family. Even though it shares low sequence homology with the cannabinoid receptors CB1R and CB2R, a growing body of research suggests its relationship with the endocannabinoid system, not only because it is able to recognize cannabinoid ligands but also because of its expression and ability to heteromerize with CBRs. In this review, we aim to analyze the biological relevance, reported modulators, and structural features of GPR18. In order to guide future drug design in this field, highlights from molecular modeling of GPR18 will be provided.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Ana Lago-Fernandez
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Dow P Hurst
- Chemistry and Biochemistry Department, UNC Greensboro, 1400 Spring Garden Street, Greensboro, North Carolina 27412, United States
| | - Noori Sotudeh
- Chemistry and Biochemistry Department, UNC Greensboro, 1400 Spring Garden Street, Greensboro, North Carolina 27412, United States
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Patricia H Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, 1400 Spring Garden Street, Greensboro, North Carolina 27412, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Nadine Jagerovic
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
25
|
Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX, Zeng J, Zhou H, Fan JG. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020; 72:454-469. [PMID: 31782176 PMCID: PMC10465073 DOI: 10.1002/hep.31050] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Hepatic macrophages can be activated by many factors such as gut-derived bacterial components and factors released from damaged hepatocytes. Macrophage polarization toward a proinflammatory phenotype (M1) represents an important event in the disease progression of nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms remain incompletely understood. Exosomes have been identified as important mediators for cell-cell communication by transferring various biological components such as microRNAs (miRs), proteins, and lipids. The role of exosomes in crosstalk between hepatocytes and macrophages in disease progression of NAFLD is yet to be explored. APPROACH AND RESULTS In the present study, we reported that lipotoxic injury-induced release of hepatocyte exosomes enriched with miR-192-5p played a critical role in the activation of M1 macrophages and hepatic inflammation. Serum miR-192-5p levels in patients with NAFLD positively correlated with hepatic inflammatory activity score and disease progression. Similarly, the serum miR-192-5p level and the number of M1 macrophages, as well as the expression levels of the hepatic proinflammatory mediators, were correlated with disease progression in high-fat high-cholesterol diet-fed rat models. Lipotoxic hepatocytes released more miR-192-5p-enriched exosomes than controls, which induced M1 macrophage (cluster of differentiation 11b-positive [CD11b+ ]/CD86+ ) activation and increase of inducible nitric oxide synthase, interleukin 6, and tumor necrosis factor alpha expression. Furthermore, hepatocyte-derived exosomal miR-192-5p inhibited the protein expression of the rapamycin-insensitive companion of mammalian target of rapamycin (Rictor), which further inhibited the phosphorylation levels of Akt and forkhead box transcription factor O1 (FoxO1) and resulted in activation of FoxO1 and subsequent induction of the inflammatory response. CONCLUSIONS Hepatocyte-derived exosomal miR-192-5p plays a critical role in the activation of proinflammatory macrophages and disease progression of NAFLD through modulating Rictor/Akt/FoxO1 signaling. Serum exosomal miR-192-5p represents a potential noninvasive biomarker and therapeutic target for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Xiao-Lin Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai-Xia Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Feng-Zhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ze-Hua Zhao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University; McGuire VA Medical Center, Richmond, VA, 23298, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Shanghai 200092, China
| |
Collapse
|
26
|
Wang YH, Li Y, Wang JN, Zhao QX, Wen S, Wang SC, Sun T. A Novel Mechanism of Specialized Proresolving Lipid Mediators Mitigating Radicular Pain: The Negative Interaction with NLRP3 Inflammasome. Neurochem Res 2020; 45:1860-1869. [PMID: 32410045 DOI: 10.1007/s11064-020-03050-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
Inhibition of immune and inflammatory reaction induced by the expose of nucleus pulposus (NP) could effectively ameliorate neuropathic pain in the lumbar disc herniation. Maresin1 (MaR1), as a macrophage-derived mediator of inflammation resolution, displayed potent anti-inflammatory action. In the present study, we attempted to elucidate the impact of MaR1 on radicular pain and the interaction with NLRP3 inflammasome. We established a rat model of non-compressive lumbar disc herniation and different administration (MaR1 or Caspase-1 inhibitor) was given to them. The paw withdrawal latency (PWL) and paw withdrawal thresholds (PWTs) were observed to assess pain behaviors. The spinal cord horns were collected and the levels of IL-1β and IL-18 were measured by ELISA. The mRNA and protein expression levels of NLRP3 inflammasome components were tested by RT-PCR, western blot and immunohistochemistry. The endogenous MaR1 levels of the spinal cord were analyzed using LC-MS/MS. The application of NP in the models lead to mechanical and thermal hypersensitivity, increased IL-1β and IL-18 levels and expressions of NLRP3 inflammasome components, which were reversed markedly by administration of MaR1. Caspase-1 inhibition also improved mechanical hypersensitivity, decreased the expressions of inflammatory cytokines and restrained the activation of inflammasome. Meanwhile, Caspase-1 inhibitor promoted the endogenous MaR1 synthesis, which was hindered in the pain models. Altogether, our study indicated that the negative interaction between MaR1 and NLRP3 inflammasome mediated the inflammatory response in spinal dorsal horn, which involved in the pathogenesis of radicular pain.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, 266003, Shandong, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, Shandong, China.
| |
Collapse
|
27
|
Huang L, Zhong X, Qin S, Deng M. Protocatechuic acid attenuates β‑secretase activity and okadaic acid‑induced autophagy via the Akt/GSK‑3β/MEF2D pathway in PC12 cells. Mol Med Rep 2020; 21:1328-1335. [PMID: 31894327 DOI: 10.3892/mmr.2019.10905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2019] [Indexed: 11/06/2022] Open
Abstract
Okadaic acid (OA) can be used to induce an Alzheimer's disease (AD) model characterized by tau hyperphosphorylation, the formation of neurofibrillary tangles formation and β‑amyloid (Aβ) deposition. Previous studies have shown that the upregulation of Beclin‑1‑dependent autophagy may contribute to the elimination of aggregated Aβ. However, the effects of protocatechuic acid (PA) on the levels of Aβ42, phosphorylated (p)‑tau and β‑secretase in OA‑induced cell injury are unclear, and little is known concerning the role of the PA signaling pathway in the regulation of autophagy. The present study aimed to determine whether PA protects cells from OA‑induced cytotoxicity via the regulation of Beclin‑1‑dependent autophagy and its regulatory signaling pathway. PC12 cells were treated with OA with or without PA for 24 h. Enzymatic assays were performed to measure p‑tau, Aβ42 and β‑secretase activity. Western blotting was performed to detect p‑Akt, p‑glycogen synthase kinase‑3β (p‑GSK‑3β), Akt, GSK‑3β, myocyte enhancer factor 2D (MEF2D) and Beclin‑1 protein expression levels. Immunofluorescence and immunocytochemistry were used to measure Beclin‑1 expression levels. The results from this study showed that PA could increase cell viability and significantly decrease the levels of Aβ42, p‑tau, β‑secretase and Beclin‑1. PA can also promote the expression of p‑Akt and MEF2D while suppressing the expression of p‑GSK‑3β. These results indicated that PA protects PC12 cells from OA‑induced cytotoxicity, and attenuates autophagy via regulation of the Akt/GSK‑3β/MEF2D pathway, therefore potentially contributing to the neuroprotective effects of PA against OA toxicity. These findings suggested that PA may have potential as a drug candidate in preventative AD therapy.
Collapse
Affiliation(s)
- Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, P.R. China
| | - Xiaoqin Zhong
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Shaochen Qin
- Department of Neurology, The Affiliated Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
28
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Casagrande R, Verri WA. Specialized pro-resolving lipid mediators: A new class of non-immunosuppressive and non-opioid analgesic drugs. Pharmacol Res 2019; 151:104549. [PMID: 31743775 DOI: 10.1016/j.phrs.2019.104549] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/04/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
We now appreciate that the mechanism of resolution depends on an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). These SPMs are biosynthesized from the omega-3 fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), or docosahexaenoic acid (DHA). Despite effective for a fraction of patients with rheumatic diseases and neuropathic pain, current analgesic therapies such as biological agents, opioids, corticoids, and gabapentinoids cause unwanted side effects, such as immunosuppression, addiction, or induce analgesic tolerance. A growing body of evidence demonstrates that isolated SPMs show efficacy at very low doses and have been successively used as therapeutic drugs to treat pain and infection in experimental models showing no side effects. Moreover, SPMs work as immunoresolvents and some of them present long-lasting analgesic and anti-inflammatory effects (i.e. block pain without immunosuppressive effects). In this review, we focus on how SPMs block pain, infection and neuro-immune interactions and, therefore, emerge as a new class of non-immunosuppressive and non-opioid analgesic drugs.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Fernanda S Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
29
|
Ulu A, Sahoo PK, Yuil-Valdes AG, Mukherjee M, Van Ormer M, Muthuraj PG, Thompson M, Anderson Berry A, Hanson CK, Natarajan SK, Nordgren TM. Omega-3 Fatty Acid-Derived Resolvin D2 Regulates Human Placental Vascular Smooth Muscle and Extravillous Trophoblast Activities. Int J Mol Sci 2019; 20:ijms20184402. [PMID: 31500240 PMCID: PMC6770915 DOI: 10.3390/ijms20184402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Omega-3 fatty acids are important to pregnancy and neonatal development and health. One mechanism by which omega-3 fatty acids exert their protective effects is through serving as substrates for the generation of specialized pro-resolving lipid mediators (SPM) that potently limit and resolve inflammatory processes. We recently identified that SPM levels are increased in maternal blood at delivery as compared to umbilical cord blood, suggesting the placenta as a potential site of action for maternal SPM. To explore this hypothesis, we obtained human placental samples and stained for the SPM resolvin D2 (RvD2) receptor GPR18 via immunohistochemistry. In so doing, we identified GPR18 expression in placental vascular smooth muscle and extravillous trophoblasts of the placental tissues. Using in vitro culturing, we confirmed expression of GPR18 in these cell types and further identified that stimulation with RvD2 led to significantly altered responsiveness (cytoskeletal changes and pro-inflammatory cytokine production) to lipopolysaccharide inflammatory stimulation in human umbilical artery smooth muscle cells and placental trophoblasts. Taken together, these findings establish a role for SPM actions in human placental tissue.
Collapse
MESH Headings
- Adult
- Cells, Cultured
- Docosahexaenoic Acids/pharmacology
- Fatty Acids, Omega-3/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Hep G2 Cells
- Humans
- Maternal Age
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Placenta/cytology
- Placenta/drug effects
- Placenta/metabolism
- Pregnancy
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Trophoblasts/cytology
- Trophoblasts/drug effects
- Trophoblasts/metabolism
- Young Adult
Collapse
Affiliation(s)
- Arzu Ulu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA.
| | - Prakash K Sahoo
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Maheswari Mukherjee
- Cytotechnology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Matthew Van Ormer
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Philma Glora Muthuraj
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Maranda Thompson
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Ann Anderson Berry
- Pediatrics Department, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Corrine K Hanson
- Medical Nutrition Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Sathish Kumar Natarajan
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|