1
|
Rapido F, Di Franco V, Tabolacci E, Dello Russo C, Aceto P. The role of sevoflurane exposure on systemic inflammation and neuroinflammation: a systematic review and meta-analysis of in vivo and in vitro studies. Eur J Pharmacol 2025; 999:177696. [PMID: 40318819 DOI: 10.1016/j.ejphar.2025.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/17/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Neuroinflammation induced by anaesthetics may negatively affect neurocognitive functions after surgery in humans. This systematic review and meta-analysis aimed to evaluate the impact of sevoflurane exposure on systemic inflammation and neuroinflammation and to assess alterations in behavioural/cognitive functions in experimental rodent models not exposed to surgery nor to other inflammatory stimuli. Databases were searched for in vivo and/or in vitro studies examining inflammation after sevoflurane exposure compared to control conditions. Inflammatory biomarkers, including interleukin (IL)-6, IL-1β, and tumor necrosis factor alfa (TNFα), at the peak time of production (primary outcomes) were investigated. The secondary outcome was to evaluate the presence of alterations in behavioural/cognitive tests. Subgroup analyses on young and adult rodents were performed for in vivo studies. Thirty-five in vivo and in vitro studies were selected. Results from meta-analyses demonstrated significant increases in the secretion peak of all inflammatory markers in vivo models. Significantly higher plasma peaks of IL-6 (SMD: 7.97, 95 % CI: 4.76-11.17), IL-1β (SMD: 5.71, 95 % CI: 1.88-9.55) and TNFα (SMD: 6.64, 95 % CI: 3.73-9.56) were found only in adult rodents exposed to sevoflurane. Similar findings were observed in brain tissue homogenates. Rodents exposed to sevoflurane exhibited significant alterations in behavioural/cognitive tests and significance persisted only in adult rodents. Sevoflurane exposure may trigger systemic inflammation and neuroinflammation in experimental rodent models with marked effects in adult rodents. Alterations in behavioural/cognitive tests suggest a potential role of sevoflurane in the development of postoperative cognitive disorders in the elderly, independently of surgery. Further research is needed in humans.
Collapse
Affiliation(s)
- Francesca Rapido
- Department of Anesthesia & Critical Care Medicine, Gui de Chauliac Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS)-Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Valeria Di Franco
- Dipartimento di Scienze dell'emergenza, Anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Tabolacci
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Cinzia Dello Russo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| | - Paola Aceto
- Dipartimento di Scienze dell'emergenza, Anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int J Mol Sci 2025; 26:1373. [PMID: 39941141 PMCID: PMC11818489 DOI: 10.3390/ijms26031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia, often considered critical for dementia prevention. Despite its significance, no effective clinical treatment for MCI has yet been established. Emerging evidence has demonstrated a strong association between trimethylamine-N-oxide (TMAO), a prominent metabolite derived from the gut microbiota, and MCI, highlighting its potential as a biomarker and therapeutic target. TMAO has been implicated in increasing MCI risk through its influence on factors such as hypertension, cardiovascular disease, depression, diabetes, and stroke. Moreover, it contributes to MCI by promoting oxidative stress, disrupting the blood-brain barrier, impairing synaptic plasticity, inducing inflammation, causing mitochondrial metabolic disturbances, and facilitating abnormal protein aggregation. This review further explores therapeutic strategies targeting TMAO to mitigate MCI progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liang Peng
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Ye HM, Li ZY, Zhang P, Kang Z, Zhou DS. Exploring Mechanism of Electroacupuncture in Modulating Neuroinflammation Based on Intestinal Flora and Its Metabolites. Chin J Integr Med 2025; 31:183-192. [PMID: 39039343 DOI: 10.1007/s11655-024-3766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
Neuroinflammatory responses play an important role in the pathogenesis of various diseases, particularly those affecting the central nervous system. Inhibition of neuroinflammation is a crucial therapeutic strategy for the management of central nervous system disorders. The intestinal microbial-gut-brain axis serves as a key regulatory pathway that modulates neuroinflammatory processes. Intestinal flora metabolites such as short-chain fatty acids, indoles and their derivatives, lipopolysaccharides, trimethylamine oxide, and secondary bile acids exert direct or indirect effects on neuroinflammation. Studies have shown that electroacupuncture (EA) modulates the composition of the intestinal microbiota and its metabolites, while also suppressing neuroinflammation by targeting the TLR4/NF- κ B, NLRP3/caspase-1, and microglial cell M2-type transformation pathways. This review discusses the mechanisms by which EA regulates neuroinflammation via intestinal microbiota and its metabolites, providing information and a foundation for further investigation of the precise therapeutic mechanisms of EA in neurological disorders.
Collapse
Affiliation(s)
- Hai-Min Ye
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Neurology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Zhuo-Yan Li
- Neurology Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Peng Zhang
- Acupuncture and Moxibustion Massage Rehabilitation Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - Zhen Kang
- Acupuncture and Moxibustion Massage Rehabilitation Department, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, China
| | - De-Sheng Zhou
- Neurology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410011, China.
| |
Collapse
|
5
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Han S, Bian R, Chen Y, Liang J, Zhao P, Gu Y, Zhang D. Dysregulation of the Gut Microbiota Contributes to Sevoflurane-Induced Cognitive Dysfunction in Aged Mice by Activating the NLRP3 Inflammasome. Mol Neurobiol 2024; 61:10500-10516. [PMID: 38740706 DOI: 10.1007/s12035-024-04229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication in elderly patients after surgery, seriously affects patients' quality of life. Long-term or repeated inhalation of sevoflurane can cause neuroinflammation, which is a risk factor for POCD. However, the underlying mechanism needs to be further explored. Recent research had revealed a correlation between neurological disorders and changes in the gut microbiota. Dysfunction of the gut microbiota is involved in the occurrence and development of central nervous system diseases. Here, we found that cognitive dysfunction in aged mice induced by sevoflurane exposure (3%, 2 hours daily, for 3 days) was related to gut microbiota dysbiosis, while probiotics improved cognitive function by alleviating dysbiosis. Sevoflurane caused a significant decrease in the abundance of Akkermansia (P<0.05), while probiotics restored the abundance of Akkermansia. Compared to those in the control group, sevoflurane significantly increased the expression of NLRP3 inflammasome-associated proteins in the gut and brain in the sevoflurane-exposed group, thus causing neuroinflammation and synaptic damage, which probiotics can mitigate (con vs. sev, P < 0.01; p+sev vs. sev, P < 0.05). In conclusion, for the first time, our study revealed that dysbiosis of the gut microbiota caused by sevoflurane anesthesia contributes to the NLRP3 inflammasome-mediated neuroinflammation and cognitive dysfunction from the perspective of the gut-brain axis. Perhaps postoperative cognitive impairment in elderly patients can be alleviated or even prevented by regulating the gut microbiota. This study provides new insights and methods for the prevention and treatment of cognitive impairment induced by sevoflurane.
Collapse
Affiliation(s)
- Shanshan Han
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Ruxi Bian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Chen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yanfang Gu
- Department of Gynecology, Jiangnan University Affiliated Hospital, Wuxi, 214002, China.
| | - Dengxin Zhang
- Department of Anesthesiology, Wuxi Maternal and Child Health Care Hospital Affiliated to Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
7
|
Que M, Li S, Xia Q, Li X, Luo X, Zhan G, Luo A. Microbiota-gut-brain axis in perioperative neurocognitive and depressive disorders: Pathogenesis to treatment. Neurobiol Dis 2024; 200:106627. [PMID: 39111702 DOI: 10.1016/j.nbd.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.
Collapse
Affiliation(s)
- Mengxin Que
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health; Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Guo Q, Jia J, Sun XL, Yang H, Ren Y. Comparing the metabolic pathways of different clinical phases of bipolar disorder through metabolomics studies. Front Psychiatry 2024; 14:1319870. [PMID: 38264633 PMCID: PMC10804847 DOI: 10.3389/fpsyt.2023.1319870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
This study identified the metabolic biomarkers for different clinical phases of bipolar disorder (BD) through metabolomics. BD patients were divided into three groups: patients with BD and depressive episodes (BE, n = 59), patients with BD and mania/hypomania episodes (BH, n = 16), patients with BD and mixed episodes (BM, n = 10), and healthy controls (HC, n = 10). Serum from participants was collected for metabolomic sequencing, biomarkers from each group were screened separately by partial least squares analysis, and metabolic pathways connected to the biomarkers were identified. Compared with the controls, 3-D-hydroxyacetic acid and N-acetyl-glycoprotein showed significant differences in the BE, BH, and BM groups. This study suggests that different clinical types of BD share the same metabolic pathways, such as pyruvate, glycolysis/gluconeogenesis, and ketone body metabolisms. In particular, abnormal glycine, serine, and threonine metabolism was specific to BM; β-glucose, glycerol, lipids, lactate, and acetoacetate metabolites were specific to depressive episodes; the guanidine acetic acid metabolites specific to BH; and the acetic and ascorbic acids were metabolites specific to manic and BM. We screened potential biomarkers for different clinical phases of BD, which aids in BD typing and provides a theoretical basis for exploring the molecular mechanisms of BD.
Collapse
Affiliation(s)
- Qin Guo
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiao Jia
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao Li Sun
- Department of Mental Health, Shanxi Bethune Hospital, Taiyuan, China
| | - Hong Yang
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Ren
- Department of Mental Health, Shanxi Bethune Hospital, Taiyuan, China
| |
Collapse
|
9
|
Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:102-121. [PMID: 36740795 DOI: 10.2174/1871527322666230203140805] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome interacts with the brain bidirectionally through the microbiome-gutbrain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease via inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of poststroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Human Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
10
|
Qiao CM, Quan W, Zhou Y, Niu GY, Hong H, Wu J, Zhao LP, Li T, Cui C, Zhao WJ, Shen YQ. Orally Induced High Serum Level of Trimethylamine N-oxide Worsened Glial Reaction and Neuroinflammation on MPTP-Induced Acute Parkinson's Disease Model Mice. Mol Neurobiol 2023; 60:5137-5154. [PMID: 37266763 DOI: 10.1007/s12035-023-03392-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Neuroinflammation mediated by brain glial cells is one of the pathological drivers of Parkinson's disease (PD). Recent studies have shown that higher circulating trimethylamine N-oxide (TMAO, a gut microbiota-derived metabolite) can induce neuroinflammation and are strongly related to a variety of central nervous system diseases and adverse brain events. Herein, we explored the effect of pre-existing higher circulating TMAO on dopamine system and neuroinflammation in acute PD model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). TMAO pretreatment was given by adding 3% (w/v) TMAO to drinking water of mice for 21 days to induce higher circulating TMAO status, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to construct an acute PD model mice and treated with TMAO continuously until the end of the experiment. Results demonstrated that TMAO treatment significantly increased serum TMAO levels. Moreover, high serum TMAO significantly increased activation of microglia and astrocytes both in striatum and in substantia nigra. And strikingly, high serum TMAO significantly promoted the metabolism of striatal dopamine (DA) of PD model mice, although it had no significant effect on the number of dopaminergic neurons or the content of DA. Furthermore, immunofluorescence, ELISA, and RT-qPCR results of the hippocampus also showed that high serum TMAO significantly promoted the activation of microglia and astrocytes in the dentate gyrus, increased the levels of TNF-α and IL-1β, and upregulated gene expression of M1 microglia-related markers (including CD16, CD32, and iNOS) and A2 astrocyte-related markers (including S100a10, Ptx3, and Emp1) in mRNA levels. In summary, we found that pre-existing high serum levels of TMAO worsened the PD-related brain pathology by promoting DA metabolism, aggravating neuroinflammation and regulating glial cell polarization.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Quan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yu Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Gu-Yu Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hui Hong
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li-Ping Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ting Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chun Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yan-Qin Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Qiu T, Jiang Z, Chen X, Dai Y, Zhao H. Comorbidity of Anxiety and Hypertension: Common Risk Factors and Potential Mechanisms. Int J Hypertens 2023; 2023:9619388. [PMID: 37273529 PMCID: PMC10234733 DOI: 10.1155/2023/9619388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Anxiety is more common in patients with hypertension, and these two conditions frequently coexist. Recently, more emphasis has been placed on determining etiology in patients with comorbid hypertension and anxiety. This review focuses on the common risk factors and potential mechanisms of comorbid hypertension and anxiety. Firstly, we analyze the common risk factors of comorbid hypertension and anxiety including age, smoking, alcohol abuse, obesity, lead, and traffic noise. The specific mechanisms underlying hypertension and anxiety were subsequently discussed, including interleukin (IL)-6 (IL-6), IL-17, reactive oxygen species (ROS), and gut dysbiosis. Increased IL-6, IL-17, and ROS accelerate the development of hypertension and anxiety. Gut dysbiosis leads to hypertension and anxiety by reducing short-chain fatty acids, vitamin D, and 5-hydroxytryptamine (5-HT), and increasing trimethylamine N-oxide (TAMO) and MYC. These shared risk factors and potential mechanisms may provide an effective strategy for treating and preventing hypertension and comorbid anxiety.
Collapse
Affiliation(s)
- Tingting Qiu
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Central Hospital of Changsha City, Hengyang Medical School, University of South China, Changsha, Hunan 410000, China
| | - Zhiming Jiang
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha, Hunan 410006, China
| | - Xuancai Chen
- Urinary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Yehua Dai
- Nursing College, University of Xiangnan, Chenzhou, Hunan 423000, China
| | - Hong Zhao
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
12
|
Quan W, Qiao CM, Niu GY, Wu J, Zhao LP, Cui C, Zhao WJ, Shen YQ. Trimethylamine N-Oxide Exacerbates Neuroinflammation and Motor Dysfunction in an Acute MPTP Mice Model of Parkinson's Disease. Brain Sci 2023; 13:brainsci13050790. [PMID: 37239262 DOI: 10.3390/brainsci13050790] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Observational studies have shown abnormal changes in trimethylamine N-oxide (TMAO) levels in the peripheral circulatory system of Parkinson's disease (PD) patients. TMAO is a gut microbiota metabolite that can cross the blood-brain barrier and is strongly related to neuroinflammation. Neuroinflammation is one of the pathological drivers of PD. Herein, we investigated the effect of TMAO on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. TMAO pretreatment was given by adding 1.5% (w/v) TMAO to the drinking water of the mice for 21 days; then, the mice were administered MPTP (20 mg/kg, i.p.) four times a day to construct an acute PD model. Their serum TMAO concentrations, motor function, dopaminergic network integrity, and neuroinflammation were then assayed. The results showed that TMAO partly aggravated the motor dysfunction of the PD mice. Although TMAO had no effect on the dopaminergic neurons, TH protein content, and striatal DA level in the PD mice, it significantly reduced the striatal 5-HT levels and aggravated the metabolism of DA and 5-HT. Meanwhile, TMAO significantly activated glial cells in the striatum and the hippocampi of the PD mice and promoted the release of inflammatory cytokines in the hippocampus. In summary, higher-circulating TMAO had adverse effects on the motor capacity, striatum neurotransmitters, and striatal and hippocampal neuroinflammation in PD mice.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Gu-Yu Niu
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jian Wu
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Li-Ping Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chun Cui
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Wei-Jiang Zhao
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Zhou S, Liu J, Sun Y, Xu P, Liu JL, Sun S, Zhu B, Wu H. Dietary choline metabolite TMAO impairs cognitive function and induces hippocampal synaptic plasticity declining through the mTOR/P70S6K/4EBP1 pathway. Food Funct 2023; 14:2881-2895. [PMID: 36883968 DOI: 10.1039/d2fo03874a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mild cognitive impairment (MCI) is an intermediate state between "healthy" and "dementia", which affects memory and cognitive function. Timely intervention and treatment of MCI can effectively prevent it from developing into an incurable neurodegenerative disease. Lifestyle factors, such as dietary habits, were highlighted as risk factors for MCI. The effect of a high-choline diet on cognitive function is contentious. In this study, we focus our attention on the choline metabolite trimethylamine-oxide (TMAO), an acknowledged pathogenic molecule of cardiovascular disease (CVD). With recent studies indicating that TMAO also plays a potential role in the central nervous system (CNS), we aim to explore the effect of TMAO on synaptic plasticity in the hippocampus, the basic structure of studying and memory. Using various hippocampal-dependent spatial references or working memory-related behavioral texts, we found that TMAO treatment caused both long-term memory (LTM) and short-term memory (STM) deficits in vivo. Simultaneously, the plasm and whole brain levels of choline and TMAO were measured by employing liquid phase mass spectrometry (LC/MS). Furthermore, the effects of TMAO on the hippocampus were further explored by applying Nissl staining and transmission electron microscopy (TEM). Moreover, the expression of synaptic plasticity-related proteins, including synaptophysin (SYN), postsynaptic density protein95 (PSD95), and N-methyl-aspartate receptor (NMDAR), was examined by western blotting and immunohistochemical (IHC). The results showed that TMAO treatment contributes to neuron loss, synapse ultrastructure alteration, and synaptic plasticity impairments. In mechanism, the mammalian target of rapamycin (mTOR) regulates synaptic function, and the activation of the mTOR signaling pathway was observed in TMAO groups. In conclusion, this study confirmed that the choline metabolite TMAO can induce hippocampal-dependent learning and memory ability impairment with synaptic plasticity deficits by activating the mTOR signaling pathway. The effects of choline metabolites on cognitive function may provide a theoretical basis for establishing the daily reference intakes (DRIs) of choline.
Collapse
Affiliation(s)
- Shihan Zhou
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Liu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Sun
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Xu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ling Liu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Sun
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boran Zhu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- College of Traditional Chinese Medicine and College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Key Laboratory of Integrative Biomedicine for Brain Diseases, College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
15
|
Alsuwaidi HN, Ahmed AI, Alkorbi HA, Ali SM, Altarawneh LN, Uddin SI, Roueentan SR, Alhitmi AA, Djouhri L, Chivese T. Association Between Metabolic Syndrome and Decline in Cognitive Function: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2023; 16:849-859. [PMID: 36974329 PMCID: PMC10039709 DOI: 10.2147/dmso.s393282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
AIM We investigated whether metabolic syndrome (MetS) is associated with a decline in cognitive function in a cohort of middle-aged and elderly individuals without known cognitive dysfunction diseases in Qatar. METHODS We conducted a cross-sectional study on randomly selected participants aged 40-80 years from the Qatar Biobank, with data on cognitive tests and MetS components. Participants with a history of dementia, stroke, or mental disorders were excluded. MetS was diagnosed using the NCEP-ATP III criteria and cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Two cognitive function domains were assessed. These are speed of reaction, measured using the Reaction Time (RT), and short-term visual memory, measured using the Paired Associate Learning (PAL) test. Multivariable logistic regression models were used to determine associations between MetS and poor speed of reaction and poor memory performance. RESULTS The mean age of the participants included was 49.8 years (SD 6.7). Of these, 51.9% were females and 88.0% were of Qatari nationality. Most of the 1000 participants had MetS (n=302) or 1-2 MetS components (n=523), whereas only 170 had no MetS components. There was a strong association between MetS and poor memory performance (OR 1.76, 95% CI 1.04-2.96, P=0.034), but a weaker association with poor speed of reaction (OR 1.5, 95% CI 0.89-2.50, P=0.125). CONCLUSION In middle-aged and elderly individuals, MetS was strongly associated with diminished short-term visual memory, psychomotor coordination and motor speed.
Collapse
Affiliation(s)
| | - Ashraf I Ahmed
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Hamad A Alkorbi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Sara M Ali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Shooq I Uddin
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Asmaa A Alhitmi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Tawanda Chivese
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Correspondence: Tawanda Chivese, College of Medicine, Qatar University, PO BOX, Doha, 2713, Qatar, Email
| |
Collapse
|
16
|
Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front Neurosci 2022; 16:1065995. [PMID: 36620458 PMCID: PMC9817109 DOI: 10.3389/fnins.2022.1065995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction It is well known that the intestinal bacteria substantially affect physiological processes in many body organs. Especially, through a bidirectional communication called as gut-microbiota-brain axis, the gut microbiota deeply influences development and function of the nervous system. Hippocampus, as a part of medial temporal lobe, is known to be involved in cognition, emotion, and anxiety. Growing evidence indicates that the hippocampus is a target of the gut microbiota. We used a broad search linking the hippocampus with the gut microbiota and probiotics. Methods All experimental studies and clinical trials published until end of 2021 were reviewed. Influence of the gut microbiota on the behavioral, electrophysiological, biochemical and histological aspects of the hippocampus were evaluated in this review. Results The effect of disrupted gut microbiota and probiotic supplements on the microbiota-hippocampus link is also considered. Studies show that a healthy gut microbiota is necessary for normal hippocampus dependent learning and memory and synaptic plasticity. The known current mechanisms are production and modulation of neurotrophins, neurotransmitters and receptors, regulation of intracellular molecular processes, normalizing the inflammatory/anti-inflammatory and oxidative/antioxidant factors, and histological stability of the hippocampus. Activity of the hippocampal neuronal circuits as well as behavioral functions of the hippocampus positively respond to different mixtures of probiotic bacteria. Discussion Growing evidence from animal researches indicate a close association between the hippocampus with the gut microbiota and probiotic bacteria as well. However, human studies and clinical trials verifying such a link are scant. Since the most of papers on this topic have been published over the past 3 years, intensive future research awaits.
Collapse
|
17
|
Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells 2022; 11:cells11223650. [PMID: 36429082 PMCID: PMC9688447 DOI: 10.3390/cells11223650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress and inflammation damage play pivotal roles in vascular dementia (VaD). Trimethylamine N-oxide (TMAO), an intestinal microbiota-stemming metabolite, was reported to promote inflammation and oxidative stress, involved in the etiology of several diseases. Still, these effects have not been investigated in VaD. Here, we tested whether pre-existing, circulating, high levels of TMAO could affect VaD-induced cognitive decline. TMAO (120 mg/kg) was given to rats for a total of 8 weeks, and these rats underwent a sham operation or bilateral common carotid artery (2VO) surgery after 4 weeks of treatment. Four weeks after surgery, the 2VO rats exhibited hippocampal-dependent cognitive function declines and synaptic plasticity dysfunction, accompanied by an increase in oxidative stress, neuroinflammation, and apoptosis. TMAO administration, which increased plasma and hippocampal TMAO at 4 weeks postoperatively, further aggravated these effects, resulting in exaggerated cognitive and synaptic plasticity impairment, though not within the Sham group. Moreover, TMAO treatment activated the NLRP3 inflammasome and decreased SIRT1 protein expression within the hippocampus. However, these effects of TMAO were significantly attenuated by the overexpression of SIRT1. Our findings suggest that TMAO increases oxidative stress-induced neuroinflammation and apoptosis by inhibiting the SIRT1 pathway, thereby exacerbating cognitive dysfunction and neuropathological changes in VaD rats.
Collapse
|
18
|
Mudimela S, Vishwanath NK, Pillai A, Morales R, Marrelli SP, Barichello T, Giridharan VV. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discov Today 2022; 27:103334. [PMID: 35998800 PMCID: PMC10392962 DOI: 10.1016/j.drudis.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In the past three decades, research on the gut microbiome and its metabolites, such as trimethylamines (TMA), trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), bile acids, tryptophan and indole derivatives, has attracted the attention of many scientists and industrialists. Among these metabolites, TMAO is produced from dietary choline, phosphatidylcholine, carnitine,andbetaine. TMAO and other gut metabolites, such as TMA and SCFAs, reach the brain by crossing the blood-brain barrier (BBB) and are involved in brain development, neurogenesis, and behavior. Gut-microbiota composition is influenced by diet, lifestyle, antibiotics, and age. Several studies have confirmed that altered TMAO levels contribute to metabolic, vascular, psychiatric, and neurodegenerative disorders. This review focuses on how altered TMAO levels impact oxidative stress, microglial activation, and the apoptosis of neurons, and may lead to neuroinflammation, which can subsequently result in the development of psychiatric, cognitive, and behavioral disorders.
Collapse
Affiliation(s)
- Sowjanya Mudimela
- Faculty of Pharmaceutical Sciences, PES University, HN-Campus, Bengaluru, Karnataka, India
| | | | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
19
|
Buawangpong N, Pinyopornpanish K, Phrommintikul A, Chindapan N, Devahastin S, Chattipakorn N, Chattipakorn SC. Increased plasma trimethylamine- N-oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population. Food Funct 2022; 13:10013-10022. [PMID: 36069253 DOI: 10.1039/d2fo02021a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been shown to be associated with cardiovascular (CV) disease and cognitive impairment. The association between early stages of cognitive impairment and TMAO in a high CV risk population has not been previously investigated. This study aimed to investigate the association between the plasma TMAO level and cognitive function in a population with a high risk of CV disease. Participants at a high risk of CV were included. The cognition was evaluated using the Montreal Cognitive Assessment. A score lower than 25 out of 30 was used to indicate mild cognitive impairment (MCI). Blood samples of all participants (n = 233) were collected to measure the plasma levels of TMAO and other metabolic parameters, including fasting blood sugar and lipid profiles. Logistic regression was used to evaluate the association between MCI and high plasma TMAO levels, adjusted for confounding factors. Of 233 patients, the mean age of patients in this study was 64 years old (SD 8.4). The median TMAO level was 4.31 μM (IQR 3.95). The high TMAO level was an independent risk factor of MCI (aOR 2.36, 95% CI 1.02 to 5.47; p 0.046), when adjusted for age, gender, health care service scheme, smoking history, metabolic syndrome, and history of established CV events. The high TMAO level was associated with MCI, after adjustment for potential confounding factors. These findings demonstrate that plasma TMAO levels can serve for target prediction as an independent risk factor for MCI in this population.
Collapse
Affiliation(s)
- Nida Buawangpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200
| | - Kanokporn Pinyopornpanish
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200
| | - Nathamol Chindapan
- Department of Food Technology, Faculty of Science, Siam University, Bangkok, Thailand 10160
| | - Sakamon Devahastin
- Advanced Food Processsing Rsesearch Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand 10140.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand 10300
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand 50200
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand 50200. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand 50200.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand 50200
| |
Collapse
|
20
|
Chen X, Gu M, Hong Y, Duan R, Zhou J. Association of Trimethylamine N-Oxide with Normal Aging and Neurocognitive Disorders: A Narrative Review. Brain Sci 2022; 12:brainsci12091203. [PMID: 36138939 PMCID: PMC9497232 DOI: 10.3390/brainsci12091203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Aging-related neurocognitive disorder (NCD) is a growing health concern. Trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite from dietary precursors, might emerge as a promising biomarker of cognitive dysfunction within the context of brain aging and NCD. TMAO may increase among older adults, Alzheimer’s disease patients, and individuals with cognitive sequelae of stroke. Higher circulating TMAO would make them more vulnerable to age- and NCD-related cognitive decline, via mechanisms such as promoting neuroinflammation and oxidative stress, and reducing synaptic plasticity and function. However, these observations are contrary to the cognitive benefit reported for TMAO through its positive effects on blood–brain barrier integrity, as well as from the supplementation of TMAO precursors. Hence, current disputable evidence does not allow definite conclusions as to whether TMAO could serve as a critical target for cognitive health. This article provides a comprehensive overview of TMAO documented thus far on cognitive change due to aging and NCD.
Collapse
|
21
|
Ji X, Tian L, Niu S, Yao S, Qu C. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Front Aging Neurosci 2022; 14:963876. [PMID: 36072486 PMCID: PMC9441869 DOI: 10.3389/fnagi.2022.963876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hypertension is a leading risk factor for cerebral small vessel disease (CSVD), a brain microvessels dysfunction accompanied by white matter lesions (WML). Trimethylamine N-oxide (TMAO), a metabolite of intestinal flora, is correlated with cardiovascular and aging diseases. Here, we explored the effect of TMAO on the demyelination of WML. Methods Spontaneous hypertension rats (SHRs) and primary oligodendrocytes were used to explore the effect of TMAO on demyelination in vivo and in vitro. T2-weighted magnetic resonance imaging (MRI) was applied to characterize the white matter hyperintensities (WMH) in rats. TMAO level was evaluated using LC-MS/MS assay. The histopathological changes of corpus callosum were measured by hematoxylin-eosin and luxol fast blue staining. And the related markers were detected by IHC, IF and western blot assay. Mito Tracker Red probe, DCFH-DA assay, flow cytometry based on JC-1 staining and Annexin V-FITC/PI double staining were conducted to evaluate the mitochondrial function, intracellular ROS levels and cell apoptosis. Results SHRs exhibited stronger WMH signals and a higher TMAO level than age-matched normotensive Wistar-kyoto rats (WKY). The corpus callosum region of SHR showed decreased volumes and enhanced demyelination when treated with TMAO. Furthermore, TMAO significantly elevated ROS production and induced NLRP3 inflammasome and impairment of mitochondrial function of oligodendrocytes. More importantly, TMAO enhanced the pyroptosis-related inflammatory death of oligodendrocytes. Conclusion TMAO could cross the blood-brain barrier (BBB) and promote oligodendrocytes pyroptosis via ROS/NLRP3 inflammasome signaling and mitochondrial dysfunction to promote demyelination, revealing a new diagnostic marker for WML under hypertension.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
22
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
23
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
24
|
Liu G, Cheng J, Zhang T, Shao Y, Chen X, Han L, Zhou R, Wu B. Inhibition of Microbiota-dependent Trimethylamine N-Oxide Production Ameliorates High Salt Diet-Induced Sympathetic Excitation and Hypertension in Rats by Attenuating Central Neuroinflammation and Oxidative Stress. Front Pharmacol 2022; 13:856914. [PMID: 35359866 PMCID: PMC8961329 DOI: 10.3389/fphar.2022.856914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Excessive dietary salt intake induces neuroinflammation and oxidative stress in the brain, which lead to sympathetic excitation, contributing to hypertension. However, the underlying mechanisms remain elusive. Accumulating evidence reveals that trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite, is implicated in the pathogenesis of multiple cardiovascular diseases. The present study sought to determine whether central TMAO is elevated and associated with neuroinflammation and oxidative stress in the brain after long-term high salt (HS) diet intake and, if so, whether inhibition of TMAO generation ameliorates HS-induced sympathetic excitation and hypertension. Sprague-Dawley rats were fed either a HS diet or a normal salt (NS) diet and simultaneously treated with vehicle (VEH) or 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) for 8 weeks. HS + VEH rats, compared with NS + VEH rats, had elevated TMAO in plasma and cerebrospinal fluid (CSF), increased blood pressure (BP), and increased sympathetic drive as indicated by the BP response to ganglionic blockade and plasma norepinephrine levels. HS-induced these changes were attenuated by DMB, which significantly reduced TMAO in plasma and CSF. Neuroinflammation as assessed by proinflammatory cytokine expression and NF-κB activity and microglial activity, and oxidative stress as measured by NAD(P)H oxidase subunit expression and NAD(P)H activity and reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) were increased in HS + VEH rats but were decreased by DMB. DMB had no effects on above measured parameters in NS rats. The results suggest that long-term HS diet intake causes elevation in TMAO in the circulation and brain, which is associated with increased neuroinflammation and oxidative stress in the PVN, an important cardiovascular regulatory center. Inhibition of TMAO generation ameliorates HS-induced sympathetic excitation and hypertension by reducing neuroinflammation and oxidative stress in the PVN.
Collapse
Affiliation(s)
- Gang Liu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jiayin Cheng
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxin Shao
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Xiangxu Chen
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Lihong Han
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Ru Zhou
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS, Snelling T, Solito E, Fonseca S, Carvalho AL, Carding SR, Müller M, Glen RC, Vauzour D, McArthur S. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. MICROBIOME 2021; 9:235. [PMID: 34836554 PMCID: PMC8626999 DOI: 10.1186/s40168-021-01181-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Communication between the gut microbiota and the brain is primarily mediated via soluble microbe-derived metabolites, but the details of this pathway remain poorly defined. Methylamines produced by microbial metabolism of dietary choline and L-carnitine have received attention due to their proposed association with vascular disease, but their effects upon the cerebrovascular circulation have hitherto not been studied. RESULTS Here, we use an integrated in vitro/in vivo approach to show that physiologically relevant concentrations of the dietary methylamine trimethylamine N-oxide (TMAO) enhanced blood-brain barrier (BBB) integrity and protected it from inflammatory insult, acting through the tight junction regulator annexin A1. In contrast, the TMAO precursor trimethylamine (TMA) impaired BBB function and disrupted tight junction integrity. Moreover, we show that long-term exposure to TMAO protects murine cognitive function from inflammatory challenge, acting to limit astrocyte and microglial reactivity in a brain region-specific manner. CONCLUSION Our findings demonstrate the mechanisms through which microbiome-associated methylamines directly interact with the mammalian BBB, with consequences for cerebrovascular and cognitive function. Video abstract.
Collapse
Affiliation(s)
- Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK.
| | | | - Ildefonso Rodriguez-Ramiro
- Norwich Medical School, University of East Anglia, Norwich, UK
- Metabolic Syndrome Group, Madrid Institute for Advanced Studies (IMDEA) in Food, E28049, Madrid, Spain
| | - M Areeb Anis-Alavi
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Khadija S Jelane
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Tom Snelling
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Egle Solito
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Federico II University, Naples, Italy
| | - Sonia Fonseca
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Ana L Carvalho
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Simon R Carding
- Norwich Medical School, University of East Anglia, Norwich, UK
- The Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, UK
| | - Michael Müller
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Robert C Glen
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Buawangpong N, Pinyopornpanish K, Siri-Angkul N, Chattipakorn N, Chattipakorn SC. The role of trimethylamine-N-Oxide in the development of Alzheimer's disease. J Cell Physiol 2021; 237:1661-1685. [PMID: 34812510 DOI: 10.1002/jcp.30646] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease is associated with multiple risk factors and is the most common type of dementia. Trimethylamine-N-oxide (TMAO), a gut microbiota metabolite derived from dietary choline and carnitine, has recently been identified as a potential risk factor of Alzheimer's disease. It has been demonstrated that TMAO is associated with Alzheimer's disease through various pathophysiological pathways. As a result of molecular crowding effects, TMAO causes the aggregation of the two proteins, amyloid-beta peptide and tau protein. The aggregation of these proteins is the main pathology associated with Alzheimer's disease. In addition, it has been found that TMAO can activate astrocytes, and inflammatory response. Besides molecular investigation, animal and human studies have also supported the existence of a functional relationship between TMAO and cognitive decline. This article comprehensively summarizes the relationship between TMAO and Alzheimer's disease including emerging evidence from in vitro, in vivo, and clinical studies. We hope that this knowledge will improve the prevention and treatment of Alzheimer's disease in the near future.
Collapse
Affiliation(s)
- Nida Buawangpong
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Natthapat Siri-Angkul
- Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Cardiac Electrophysiology Unit, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University Chiang Mai, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
28
|
Fang Q, Zheng B, Liu N, Liu J, Liu W, Huang X, Zeng X, Chen L, Li Z, Ouyang D. Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats With Diabetic Kidney Disease. Front Physiol 2021; 12:682482. [PMID: 34220546 PMCID: PMC8243655 DOI: 10.3389/fphys.2021.682482] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
The gut microbiota plays a pivotal role in the onset and development of diabetes and its complications. Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite of certain nutrients, is associated with type 2 diabetes and its complications. Diabetic kidney disease (DKD) is one of the most serious microvascular complications. However, whether TMAO accelerates the development of DKD remains unclear. We tested the hypothesis that TMAO accelerates the development of DKD. A high-fat diet/low-dose streptozotocin-induced diabetes rat model was established, with or without TMAO in the rats’ drinking water. Compared to the normal rats, the DKD rats showed significantly higher plasma TMAO levels at the end of the study. TMAO treatment not only exacerbated the kidney dysfunction of the DKD rats, but also renal fibrosis. Furthermore, TMAO treatment activated the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and resulted in the release of interleukin (IL)-1β and IL-18 to accelerate renal inflammation. These results suggested that TMAO aggravated renal inflammation and fibrosis in the DKD rats, which provides a new perspective to understand the pathogenesis of DKD and a potential novel target for preventing the progression of DKD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Binjie Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Na Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
29
|
Luo Y, Zhao P, Dou M, Mao J, Zhang G, Su Y, Wang Q, Wang Q, Wang Y, Sun R, Liu T, Gong M, Gao Y, Yin X, Song L, Shi H. Exogenous microbiota-derived metabolite trimethylamine N-oxide treatment alters social behaviors: Involvement of hippocampal metabolic adaptation. Neuropharmacology 2021; 191:108563. [PMID: 33887311 DOI: 10.1016/j.neuropharm.2021.108563] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that gut microbiota and its metabolites can influence the brain function and the related behaviors. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and many brain disorders. However, the potential effects of TMAO on social behaviors remain elusive. The present study investigated the effects of early life systemic TMAO exposure and intra-hippocampal TMAO infusion during adulthood on social behaviors in mice. We also analyzed the effects of intra-hippocampus infusion of TMAO during adulthood on levels of metabolites. The results showed that both systemic TMAO exposure in the post-weaning period and intra-hippocampal TMAO infusion during adulthood decreased social rank and reduced sexual preference in adult mice. Data from LC-MS metabolomics analysis showed that intra-hippocampal TMAO infusion induced a total 207 differential metabolites, which belongs to several metabolic or signaling pathways, especially FoxO signaling pathway and retrograde endocannabinoid signaling pathway. These data suggest that TMAO may affect social behaviors by regulating metabolites in the hippocampus, which may provide a new insight into the role of gut microbiota in regulating social behaviors.
Collapse
Affiliation(s)
- Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China; Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengxiao Dou
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiawen Mao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ge Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yurun Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ruoxuan Sun
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tingxuan Liu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology. Chinese Academy of Medical Sciences, Shijiazhuang, 050017, China.
| |
Collapse
|
30
|
Mao J, Zhao P, Wang Q, Chen A, Li X, Li X, Liu T, Tao Z, Wang X, Du Y, Gong M, Song L, Gao Y, Shi H. Repeated 3,3-Dimethyl-1-butanol exposure alters social dominance in adult mice. Neurosci Lett 2021; 758:136006. [PMID: 34098029 DOI: 10.1016/j.neulet.2021.136006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The influence of gut microbiota on brain function and brain disorders has been attracted more and more attention. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and other brain disorders. However, the relationship between TMAO and social behaviors are still poorly understood. Adult male mice were exposed to drinking water containing 3,3- Dimethyl-1-butanol (DMB), an indirect inhibitors of TMAO, for 21 continuous days followed by a series of behavioral tests to detect the effect of DMB exposure on social behaviors, mainly including social dominance test (SDT), bedding preference test (BP), sexual preference test (SP), social interaction test (SI), open field test (OFT), tail suspension test (TST), forced swim test (FST), novelty suppressed feeding test (NSF), and novel object recognition (NOR) task. In the SDT, compared with the control group, the mice treated with DMB (both 0.2% and 1.0%), both high-ranked and low-ranked mice, showed a reduction in the number of victories. There is no statistical difference on sexual preference, anxiety, depression-like behavior phenotype, and memory formation. In conclusion, the present findings provide direct evidence, for the first time, that repeated DMB exposure produces significant effects on social dominance of adult mice, without any effects on sexual preference, anxiety, depression-like behavior phenotype or memory formation, highlighting the regulatory effects of gut-brain interaction on social behaviors.
Collapse
Affiliation(s)
- Jiawen Mao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Qian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Aixin Chen
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuzi Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xianjie Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Tingxuan Liu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Zifei Tao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China.
| |
Collapse
|
31
|
Du D, Tang W, Zhou C, Sun X, Wei Z, Zhong J, Huang Z. Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5816837. [PMID: 33628361 PMCID: PMC7894052 DOI: 10.1155/2021/5816837] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can induce persistent fluctuation in the gut microbiota makeup and abundance. The present study is aimed at determining whether fecal microbiota transplantation (FMT) can rescue microbiota changes and ameliorate neurological deficits after TBI in rats. METHODS A controlled cortical impact (CCI) model was used to simulate TBI in male Sprague-Dawley rats, and FMT was performed for 7 consecutive days. 16S ribosomal RNA (rRNA) sequencing of fecal samples was performed to analyze the effects of FMT on gut microbiota. Modified neurological severity score and Morris water maze were used to evaluate neurobehavioral functions. Metabolomics was used to screen differential metabolites from the rat serum and ipsilateral brains. The oxidative stress indices were measured in the brain. RESULTS TBI induced significance changes in the gut microbiome, including the alpha- and beta-bacterial diversity, as well as the microbiome composition at 8 days after TBI. On the other hand, FMT could rescue these changes and relieve neurological deficits after TBI. Metabolomics results showed that the level of trimethylamine (TMA) in feces and the level of trimethylamine N-oxide (TMAO) in the ipsilateral brain and serum was increased after TBI, while FMT decreased TMA levels in the feces, and TMAO levels in the ipsilateral brain and serum. Antioxidant enzyme methionine sulfoxide reductase A (MsrA) in the ipsilateral hippocampus was decreased after TBI but increased after FMT. In addition, FMT elevated SOD and CAT activities and GSH/GSSG ratio and diminished ROS, GSSG, and MDA levels in the ipsilateral hippocampus after TBI. CONCLUSIONS FMT can restore gut microbiota dysbiosis and relieve neurological deficits possibly through the TMA-TMAO-MsrA signaling pathway after TBI.
Collapse
Affiliation(s)
- Donglin Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
32
|
Łuc M, Misiak B, Pawłowski M, Stańczykiewicz B, Zabłocka A, Szcześniak D, Pałęga A, Rymaszewska J. Gut microbiota in dementia. Critical review of novel findings and their potential application. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110039. [PMID: 32687964 DOI: 10.1016/j.pnpbp.2020.110039] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/19/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
Abstract
There is a great deal of impetus for the comprehensive understanding of the complete pathological function, genetic information, and functional diversity of the gut microbiota that favors the development of dementia. It has been reported that patients with mild cognitive impairment and Alzheimer's disease present with several metabolic and immune-inflammatory alterations. The recently highlighted aspects of human health linked to cognitive decline include insulin-resistance, obesity, and chronic low-grade inflammation. Gut microbiota is known to produce neurotransmitters, such as GABA, acetylcholine, dopamine or serotonin, vitamins, intestinal toxins, and modulate nerve signaling - with emphasis on the vagus nerve. Additionally, gut dysbiosis results in impaired synthesis of signaling proteins affecting metabolic processes relevant to the development of Alzheimer's disease. Due to numerous links of gut microbiota to crucial metabolic and inflammatory pathways, attempts aimed at correcting the gut microflora composition may affect dementia pathology in a pleiotropic manner. Taking advantage of the metabolic effects of cold exposure on organisms by the introduction of whole-body cryostimulation in dementia patients could lead to alterations in gut microbiota and, therefore, decrease of an inflammatory response and insulin resistance, which remain one of the critical metabolic features of dementia. Further studies are needed in order to explore the potential application of recent findings and ways of achieving the desired goals.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland.
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland
| | - Marcin Pawłowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | | | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | - Anna Pałęga
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| |
Collapse
|
33
|
Chang QX, Chen X, Ming-Xin Yang, Zang NL, Li LQ, Zhong N, Xia LX, Huang QT, Zhong M. Trimethylamine N-Oxide increases soluble fms-like tyrosine Kinase-1 in human placenta via NADPH oxidase dependent ROS accumulation. Placenta 2020; 103:134-140. [PMID: 33120049 DOI: 10.1016/j.placenta.2020.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Preeclampsia (PE) is characterized as placental vascular disturbance and excessive secretion of soluble fms-like tyrosine kinase 1 (sFlt-1) into the maternal circulation. Trimethylamine N-oxide (TMAO, a gut microbe-derived metabolite) is strongly associated with various cardiovascular and cerebrovascular diseases. Recently, we observe that higher maternal circulating TMAO and sFlt-1 in patients with PE. The aims of the present study are to explore the effects of TMAO on placental sFlt-1 production and the underlying mechanism in human placenta. METHODS Human placental explants, human placental primary trophoblasts and the extravillous trophoblasts (EVT) cell line (HRT-8/SVneo) were exposured to various concentrations of TMAO (100, 150, 300, and 600 μM). The mRNA expression and protein secretion of sFlt-1 in placental explants, primary trophoblasts and HRT-8/SVneo cells were determined with qPCR and ELISA, respectively. The levels of intracellular reactive oxygen species (ROS) production in primary trophoblasts and HRT-8/SVneo cells were measured by peroxide-sensitive fluorescent probe dichlorofluorescein diacetate. RESULTS Exposure of placental explants, primary trophoblasts and HRT-8/SVneo cells to TMAO significantly enhanced sFlt-1 at both mRNA and protein levels in a dose dependent manner. Moreover, inhibition of NADPH oxidase with apocynin significantly attenuated TMAO-induced ROS production in primary trophoblasts and HRT-8/SVneo, and suppressed sFlt-1 secretion in placental explants, primary trophoblasts and HRT-8/SVneo. CONCLUSIONS Our findings indicated the NADPH oxidase dependent ROS pathway played a critical role in mediating TMAO-induced sFlt-1 generation in human placenta. TMAO may become a potential novel target for pharmacological or dietary interventions to reduce the risk of developing PE.
Collapse
Affiliation(s)
- Qing-Xian Chang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China; First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Foshan No.1 People Hospital, Foshan, Guangdong, China
| | - Ming-Xin Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China; First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Nai-Liang Zang
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Le-Qian Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China; First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Nanbert Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Lai-Xin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi-Tao Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Foshan Maternal and Fetal Care Hospital, Foshan, Guangdong, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Brunt VE, LaRocca TJ, Bazzoni AE, Sapinsley ZJ, Miyamoto-Ditmon J, Gioscia-Ryan RA, Neilson AP, Link CD, Seals DR. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience 2020; 43:377-394. [PMID: 32862276 DOI: 10.1007/s11357-020-00257-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with declines in cognitive performance, which are mediated in part by neuroinflammation, characterized by astrocyte activation and higher levels of pro-inflammatory cytokines; however, the upstream drivers are unknown. We investigated the potential role of the gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) in modulating neuroinflammation and cognitive function with aging. Study 1: In middle-aged and older humans (65 ± 7 years), plasma TMAO levels were inversely related to performance on NIH Toolbox Cognition Battery tests of memory and fluid cognition (both r2 = 0.07, p < 0.05). Study 2: In mice, TMAO concentrations in plasma and the brain increased in parallel with aging (r2 = 0.60), suggesting TMAO crosses the blood-brain barrier. The greater TMAO concentrations in old mice (27 months) were associated with higher brain pro-inflammatory cytokines and markers of astrocyte activation vs. young adult mice (6 months). Study 3: To determine if TMAO independently induces an "aging-like" decline in cognitive function, young mice (6 months) were supplemented with TMAO in chow for 6 months. Compared with controls, TMAO-supplemented mice performed worse on the novel object recognition test, indicating impaired memory and learning, and had increased neuroinflammation and markers of astrocyte activation. Study 4: Human astrocytes cultured with TMAO vs. control media exhibited changes in cellular morphology and protein markers consistent with astrocyte activation, indicating TMAO directly acts on these cells. Our results provide translational insight into a novel pathway that modulates neuroinflammation and cognitive function with aging, and suggest that TMAO might be a promising target for prevention of neuroinflammation and cognitive decline with aging.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
- Department of Health and Exercise Science and the Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Amy E Bazzoni
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Zachary J Sapinsley
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Jill Miyamoto-Ditmon
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant St, 354 UCB, Boulder, CO, 80309, USA.
| |
Collapse
|